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The article provides a structural analysis of the feasible set defined by linear probabilistic
constraints. Emphasis is laid on single (individual) probabilistic constraints. A classical convex-
ity result by Van de Panne/Popp and Kataoka is extended to a broader class of distributions
and to more general functions of the decision vector. The range of probability levels for
which convexity can be expected is exactly identified. Apart from convexity, also nontriviality
and compactness of the feasible set are precisely characterized at the same time. The relation
between feasible sets with negative and with nonnegative right-hand side is revealed. Finally,
an existence result is formulated for the more difficult case of joint probabilistic constraints.

Keywords: Probabilistic constraints; Stochastic programming; Chance constraints; Stochastic
optimization

Mathematics Subject Classifications 2000: 90C15

1. Introduction

Many optimization problems in engineering sciences involve stochastic linear
constraints of the form

�x � �, ð1Þ

where x is an n-dimensional decision vector, � is a stochastic matrix of order (m, n)
and � is a fixed or stochastic random vector of dimension m (see [12], for instance).
Typically, ‘here-and-now’ decisions have to be taken, which means that the random
parts of (1) are observed only after deciding upon x. Thus, no matter how x is
chosen, a sure feasibility with respect to (1) cannot be guaranteed. However, depending
on the distribution of � (and � whenever stochastic), it is possible to choose x in a way
to keep the probability of violating (1) small. More precisely, one can turn (1) into
a probabilistic constraint

P �x � �ð Þ � p, ð2Þ
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where P is a probability measure and p 2 0, 1½ � is some probability level (typically close
to 1) at which (1) is required to hold. Inequality (2) is also referred to as a joint
probabilistic constraint, as it takes into account the probability of the entire system
(1) to be satisfied. In general, joint probabilistic constraints are difficult to handle
and both their algorithmic treatment and their theoretical investigation keep posing a
lot of challenging questions (see [9] for a comprehensive introduction and [10] for
a review on recent work in this area). It is much easier, although not justified in all
situations, to turn each single inequality of (1) into an individual probabilistic constraint
as follows:

P �i, xh i � �ið Þ � pi, ði ¼ 1, . . . ,mÞ: ð3Þ

Here, the �i refer to the rows of � and now the probability levels may differ for
each constraint.

For algorithmic purposes, it is of much interest to know whether or not the set
of feasible decisions x satisfying (3) is convex. As the intersection of convex sets remains
convex, this issue boils down to the investigation of a single linear probabilistic
constraint

M ¼ fx 2 R
n
jP �, xh i � �ð Þ � pg,

where � is an n-dimensional random vector and � is a scalar (possibly random).
The convexity of M has been investigated first in the classical papers by Van de
Panne and Popp [8] and by Kataoka [5]. They have shown that M is a convex subset
of R

n provided that � has a nondegenerate multivariate normal distribution and that
p � 0:5. This frequently cited result leaves open a lot of questions. First, one could
ask about distributions different from normal ones or about more general functions
of x, under which the same result can be maintained. Second, it is clear that the feasible
set M becomes smaller when the level p is increased towards 1. Hence, the important
observation that M is convex for p large enough has to be coupled with the question
of nontriviality because the empty set is convex, too. Third, also large sets like R

n

may be convex. This raises the question if there exists a range of small values of
p which guarantees convexity as well. Finally, apart from convexity and triviality,
compactness of M is another issue of theoretical and algorithmic interest. Nonempty
and compact feasible sets guarantee the existence of solutions and allow to derive
stability results for solutions when the usually unknown distribution of � has to be
approximated on the basis of estimations or historical observations [2].

The purpose of this article is to provide a detailed structural analysis to linear chance
constraints and to give a fairly precise answer to the questions posed. The classical
results of [8] and [5] can be extended to the class of elliptically symmetric distributions
and to certain component-wise convex mappings of x. In the classical setting of normal
distributions, it will be possible to exactly identify the range of p-values, for which
convexity, triviality and compactness (or nonconvexity, nontriviality and unbounded-
ness) hold true. It is interesting to observe that these results strongly depend on whether
the right-hand side � is negative or nonnegative. Under this case distinction, all
structural results become rather different and seemingly independent. However, they
are not as independent as they might look like. Generally speaking, the first main
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result of this article states that, for negative right-hand side and large values of p the
feasible set looks like the complement of the feasible set for nonnegative right-hand
side and small values of p. In the more demanding situation of optimization problems
involving joint probabilistic constraints as in (2), an existence theorem can be derived
from the case of single constraints. More precisely, this theorem allows exactly to
calculate a critical p-level above which compactness and nonemptiness of a joint
probabilistic constraint can be guaranteed. Such result is not only interesting with
respect to the existence of solutions, but also concerning stability of solution sets
under perturbation (approximation) of the given probability distribution.

2. Results

In the following, we shall consider constraint sets

M�
p :¼ fx 2 R

n
jPð qðxÞ, �
� �

� �Þ � pg ð� 2 R, p 2 ð0, 1ÞÞ: ð4Þ

Here, � is an s-dimensional random vector defined on a probability space ð�,A,PÞ and
q : R

n
! R

s is a mapping from the space of decision vectors to the space of realizations
of the random vector. The indices � and p shall emphasize the fact that we are going
to analyse the structure of the feasible set as a function of the right-hand side of the
considered stochastic inequality and of the probability level p. Putting qðxÞ ¼ x, one
gets back to the classical linear probabilistic constraint set M�

p with deterministic
right-hand side. Choosing qðxÞ ¼ ðx, � 1Þ and considering the extended sþ 1ð Þ-dimen-
sional random vector �, �ð Þ, M0

p recovers the constraint set with stochastic right-hand
side (see introduction). In this latter case, q is an affine linear mapping, which will
figure as an assumption in several subsequent results. As an immediate consequence
of the definition (5), one has the following properties:

M�
p1
�M�

p2
8� 2 R 8p1, p2 2 ð0, 1Þ : p1 � p2 ð5Þ

q�1ð0Þ �M�
p 8� � 0 8p 2 ð0, 1Þ ð6Þ

q�1ð0Þ �
�
M�

p

�c
8� < 0 8p 2 ð0, 1Þ ð7Þ

Moreover, the M�
p are closed subsets of R

n under mild assumptions. Indeed, we may
refer to the following consequence of a general closedness characterization provided
in [11] (Prop. 3.1), where we keep the meaning of � and P.

LEMMA 2.1 Let g : R
n
�R

s
! R

m be a vector-valued mapping with lower semicontinuous
(in both variables simultaneously) components. Then, the set fx 2 R

n
jPðgðx, �Þ � 0Þ � pg

is closed.

COROLLARY 2.1 If in (4), q is a mapping with lower semicontinuous components, then
M�

p is closed for all � 2 R and all p 2 ð0, 1Þ.

Properties of linear probabilistic constraints 427
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2.1 On the relation between positive and negative right-hand side

Before investigating properties of M�
p , like convexity, nontriviality and compactness,

we want to identify the structural relation between constraint sets with positive
and negative right-hand side. The following theorem tells us that, up to closure and
translation, the sets M�

p are identical to the complements of the ‘dual’ sets M��1�p.
Convexity and compactness are examples for properties which are not affected by
translation or closure.

THEOREM 2.1 Let the distribution of � be absolutely continuous with respect to the
Lebesgue measure, and let the support of � be all of R

s. Furthermore, assume that
q is a surjective, affine linear mapping. Then, there exists some d 2 R

n, such that

M�
p ¼ fdg � cl M��1�p

� �cn o
8� 6¼ 0 8p 2 ð0, 1Þ:

Proof We fix arbitrary � 6¼ 0, p 2 ð0, 1Þ and start by observing that the function

x 7 �!P qðxÞ, �
� �

� �
� �

ð8Þ

is continuous at each x =2 q�1ð0Þ. Indeed, this condition, together with the fact that
q is continuous, ensures that the set-valued mapping

Ty :¼ fu 2 R
s
j qðyÞ, u
� �

� �g

satisfies limy!x Ty ¼ Tx. Here, the set convergence is taken in the Kuratowski–Painlevé
sense. Along with the assumption that � has an absolutely continuous distribution, this
ensures that limy!x P � 2 Ty

� �
¼ P � 2 Txð Þ, whenever all the Ty and Tx are closed and

convex (see [7], Theorem 3, Lemma 1 and Proof of Theorem 4).
To proceed with the proof of our Theorem, we may assume that qðxÞ ¼ Axþ b for

some matrix A having full rank. Put

d :¼ �2AT AAT
� ��1

b:

As a consequence, one has that �qðxÞ ¼ qðd� xÞ for all x 2 R
n and, in particular

that x 2 q�1ð0Þ if and only if d� x 2 q�1ð0Þ. For arbitrary x =2 q�1ð0Þ, the following
equivalences hold true:

qðxÞ, �
� �

� �
� �

� p, P qðxÞ, �
� �

> �
� �

� 1� p

, P � qðxÞ, �
� �

< ��
� �

� 1� p

, P qðd� xÞ, �
� �

� ��
� �

� 1� p: ð9Þ

Here, the last equivalence relies on the fact that qðd� xÞ 6¼ 0, so that qðd� xÞ, �
� �

¼ ��
defines a hyperplane in R

s, which has probability zero by our assumption on the
distribution of �. Next, we verify the following identity:

cl M��1�p

� �cn o
¼ z 2 R

n
jP qðzÞ, �
� �

� ��
� �

� 1� p
� �

8z =2 q�1ð0Þ: ð10Þ

428 R. Henrion
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For z 2 clfðM��1�pÞ
c
g, there exists a sequence zn! z such that

P qðznÞ, �
� �

� ��
� �

< 1� p:

This entails the inclusion ‘�’ in (10) via the continuity of the function (8). For the
reverse inclusion, let z be given such that z =2 q�1ð0Þ and

P qðzÞ, �
� �

� ��
� �

� 1� p:

With

zn :¼ z�
sgn �

n
AT AAT
� ��1

ðAzþ bÞ,

one gets that zn! z and

qðznÞ ¼ Azn þ b ¼ Azþ b�
sgn �

n
ðAzþ bÞ ¼

ð1� n�1ÞqðzÞ if � > 0
ð1þ n�1ÞqðzÞ if � < 0:

	

Consequently, in case that �>0, one arrives at the inclusion

u 2 R
s
j qðznÞ, u
� �

� ��
� �

¼ u 2 R
s
j qðzÞ, u
� �

� ��ð1� n�1Þ�1
� �

� u 2 R
s
j qðzÞ, u
� �

� ��
� �

:

Thus,

1� p � P qðzÞ, �
� �

� ��
� �

¼ P qðznÞ, �
� �

� ��
� �

þ P ��ð1� n�1Þ�1 < qðznÞ, �
� �

� ��
� �

:

Now, since the strip

u 2 R
s
j � �ð1� n�1Þ�1 < qðznÞ, u

� �
� ��

� �
has a nonempty interior, its probability must be strictly positive according to our
assumption that the support of � is all of R

s. Thus, we get

1� p > P qðznÞ, �
� �

� ��
� �

which amounts to saying that zn 2 ðM
��
1�pÞ

c . An analogous argumentation applies to
the case �<0 upon using the respective definition of zn. This establishes (10).

Applying (10) to (9) with z ¼ d� x =2 q�1ð0Þ, we may summarize the preceding
considerations in the form

x 2M�
pnq
�1ð0Þ()x 2 fdg � cl M��1�p

� �cn oh i
nq�1ð0Þ: ð11Þ

Properties of linear probabilistic constraints 429
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In order to finish the proof, it remains to verify the equivalence

x 2M�
p \ q

�1ð0Þ()x 2 fdg � cl M��1�p

� �cn oh i
\ q�1ð0Þ: ð12Þ

If x 2M�
p \ q

�1ð0Þ, then also d� x 2 q�1ð0Þ and � � 0 by (7). Since � 6¼ 0, it follows
that �� < 0 and d� x 2 ðM��1�pÞ

c, again by (7). This proves the implication ‘¼)’ in
(12). Conversely, let

x 2 fdg � cl M��1�p

� �cn oh i
\ q�1ð0Þ:

Once more, d� x 2 q�1ð0Þ. By definition, there is a sequence xn! d� x with
xn 2 ðM

��
1�pÞ

c. Assume first, that there is a subsequence of xn, which we do not relabel,
such that xn =2 q

�1ð0Þ. Then, also d� xn =2 q
�1ð0Þ, so that we can apply (11) to d� xn

rather than x. This yields that d� xn 2M�
p . On the other hand, M�

p is closed according
to Corollary 2.1. It follows that

d� xn! x 2M�
p \ q

�1ð0Þ,

which establishes the reverse implication in (12) for a special case. It remains to check
the case when d� xn 2 q�1ð0Þ for all n. Then, also xn 2 q�1ð0Þ for all n. The assumption
� � 0 would lead to the contradiction xn 2M��1�p via (6). So, d� xn 2M�

p , again by (6).
The same closedness argument as in the first special case yields that x 2M�

p \ q
�1ð0Þ.

This completes the proof. g

The following example illustrates, why we have to insist on the condition � 6¼ 0
in Theorem 2.1.

Example 2.1 In dimension one, let qðxÞ ¼ x and � have a standard normal distribution.
Then, M0

0:5 ¼ R. All assumptions of Theorem 2.1 are met, except that �¼ 0. If the
theorem would hold true, there should exist some d 2 R, such that

M0
0:5 ¼ fdg � cl M0

0:5

� �cn o
¼ fdg � cl 6 0 ¼ 6 0,

which is a contradiction.

2.2 Convexity

We recall the class of elliptically symmetric distributions, whose density (if it exists)
is given by

fðxÞ ¼ det�ð Þ
�1=2g x� �,��1 x� �ð Þ

� �� �
,

430 R. Henrion
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where � is a positive definite matrix and g is some nonnegative function. In particular,
the s-dimensional normal distribution belongs to this class with mean vector �,
covariance matrix � and

gðtÞ ¼ 2�ð Þ�s=2exp
�t

2

� �
:

However, the class of elliptically symmetric distributions is much broader than just
multivariate normal ones and incorporates, for instance, multivariate versions of
student or exponential distributions [1, 3]. The characteristic function of an elliptically
symmetric distribution has the form

�ðtÞ ¼ exp i t, �h ið Þh t,�th ið Þ

for some scalar function h, called the ‘characteristic generator’ of this distribution.
In the following, we use the symbol �k kC for the norm induced by a positive definite

matrix C, i.e. �k kC¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x,Cxh i

p
. Moreover, for a 1D distribution function F we define

its p-quantile as

F �1ð pÞ ¼ infftjFðtÞ � pg:

LEMMA 2.2 In (4), let q be arbitrary and let � have an elliptically symmetric distribution
with parameters �, �, where � is positive definite. Denote by h its characteristic generator.
Then

M�
p ¼ x 2 R

n
jF �1ð pÞ qðxÞ

�� ��
�
þ �, qðxÞ
� �

� �
� �

,

where F is the 1D distribution function induced by the characteristic function
�ð�Þ :¼ h �2

� �
.

Proof The characteristic function of � is

��ðtÞ ¼ exp i t, �h ið Þh tk k2�
� �

:

Let x 2 R
n
nq�1ð0Þ be arbitrary. Then, the scaled random variable

�x :¼
qðxÞ, � � �
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxÞ,�qðxÞ
� �q ¼

qðxÞ

qðxÞ
�� ��

�

, �

* +
�

qðxÞ

qðxÞ
�� ��

�

, �

* +

is a well-defined affine linear transformation of �. Following the general calculus rule

� c, �h iþdð�Þ ¼ exp i�dð Þ � ��ð�cÞ

Properties of linear probabilistic constraints 431
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for characteristic functions, that of �x calculates as

��xð�Þ ¼ exp �i�
qðxÞ, �
� �
qðxÞ
�� ��

�

 !
��

�

qðxÞ
�� ��

�

qðxÞ

 !
¼ h �2

� �
:

In particular, the distribution of �x does not depend on x. Its distribution function
is given by F as introduced in the statement of this lemma. It follows that

Pð qðxÞ, �
� �

� �Þ � p, P �x �
�� �, qðxÞ

� �
qðxÞ
�� ��

�

 !
� p, F

�� �, qðxÞ
� �
qðxÞ
�� ��

�

 !
� p

, F �1ð pÞ qðxÞ
�� ��

�
þ �, qðxÞ
� �

� �:

Now, the assertion results from (6) and (7) upon observing that the last inequality
holds true for all x 2 q�1ð0Þ if � � 0 and is violated for all x 2 q�1ð0Þ if �<0. g

PROPOSITION 2.1 Let, in addition to the setting of Lemma 2.2, one of the following
assumptions hold true.

. q is affine linear
or
. q has nonnegative, convex components, �i � 0 for i ¼ 1, . . . , s and all elements of �
are nonnegative.

Then, M�
p is convex for all � 2 R and all p > 0:5. If, moreover, the random vector

� in Lemma 2.2 has a strictly positive density, then M�
p is convex for all � 2 R and all

p � 0:5.

Proof By Lemma 2.2, we are done if we can show that both functions

�, qðxÞ
� �

and F �1ð pÞ qðxÞ
�� ��

�

are convex. This is obvious for �, qðxÞ
� �

without restrictions on � in case that q is affine
linear and for � with nonnegative components in case that the components of q are
convex. Let us turn to the second term now: since F is a 1D symmetric distribution
function, it follows that Fð0Þ ¼ 0:5. Therefore, F �1ð pÞ � 0 for p > 0:5 and also
F �1ð pÞ � 0 for p¼ 0.5, in the case that F has a strictly positive density. It remains to
verify thus, that qð�Þ

�� ��
�
is a convex function. This is evident in case that q is affine

linear. For the alternative case, recall that, for any fixed x =2 q�1ð0Þ, the optimization
problem

max qðxÞ, y
� �

j y
�� ��

��1
¼ 1

� �
has the solution

y� ¼ qðxÞ
�� ���1

�
�qðxÞ:

432 R. Henrion
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Since, by assumption, all components of q and all elements of � are nonnegative,
the components of y� are nonnegative too. This allows to write that

qðxÞ
�� ��

�
¼ qðxÞ, y�
� �

¼ max qðxÞ, y
� �

j y
�� ��

��1
¼ 1

� �
¼ max qðxÞ, y

� �
j y
�� ��

��1
¼ 1, y 2 R

s
þ

� �
:

for all x =2 q�1ð0Þ. The same identity

qðxÞ
�� ��

�
¼ max qðxÞ, y

� �
j y
�� ��

��1
¼ 1, y 2 R

s
þ

� �
holds trivially true in case that x 2 q�1ð0Þ, hence it is valid for all x 2 R

n. For y 2 R
s
þ,

hqð�Þ, yi is convex by the assumed convexity of the components of q. Summarizing,
kqð�Þk� is convex as a maximum of convex functions hqð�Þ, yi. g

When reducing Proposition 2.1 to a nondegenerate multivariate normal distribution
of �, then its first statement evidently recovers the classical convexity result of
[5,8] with random or deterministic right-hand side (see introduction and beginning of
section 2). The first statement of Proposition 2.1 was shown in [4] based on the concept
of so-called �-nuclei. In contrast, our proof essentially relies on the representation
Lemma 2.2. This representation allows, in the second statement of Proposition 2.1,
to generalize the convexity result to nonlinear functions q of the decision vector.
A different extension of the classical results to the class of log-concave symmetric
distributions has been obtained in [6]. As the elliptically symmetric distributions consid-
ered here, the log-concave symmetric distributions also contain multivariate normal
distributions (but apart from it also uniform distributions over symmetric, convex,
compact sets).

From now on we shall assume, for simplicity, that the random vector � has a
nondegenerate multivariate normal distribution with mean vector � and (positive
definite) covariance matrix �: �	 N �,�ð Þ. Then, by Lemma 2.2,

M�
p ¼ x 2 R

n
j��1ð pÞ qðxÞ

�� ��
�
þ �, qðxÞ
� �

� �
� �

, ð13Þ

where � denotes the distribution function of the 1D standard normal distribution and
��1(p) its p-quantile.

Proposition 2.1 tells us for which range of p-values convexity of the constraint set
may be expected. It does not imply, however, nonconvexity of this set for the remaining
p-values. The following proposition clarifies, under which circumstances nonconvexity
may be derived.

PROPOSITION 2.2 Let �	 N �,�ð Þ with positive definite � and let q be a surjective affine
linear mapping. Then, M�

p is nonconvex in any of the following two situations:

� < 0, p < 0:5

or

� � 0,� � �k k��1ð Þ < p < 0:5:

Proof First, let �<0 and p < 0:5, whence ��1ð pÞ < 0. We choose 	 6¼ 0 such that
	,�h i ¼ 0. By surjectivity of q, there is some h such that qðhÞ ¼ qð0Þ þ 	: Again, by
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surjectivity of q, we may choose some x� 2 q�1ð0Þ. By virtue of (7), one has that x� =2M�
p .

For t 2 R, put xt :¼ x� þ th. The affine linearity of q implies that

qðxtÞ ¼ qðx�Þ þ tðqðhÞ � qð0ÞÞ ¼ qðx�Þ þ t	:

Then,

��1ð pÞ qðxtÞ
�� ��

�
þ �, qðxtÞ
� �

¼ ��1ð pÞ qðx�Þ þ t	
�� ��

�
þ �, qðx�Þ
� �

:

Since 	 6¼ 0 and ��1ð pÞ < 0, it follows that

lim
t!1

��1ð pÞ qðxtÞ
�� ��

�
þ �, qðxtÞ
� �

¼ lim
t!�1

��1ð pÞ qðxtÞ
�� ��

�
þ �, qðxtÞ
� �

¼ 1:

Consequently, for tj j large enough, one has

��1ð pÞ qðxtÞ
�� ��

�
þ �, qðxtÞ
� �

� �,

which means that xt 2M�
p according to (13). In particular, there is some �>0, such

that x�, x�� 2M�
p . On the other hand,

x� þ x��
2

¼ x� =2M�
p :

Therefore, M�
p is not convex.

Now, let �� 0 and � � �k k��1ð Þ < p < 0:5. In particular, � 6¼ 0, because otherwise
� � �k k��1ð Þ ¼ 0:5. For each t 2 R, the surjectivity of q allows to choose some yt,
such that qðytÞ ¼ t��1�. Then,

��1ð pÞ qðytÞ
�� ��

�
þ �, qðytÞ
� �

¼ ��1ð pÞt �k k��1 þ t �k k2��1

¼ ��1ð pÞ þ �k k��1
� �

t �k k��1!t!1 1,

where the convergence towards infinity relies on the fact that � 6¼ 0 and on the fact that
the expression in parentheses is strictly positive by our assumption on the admissible
range of p. Hence, for t large enough, the expression above will exceed �. In other
words, by (13), for t large enough, yt =2M

�
p . We fix such a point and call it �x.

Now, we may repeat exactly the same argumentation as in the first part of this proof
but with x� replaced by �x. This allows again to find points x�, x�� 2M�

p , such that

x� þ x��
2

¼ �x =2 M�
p ,

and hence, convexity of M�
p is violated once more. g
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2.3 Nonemptiness and compactness

So far, we have characterized the convexity of the constraint set. It has to be taken into
account, however, that M�

p might be trivially convex in being identical either to the
empty set or to the whole space. Therefore, a characterization of triviality is of interest
as well.

PROPOSITION 2.3: Let �	 N �,�ð Þ with positive definite �. Then,

M�
p ¼ R

n
8� � 0 8p � � � �k k��1ð Þ

M�
p ¼ 6 0 8� < 0 8p � � �k k��1ð Þ:

Moreover, if q is surjective, then

M�
p 6¼ 6 0 8� � 0 8p 2 ð0, 1Þ

M�
p 6¼ 6 0 8� < 0 8p < � �k k��1ð Þ:

Proof A generalized version of the Cauchy–Schwarz inequality (for symmetric,
positive definite matrices) yields the relation

�, qðxÞ
� ��� �� � qðxÞ

�� ��
�
�k k��1 : ð14Þ

From here, for arbitrary x 2 R
n, one obtains the following pair of inequalities by

case distinction:

��1ð pÞ qðxÞ
�� ��

�
þ �, qðxÞ
� �

� qðxÞ
�� ��

�
��1ð pÞ þ �k k��1
� �

� 0 � � 8� � 0 8p � � � �k k��1ð Þ

� qðxÞ
�� ��

�
��1ð pÞ � �k k��1
� �

� 0 > � 8� < 0 8p � � �k k��1ð Þ:

(

By virtue of (13), this proves the first part of our Corollary. The first statement of the
second part of the corollary is evident from (6) because q�1ð0Þ 6¼ 6 0 by the assumed
surjectivity of q. Concerning the last statement, define for each t>0 some xt such
that qðxtÞ ¼ �t�

�1� (which is possible again by surjectivity of q). For any
p < � �k k��1ð Þ and any �, it follows that

�� �, qðxtÞ
� �
qðxÞ
�� ��

�

¼
�þ t �k k2��1

t �k k��1
!
t!1

�k k��1> ��1ð pÞ:

Consequently, there is some xt, such that

��1ð pÞ qðxtÞ
�� ��

�
þ �, qðxtÞ
� �

< �:

By Lemma (13), this amounts to saying that xt 2M�
p . g
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Remark 2.1 Note that the very first statement of Proposition 2.3 confirms that,
for �� 0, M�

p is convex not just for p � 0:5 according to Proposition 2.1, but also for
p � � � �k k��1ð Þ.

For algorithmic purposes, not only convexity of the constraint set is of interest, but also
its compactness. This, together with the nonemptiness characterized in Proposition 2.3
will guarantee the existence of solutions.

PROPOSITION 2.4 Let �	 N �,�ð Þ with positive definite �. Moreover, let q : R
n
! R

n

be a homeomorphism (i.e., a bijective mapping such that q and q�1 are continuous).
Then, for any � 2 R, M�

p is unbounded whenever p < � �k k��1ð Þ and compact whenever
p > � �k k��1ð Þ. If p ¼ � �k k��1ð Þ, then M�

p is unbounded in the case that �� 0 and is
compact (actually empty) in the case that � < 0.

Proof Let 0:5 < p < �ðk�k��1 Þ. In particular, � 6¼ 0, because otherwise �ð �k k��1 Þ ¼
0:5. Also, by assumption, ��1ð pÞ < �k k��1 . For each t� 0, put yt :¼ q�1ð�t��1�Þ.
Then,

��1ð pÞ qðytÞ
�� ��

�
þ �, qðytÞ
� �

¼ ��1ð pÞ � �k k��1
� �

t �k k��1 !
t!1
�1:

Hence, there is some t0, such that, by (13), yt 2M�
p for all t � t0. In other words,

q�1 �½t0,1Þ ��
�1�

� �
�M�

p

Since � 6¼ 0, one also has that ��1� 6¼ 0. Therefore, �½t0,1Þ ��
�1� is an unbounded

set and q�1 �½t0,1Þ ��
�1�

� �
is unbounded, too, because q is a homeomorphism.

Consequently, M�
p is an unbounded set. If p � 0:5 then M�

p becomes even larger due
to (5). This proves the first part of our proposition.

If �<0 and p � � �k k��1ð Þ, then M�
p ¼ 6 0 by Proposition 2.3, so compactness follows

trivially in this situation. Next, let � � 0 and p > � �k k��1ð Þ, whence ��1ð pÞ > �k k��1 .
The closed ball (w.r.t. the norm induced by �)

B :¼ yj y
�� ��

�
� ��1ð pÞ � �k k��1
� ��1

�
n o

is compact, hence q�1ðBÞ is compact, too. On the other hand, for x 2M�
p , one derives

from (14) and (13) that

qðxÞ
�� ��

�
��1ð pÞ � �k k��1
� �

� ��1ð pÞ qðxÞ
�� ��

�
þ �, qðxÞ
� �

� �,

whence qðxÞ 2 B. In other words, M�
p � q�1ðBÞ. As a closed subset of a compact set, M�

p

has to be compact too (for closedness see continuity of the constraint function in (8)).
Finally, let �� 0 and p ¼ � �k k��1ð Þ. If �¼ 0, then ��1ð pÞ ¼ 0 and M�

p ¼ R
n according

to (13). In the case � 6¼ 0, one could reapeat the construction of yt in the beginning
of this proof in order to derive that

��1ð pÞ qð ytÞ
�� ��

�
þ �, qð ytÞ
� �

¼ 0 � � 8t � 0:
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Then, q�1ð�½0,1Þ ���1�Þ �M�
p and unboundedness of M�

p would result in the same
way as above. g

The following theorem provides a compilation of the results obtained so far. In order
to collect a maximum of information, we restrict the functions q to the class of
regular affine linear mappings, i.e., qðxÞ ¼ Axþ b, with some regular matrix A.
This class satisfies all assumptions made so far and covers, in particular, the case of
linear chance constraints with stochastic coefficients and deterministic or stochastic
right-hand side. The results on convexity, non-emptiness and compactness proven
in the previous sections, are exhaustive in the sense that they completely determine,
for which constellations of � and p the feasible sets M�

p will be convex or
nonconvex, empty or nonempty, compact or unbounded. In this sense, a full
structural characterization is established. Let us define the following regions in the
ð p,�Þ-plane:

Rconvðnon =0, compÞ ¼ fð p,�ÞjM�
p is convex ðnonempty, compactÞg:

For the purpose of abbreviation, denote 	 :¼ � �k k��1ð Þ � 0:5 and observe that 	� 0
and that � � �k k��1ð Þ ¼ 0:5� 	.

THEOREM 2.2 In (4), let q be a regular affine linear mapping and let �	 N �,�ð Þ with
positive definite �. Then,

Rconv ¼ ½0, 0:5� 	� � ½0,1Þ
� �

[ ½0:5, 1� � ð�1,1Þ
� �

Rnon =0 ¼ ½0, 1� � ½0,1Þ
� �

[ ½0, 0:5þ 	� � ð�1, 0Þ
� �

Rcomp ¼ ½0:5þ 	, 1� � ð�1, 0Þ
� �

[ ð0:5þ 	, 1� � ð0,1Þ
� �

:

Proof Follows from Proposition 2.1 (first statement), Remark 2.1, Proposition 2.2,
Proposition 2.3 and Proposition 2.4. g

The regions Rconv, Rnon =0 and Rcomp are illustrated in figure 1.

Remark 2.2 In the special case that �¼ 0, one derives that M�
p is convex for all �� 0

and all p 2 ð0, 1Þ.

Figure 1. Illustration of the regions of convexity (left), nonemptiness (middle) and compactness (right) in the
ð p,�Þ-plane.
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2.4 Application to problems with joint probabilistic constraints

It is obvious to apply the previously obtained results for single probabilistic constraints
like (4) to systems of individual probabilistic constraints like (3), because the feasible set
of the latter system is just the intersection of the feasible sets induced by the single
constraints. Therefore, in this section, we shall address the more complicated case
of joint probabilistic constraints as in (2). Consider the feasible set

M ¼ fx 2 R
n
jP �qðxÞ � að Þ � pg ð p 2 ð0, 1ÞÞ: ð15Þ

defined by a stochastic matrix � of order (m, n) and a deterministic right-hand side
a 2 R

m. Here, q : R
n
! R

n refers to a (possibly nonlinear) mapping of the decision
vector. By

Mi :¼ x 2 R
n
jPð qðxÞ, �i
� �

� aiÞ � p
� �

ði ¼ 1, . . . ,mÞ,

we denote the feasible set induced by the i-th row of �. Of course, M is not just the
intersection of the Mi. However, for any i, one has the obvious inclusion M �Mi.
This simple fact allows to derive the following useful compactness condition for joint
probabilistic constraints.

THEOREM 2.3 In (15), assume that the rows �i of � are normally distributed according to
�i 	 N �i,�ið Þ with positive definite covariance matrices �i for i ¼ 1, . . . ,m. Moreover,
let q be a homeomorphism (e.g., qðxÞ ¼ x). Then, M is compact provided that

p > min
i¼1,... ,m

� �ik k��1
i

� �
:

Proof According to the assumption, there exists some i 2 f1, . . . ,mg; such that,
p > �ð �ik k��1

i
Þ. Then, Mi is compact by Proposition 2.4. Consequently, M is bounded

due to M �Mi. By Lemma 2.1, M is also closed. Summarizing, M is compact. g

As an immediate corollary to Theorem 2.3, one derives the following existence result
for the optimization problem

minf f ðxÞjx 2Mg ð16Þ

with joint probabilistic constraints:

COROLLARY 2.2 In (16), let f be lower semicontinuous. Let M satisfy the hypotheses
of Theorem 2.3 in the special case that qðxÞ ¼ x. Moreover, let a� 0 (componentwise).
Then, there exists a solution to (16) provided that

p > min
i¼1,... ,m

� �ik k��1
i

� �
:
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Proof The assumptions a� 0 and qðxÞ ¼ x imply that 0 2M. Hence, M is nonempty.
The result follows from Theorem 2.3 via the Weierstrass Theorem. g

Theorem 2.3 and Corollary 2.2 hold true for large enough probability levels p, which
are typically encountered in applications of probabilistic constraints. Moreover,
the required level is easily calculated just on the basis of the parameters �i and �i.
The additional condition of a� 0 in Corollary 2.2 is needed to ensure nonemptiness
of the feasible set (which does not affect the compactness result of Theorem 2.3).
From the reverse point of view, a general condition for emptiness can be derived as
follows.

THEOREM 2.4 The feasible set M in (15) is empty if

p � min
i2I

� �ik k��1
i

� �
,

where I :¼ fi 2 f1, . . . ,mgjai < 0g.

Proof With the same inclusion as used in the proof of Theorem 2.3, one may apply
the first statement of Proposition 2.3.

We note that compactness and nonemptiness of feasible sets are crucial conditions
not only for existence but also for stability of solutions and optimal values in problems
like (16) when approximating the underlying, usually unknown probability distribution
by another one which may be based on historical data [2]. Often, there is no chance
directly to check the nonemptiness and compactness of a feasible set defined by
a pure probabilistic constraint. Theorems 2.3 and 2.4, however, confirm that, for
sufficiently high probability levels p, these assumptions hold true in our case and,
moreover, the notion ‘sufficiently high’ can be easily quantified exactly.
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