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The article provides formulae for calculating the limiting normal cone introduced by
Mordukhovich to a finite union of convex polyhedra. In the first part, special cases of
independent interest are considered (almost disjoint cones, halfspaces, orthants). The
second part focusses on unions of general polyhedra. Due to the local nature of the normal
cone, one may restrict considerations without loss of generality to finite unions of
polyhedral cones. First, an explicit formula for the normal cone is provided in the situation
of two cones. An algorithmic approach is presented along with a refined, more efficient
formula. Afterwards, a general formula for the union of N cones is derived. Finally, an
application to the stability analysis of a special type of probabilistic constraints is provided.

Keywords: limiting normal cone; convex polyhedra; union of polyhedral cones

1. Introduction

In the variational geometry of non-convex sets, a distinguished role is played by the
(limiting) normal cone introduced in 1976 by Mordukhovich [6]. Its importance in many
areas of optimization and optimal control, stability analysis, set-valued analysis etc. can be
recognized from the monographs [10] (with emphasis on finite dimensions) and [7] (with an
extensive theory in infinite dimensions). Though this cone enjoys a rich calculus, its
computation for a concrete non-convex set can be a challenging task.

In [2], the authors studied the stability of a class of parameter-dependent variational
inequalities with a convex polyhedral constraint set C. The key step that enabled them to
derive the main results was the computation of the normal cone to the graph of the
standard normal cone mapping NC(�) associated with C. Due to the polyhedrality of C,
this graph is a union of finitely many convex polyhedra [9]. It possesses a special structure
that was extensively exploited in the computation of the normal cone. Nevertheless, the
resulting formula is by no means easy to apply (it describes a procedure which is quite
involved even in case of very simple sets C).

*Corresponding author. Email: henrion@wias-berlin.de
yThis article is dedicated to Prof. H. Th. Jongen on the occasion of his 60th birthday.

ISSN 0233-1934 print/ISSN 1029-4945 online

� 2008 Taylor & Francis

DOI: 10.1080/02331930701778874

http://www.informaworld.com



D
ow

nl
oa

de
d 

B
y:

 [H
en

rio
n,

 R
.] 

A
t: 

13
:1

5 
23

 J
an

ua
ry

 2
00

8 

A problem which, at least formally, is not too far from the investigations in [10], arises
in the stability analysis of a parameter-dependent constraint set

�ðxÞ ¼ y 2 R
m Fðx, yÞ 2 �
��� �

,

where again the normal cone to � plays a key role. Nevertheless, here � does not
necessarily have the structure of gph NC, which prevents a straightforward application of
the results from [10].

The aim of this article is to compute the normal cone to a finite union of convex
polyhedral cones. This result can be used then in the stability analysis of �. It may have,
however, yet other applications, e.g. in disjunctive programming, and has definitely
importance of its own in variational analysis. As expected, also in this case the resulting
formula describes a non-trivial procedure, the complexity of which substantially increases
with the number of cones. Throughout the article, we use Motzkin’s Theorem of the
Alternative as our workhorse which is well suited for desribing the position of the
considered point at the boundary of polyhedral sets. Moreover, the focus of our analysis is
on polyhedral cones, because only local information is required for the computation of the
limiting normal cone and, locally, polyhedra look like cones.

The article is organized as follows: In Section 2, we collect several basic results
extensively used in the sequel. Section 3 provides a compilation of explicit formulae for the
normal cone to specially structured unions of polyhedral cones. In Section 4, an explicit
formula for the calculation of the limiting normal cone to the union of two arbitrary
polyhedral cones is derived in terms of the data of the original cones. This formula may be
used for numerical calculations in moderate dimension, but it becomes inefficient soon.
Therefore, Section 5 proposes a more efficient variant of the formula along with an
algorithmic procedure. The situation with a general finite union is not fully recognized
from the case of two cones. Section 6 generalizes the observations obtained so far to the
union of N cones. Finally, Section 7 presents an application to the stability analysis of
certain probabilistic constrains.

2. Preliminaries

We start with the definitions of the main objects in our investigation. For a closed set
��R

n and a point �x 2 �, the Fréchet normal cone to � at �x 2 � is defined by

N̂�ð �xÞ :¼ x� 2 R
n
hx�, x� �xi � o kx� �xkð Þ 8x 2 �
��� �

:

The (limiting) normal cone to � at �x 2 � results from the Fréchet normal cone in the
following way:

N�ð �xÞ :¼ Limsup
x! �x, x2�

N̂�ðxÞ:

The ‘Limsup’ in the definition above is the upper limit of sets in the sense of Kuratowski-
Painlevé, cf. [10]. In this finite-dimensional setting, N̂�ð �xÞ is the negative polar cone to the
contingent cone to � at �x:

T�ð �xÞ :¼ Lim sup
t#0

�� f �xg

t
:

58 R. Henrion and J. Outrata
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Hence, N̂�ð �xÞ coincides with the standard normal cone in the sense of convex analysis

whenever � is convex. At this point, we state a simple observation which will be useful in

the sequel:

LEMMA 2.1 Let K be a closed convex cone. Then, denoting by K* the negative polar cone of

K, it holds that

bdK� ¼
[

x2Knf0g

N̂KðxÞ,

where ‘bd’ refers to the topological boundary.

Proof First note that, in the setting of the lemma, N̂ coincides with the normal cone of

convex analysis. From a well-known representation of the boundary of convex sets (see [5],

Prop. 3.1.4 and 3.1.5), it follows that

bd K� ¼
[
x 6¼0

s� x 2 N̂K� ðs
�Þ

���n o
:

Since N̂K� ðs
�Þ�K�� ¼ K, we may shrink the union tox 2 Knf0g. Exploiting now the

equivalence x 2 N̂K� ðs
�Þ() s� 2 N̂KðxÞ (see [10], Example 11.4), the result follows. g

In this article, we will be dealing with finite unions of polyhedra and polyhedral cones.

Let P :¼ [Ni¼1Pi, where each component Pi is a convex polyhedron. For x 2 P, denote the

index set of active components by

IðxÞ :¼ i 2 f1, . . . ,Ng x 2 Pijf g:

Clearly, there exists some neighbourhood V of 0 such that

ðP� fxgÞ \ V ¼
[
i2IðxÞ

ðPi � fxgÞ \ V

Moreover, for each i 2 IðxÞ, we can associate with Pi the contingent cone TPi
ðxÞ as well as

a neighbourhood U i of zero such that

TPi
ðxÞ \ U i ¼ ðPi � fxgÞ \ U i:

Consequently, the polyhedral cone �i :¼ TPi
ðxÞ and the neighbourhood U :¼ \i2IðxÞU i \ V

of zero satisfies

ðP� fxgÞ \ U ¼
[
i2IðxÞ

�i \ U:

Thus, for � :¼ [i2IðxÞ�i, one ends up with NP(x)¼N�(0). In other words, it suffices to

compute the normal cone to a finite union of polyhedral cones at zero. Given this

reduction, we shall focus now on sets

� :¼
[N
i¼1

�i,

Optimization 59
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where the �i are convex polyhedral cones. Due to the polyhedral structure of �, only a
finite number of cones can be manifested as N̂�ðxÞ, x 2 �, and, moreover, for x 6¼ 0, one
has that N̂�ðxÞ ¼ N̂�ðtxÞ for all t40. It follows that

N�ð0Þ ¼
[
x2�

N̂�ðxÞ ¼ N̂�ð0Þ [
[

x2�nf0g

N̂�ðxÞ ¼
\N
i¼1

��i [
[

x2�nf0g

N̂�ðxÞ, ð1Þ

where the last equality relies on the identity

N̂�ð0Þ ¼ ½T�ð0Þ�
0
¼

[N
i¼0

T�i
ð0Þ

" #0

¼
\N
i¼1

N̂�i
ð0Þ ¼

\N
i¼1

��i :

Owing to Lemma 2.1 above, one gets the inclusion

[
x2�nf0g

N̂�ðxÞ�
[

x2�nf0g

[N
i¼1

N̂�i
ðxÞ ¼

[N
i¼1

[
x2�nf0g

N̂�i
ðxÞ ¼

[N
i¼1

bd��i :

Along with (1), we have the following upper estimate for the limiting normal cone:

N�ð0Þ�
\N
i¼1

��i [
[N
i¼1

bd��i : ð2Þ

3. Special cases

Before turning to the union of polyhedral cones without further structural assumptions,
it is worth considering some special cases which are of independent interest and can be
analysed directly.

3.1. Almost disjoint cones

First, we consider the union of cones which are almost disjoint in the sense that their
pairwise intersections reduce to zero. As in this specific situation the polyhedral structure
is not essential, we formulate the result for arbitrary convex cones. The resulting formula
itself already appears as an inclusion in (2) and so, some derivations in the next
proposition are parallel to those preceding (2). However, here we consider a situation
which is more general on the one hand, in the sense that non-polyhedral cones are
considered and, which is more specific on the other hand in requiring disjoint cones.

PROPOSITION 3.1 Let � :¼ [Ni¼1�i be a finite union of closed convex cones such that
�i \�j ¼ f0g for i 6¼ j. Then,

N�ð0Þ ¼
\N
i¼1

��i [
[N
i¼1

bd��i :

Proof First, we check the relation

N�ð0Þ ¼
[
x2�

N̂�ðxÞ: ð3Þ

60 R. Henrion and J. Outrata
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If x� 2 N�ð0Þ, then, by definition, there are sequences xn! 0, x�n ! x�, such that xn 2 �

and x�n 2 N̂�ðxnÞ. If xn¼ 0, then x�n 2 N̂�ð0Þ. Therefore, if xn¼ 0 holds true for a

subsequence, then

x� 2 N̂�ð0Þ�
[
x2�

N̂�ðxÞ

by closedness of the normal cone. Otherwise, xn 6¼ 0 for all n large enough. Since � is just a

finite union of the �i’s, we may assume, after passing to subsequences, that, without loss of

generality, xn2�1. Now, our assumption guarantees that, locally around xn, � coincides

with �1, hence, by Lemma 2.1

x�n 2 N̂�ðxnÞ ¼ N̂�1
ðxnÞ�bd��1:

With bd��1 being a closed set, it follows again from Lemma 2.1 that

x� 2 bd��1 ¼
[

x2�1nf0g

N̂�1
ðxÞ:

Consequently, there exists some x0 2 �1nf0g�� such that, with the same argumentation

as before,

x� 2 N̂�1
ðx0Þ ¼ N̂�ðx

0Þ�
[
x2�

N̂�ðxÞ:

This establishes the inclusion ‘�’ in (3). For the reverse inclusion, let x� 2 N̂�ðxÞ for some

x 2 �. If x¼ 0, then x� 2 N̂�ð0Þ�N�ð0Þ. Therefore, we may assume that x 6¼ 0. Then, by

our assumption, x belongs to exactly one of the �i’s, say x 2 �1. Put xn :¼ n�1x 2 �1nf0g.

We derive that

x� 2 N̂�ðxÞ ¼ N̂�1
ðxÞ ¼ N̂�1

ðxnÞ ¼ N̂�ðxnÞ:

Since xn! 0, the definition of the limiting cone yields that x� 2 N�ð0Þ. This establishes (3).
We may continue (3) now as follows:

N�ð0Þ ¼
[
x2�

N̂�ðxÞ ¼ N̂�ð0Þ [
[

x2�nf0g

N̂�ðxÞ ¼
\N
i¼1

N̂�i
ð0Þ [

[N
i¼1

[
x2�inf0g

N̂�ðxÞ

¼
\N
i¼1

��i [
[N
i¼1

[
x2�inf0g

N̂�i
ðxÞ ¼

\N
i¼1

��i [
[N
i¼1

bd��i :

Here, in the next to last equality, we exploited once more the assumption of our

proposition, whereas the last equality relies on Lemma 2.1. g

Proposition 3.1 is illustrated in Figure 1.

3.2. Halfspaces

In this section, we consider unions of halfspaces, i.e. � :¼
SN

i¼1 �i, where

�i :¼ x 2 R
n
j ci, xh i � 0f g for some ci 2 R

n
ði ¼ 1, . . . ,NÞ: ð4Þ

Optimization 61



D
ow

nl
oa

de
d 

B
y:

 [H
en

rio
n,

 R
.] 

A
t: 

13
:1

5 
23

 J
an

ua
ry

 2
00

8 

PROPOSITION 3.2 In (4), assume that the ci are positively linear independent and that

ci =2 confcjjj ¼ 1, . . . ,N, j 6¼ ig ði ¼ 1, . . . ,NÞ, ð5Þ

where ‘con’ refers to the convex conic hull (i.e., we assume that the description (4) is free of

redundance). Then,

N�ð0Þ ¼
[N
i¼1

Rþfcig ¼
[N
i¼1

��i :

Proof Let j 2 f1, . . . ,Ng be arbitrary. We establish a contradiction to the statement, that

there exists some � 2 R
N
nf0g such that

XN
i¼1

�ici ¼ 0, �i � 0 i 2 f1, . . . ,Ngnfjg:

Indeed, otherwise we obtain a contradiction either with the assumption on positive linear

independence of the ci’s (if �j� 0) or with (5), because for �j50 one has

cj ¼
XN

i¼1, i6¼j

�
�i
�j

ci:

By Motzkin’s Theorem, the non-existence of a solution to the system above is equivalent

to the existence of some h 2 R
n such that

hcj, hi ¼ 0; hci, hi > 0 ði 2 f1, . . . ,NgnfjgÞ:

In particular, h 2 �nf0g and, locally around h, � coincides with �j. Thus,

N̂�ðhÞ ¼ N̂�j
ðhÞ ¼ ��j :

Figure 1. Illustration of Proposition 3.1. The left part shows the union of two almost disjoint cones, the right
part shows the resulting normal cone evaluated at the origin.

62 R. Henrion and J. Outrata



D
ow

nl
oa

de
d 

B
y:

 [H
en

rio
n,

 R
.] 

A
t: 

13
:1

5 
23

 J
an

ua
ry

 2
00

8 

Along with (1), and taking into account that j was arbitrary, we derive that

��j �
[

x2�nf0g

N̂�ðxÞ�N�ð0Þ ðj ¼ 1, . . . ,NÞ: ð6Þ

Conversely, (5) guarantees that

\N
i¼1

��i ¼
\N
i¼1

Rþfcig ¼ f0g:

Therefore, the result follows from (2) and (6):

N�ð0Þ�
[N
i¼1

bd��i �
[N
i¼1

��i �N�ð0Þ:

g

The following two examples illustrate necessity of the assumptions in Proposition 3.2:

Example 3.3 Let c1¼ (1, 0), c2¼ (0, 1), c3¼ (�1, �1). Then, � ¼ R
2 and the statement of

Proposition 3.2 becomes false due to the failure of positive linear independence:

N�ð0Þ ¼ f0g 6¼
[3
i¼1

Rþfcig:

Example 3.4 Let c1¼ (1, 0), c2¼ (0, 1), c3¼ (1, 1). Then, � ¼ R
2
nintR2

þ and the statement

of Proposition 3.2 becomes false due to the failure of (5):

N�ð0Þ ¼
[2
i¼1

Rþfcig 6¼
[3
i¼1

Rþfcig:

Actually, the inequality defined by c3 is redundant here.
As an application of Proposition 3.2, we consider the set

� :¼
[N
i¼1

�i, �i :¼ fx 2 R
n
j fiðxÞ � 0g ði ¼ 1, . . . ,NÞ,

where the fi : R
n
! R are continuously differentiable. We want to compute N�(x) at a

given point x 2 � and assume without loss of generality that fi(x)¼ 0 for i¼ 1, . . . ,N.

COROLLARY 3.5 Assume that the gradients rfiðxÞ are positively linearly independent and

none of them can be represented as a non-negative linear combination of the others. Then,

N�ðxÞ ¼
[N
i¼1

RþfrfiðxÞg:

Optimization 63
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Proof Being positively linearly independent, the rfiðxÞ are non-zero and, the same holds

true locally around x. In particular,

T�ðxÞ ¼
[N
i¼1

�i, �i :¼ T�i
ðxÞ ¼ h 2 R

n
hrfiðxÞ, hi � 0
��� �

ði ¼ 1, . . . ,NÞ:

Now, by virtue of our assumptions, Proposition 3.2 yields that

[N
i¼1

RþfrfiðxÞg ¼ NT�ðxÞð0Þ�N�ðxÞ,

where the inclusion holds generally true (cf. [10], Prop. 6.27 (a)). On the other hand, as

stated above, the rfiðyÞ are non-zero for y in a neighbourhood of x. Consequently,

N̂�i
ðyÞ ¼ RþfrfiðyÞg for such y, whenever y 2 �i. Since for all y 2 � there is some i such

that y 2 �i, the definition of the normal cone implies that

N�ðxÞ ¼ Limsup
y!x, y2�

N̂�ðyÞ�Limsup
y!x, y2�

[N
i¼1

RþfrfiðyÞg ¼
[N
i¼1

RþfrfiðxÞg,

where the last equality again relies on the fact that the rfiðxÞ are non-zero around x. g

Corollary 3.5 improves a result in [4], where the same expression for the normal cone

was obtained under the stronger assumption of (full) linear independence of the rfiðxÞ.

3.3. Orthants

We consider the following union of translated orthants

P :¼
[N
i¼1

Pi, Pi :¼ ui þR
n
þ, ui 2 R

n
ði ¼ 1, . . . ,NÞ, ð7Þ

which is of interest in disjunctive programming or in optimization problems with

probabilistic constraints under discrete distributions (see, e.g., Remark 1 in [1]). In order to

compute NP(x), we shall assume that the ui’s are in general position, i.e.,

uij 6¼ ukj 8j 2 f1, . . . , ng 8i, k 2 f1, . . . ,Ng : i 6¼ k:

For y 2 R
n we introduce the index set of active orthants as

IðyÞ :¼ i 2 f1; . . . ;Ng y 2 ui þR
n
þ

��� �
and the index set of active components with respect to the i-th active orthant as

IiðyÞ :¼ j 2 f1, . . . , ng yj ¼ uij

���n o
ði 2 IðyÞÞ:

64 R. Henrion and J. Outrata
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LEMMA 3.6 Let x 2 bdP. Then, for each i 2 IðxÞ there is a sequence fyð�Þg 2 P such that

yð�Þ !� x, Iðyð�ÞÞ ¼ fig and Iiðyð�ÞÞ ¼ IiðxÞ.

Proof Let i 2 IðxÞ be arbitrary. Define h 2 R
n by

hj :¼
0 if j 2 IiðxÞ

�1 if j 2 f1, . . . , ngnIiðxÞ

�

For � 2 N put y(�) :¼ xþ ��1h. Then, yð�Þj ¼ xj ¼ uij for j 2 IiðxÞ. Moreover, since xj > uij for

j 2 f1, . . . , ngnIiðxÞ, one has that y
ð�Þ
j ¼ xj � �

�1 > uij for � sufficiently large and

j 2 f1, . . . , ngnIiðxÞ. It follows that i 2 Iðyð�ÞÞ and Iiðyð�ÞÞ ¼ IiðxÞ. To show that Iðyð�ÞÞ ¼ fig,

assume that k 2 Iðyð�ÞÞ for some k 6¼ i. Our assumption on the ui’s being in general position

implies that IiðxÞ \ IkðxÞ ¼1 (otherwise xj ¼ uij ¼ ukj for some j). Consequently,

IkðxÞ�f1, . . . , ngnIiðxÞ, and

y
ð�Þ
j ¼ xj � �

�1 < xj ¼ ukj 8j 2 IkðxÞ:

Now, the assumption x 2 bdP implies that IkðxÞ 6¼1. Hence, the relation above shows

that there really exists some j with y
ð�Þ
j < ukj , whence a contradiction to k 2 Iðyð�ÞÞ. This

finishes our proof. g

PROPOSITION 3.7 Under the assumption of general position, the normal cone to P in (7)

calculates as

NPðxÞ ¼

S
i2IðxÞ

con �ej j 2 IiðxÞ
��� �

x 2 bdP

f0g x 2 intP

8<
: ,

where the ej refer to the standard unit vectors in R
n.

Proof The assertion is trivial in case that x 2 intP, so let x 2 bdP. In case that

jIðxÞj ¼ 1, say IðxÞ ¼ f1g, then P coincides with P1 locally around x. With P1 being a

translated orthant, it follows that

NPðxÞ ¼ NP1
ðxÞ ¼ con �ej j 2 I1

�� ðxÞ
� �

,

so the assertion holds true. Now, let jIðxÞj � 2. Referring back to the argumentation

in Section 2, we have that NP(x)¼N�(0), where

� :¼
[
i2IðxÞ

�i, �i :¼ h 2 R
njhj � 0 8j 2 IiðxÞ

� �

Moreover, (2) translates to our setting as

N�ð0Þ�
[
i2IðxÞ

��i [
[
i2IðxÞ

bd��i ð8Þ

(recall that the number N of cones considered in (2) has already been chosen to coincide

with the cardinality of the set of active indices IðxÞ relating to the polyhedra Pi in Section 2;

thus it may be smaller than the original number N of polyhedra).

Optimization 65
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As already observed in the proof of Lemma 3.6, the assumption of general position
implies that

IiðxÞ \ IkðxÞ ¼1 8i, k 2 IðxÞ, i 6¼ k: ð9Þ

On the other hand, since x 2 bdP, one also has that IiðxÞ 6¼ � for all i 2 IðxÞ. Putting
together these two arguments, the assumption jIðxÞj � 2 leads to jIiðxÞj < n for all i 2 IðxÞ.
Since

��i ¼ con �ej
��j 2 IiðxÞ

� �
, ð10Þ

it follows that ��i is a closed set which is contained in a linear space of dimension strictly
less than n. We infer that ��i ¼ bd��i for all i 2 IðxÞ. Now, given an arbitrary i 2 IðxÞ,
Lemma 3.6 provides us with a sequence fyð�Þg 2 P such that yð�Þ !� x, Iðyð�ÞÞ ¼ fig and
Iiðyð�ÞÞ ¼ IiðxÞ. Therefore, locally around each y(�), P coincides with the translated orthant
Pi, and so

N̂Pðy
ð�ÞÞ ¼ N̂Pi

ðyð�ÞÞ ¼ con �ej
�� j 2 Iiðyð�ÞÞ

� �
¼ con �ej

��j 2 IiðxÞ
� �

¼ ��i ¼ bd��i : ð11Þ

Consequently, as i 2 IðxÞ was chosen arbitrarily, it follows that

bd��i �Lim sup
y!x, y2P

N̂PðyÞ ¼ NPðxÞ 8i 2 IðxÞ: ð12Þ

Finally, combining (9) and (10), one gets that

��i \��k ¼ f0g 8i; k 2 IðxÞ; i 6¼ k:

Since we assumed that jIðxÞj � 2, this entails the identity \Ni¼1�
�
i ¼ f0g, whence, by (8), (12)

and (11) the asserted identity

NPðxÞ ¼ N�ð0Þ ¼
[
i2IðxÞ

bd��i ¼
[
i2IðxÞ

con �ej
��j 2 IiðxÞ

� �
:

g

Figure 2 illustrates Proposition 3.7. In the example of the figure, one has that
IðxÞ ¼ f1, 2g, I1(x)¼ {3}, I2(x)¼ {1,2}. Hence, Proposition 3.7 yields that
NPðxÞ ¼ conf�e3g [ conf�e1, � e2g.

Summarizing the previous sections, both special cases, the half-spaces and the translated
orthants provide representations of the normal cone, where the upper estimation in (2) is
realized as an equality (see the last lines in the proofs of Propositions 3.2 and 3.7,
respectively). In general, the normal cone may be strictly smaller than the upper estimate
due to overlapping parts in the union of polyhedra. To deal with this general situation, we
provide in the following sections a precise formula for calculating the normal cone.

4. The case of two polyhedral cones

In this section, we start to analyse the normal cone to the union of polyhedral cones
without further assumptions on their structure as in the special cases of the previous
section. However, since a formula for the limiting cone is difficult to obtain at once for an
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arbitrary finite union, we focus first on the case of two components and consider the

general case in Section 6.
So, let � :¼ �1 [�2, where �1, �2 are polyhedral cones. Using the decomposition

�nf0g ¼ ð�1n�2Þ [ ð�2n�1Þ [ ðð�1 \�2Þnf0gÞ,

we may invoke (1) to obtain the identity

N�ð0Þ ¼ ½�
�
1 \��2� [

[
x2�1n�2

N̂�1
ðxÞ [

[
x2�2n�1

N̂�2
ðxÞ [

[
x2ð�1\�2Þnf0g

N̂�ðxÞ: ð13Þ

Here, we exploited the fact that, for x 2 �1n�2, the union � coincides locally around

x with �1, so N̂�ðxÞ ¼ N̂�1
ðxÞ, and similarly with x 2 �2n�1. The following observation

allows to omit the last contribution in (13):

LEMMA 4.1 N̂�ðxÞ���1 \��2 for all x 2 ð�1 \�2Þnf0g.

Proof Since x 2 �1 \�2, we may apply the calculus rules for Fréchet normal cones:

N̂�ðxÞ ¼ N̂�1[�2
ðxÞ ¼ N̂�1

ðxÞ \ N̂�2
ðxÞ���1 \��2. g

u1

u2

x

e1

e2

e3

Figure 2. Illustration of Proposition 3.7. The point x belongs to the union of the two orthants
u1 þR

3
þ, u

2 þ R
3
þ. The normal cone to this union at x is illustrated as an attachment to the coordinate

system. See discussion below.
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The lemma allows to reduce (13) to

N�ð0Þ ¼ ½�
�
1 \��2� [

[
x2�1n�2

N̂�1
ðxÞ [

[
x2�2n�1

N̂�2
ðxÞ: ð14Þ

Our aim is to represent N�(0) by a formula which merely falls back on the data of the

original cones �1 and �2. Everything is obvious for the first part in (14), which is just the

intersection of the polar cones and, which we would like to refer to as the solid part of

N�(0). The reason is that, in contrast with the remaining contributions in (13), it is

typically of full dimension (see Figure 1 for an illustration though in the context of

non-polyhedral cones). Since the second and third terms in (14) are symmetric, we focus

our analysis now on calculating N̂�1
ðxÞ for x 2 �1n�2. In order to do so, it is convenient to

assume an explicit description of �1 and �2. Accordingly, let

�1 ¼ x 2 R
n
hci, xi � 0 ði ¼ 1, . . . , pÞ
��� �

�2 ¼ x 2 R
n
hdj, xi � 0 ðj ¼ 1, . . . , qÞ
��� �

ð15Þ

Then,

�1n�2 ¼
[

j¼1,..., q

P j, ð16Þ

where Pj :¼ fx 2 R
n
jhci, xi � 0 ði ¼ 1, . . . , pÞ, h�dj, xi < 0g:

In the following, we fix an arbitrary index j 2 f1, . . . , qg and calculate the partial

contribution

[
x2Pj

N̂�1
ðxÞ ð17Þ

of Pj to the second term in (14). With each x 2 Pj, we associate the active index set

IðxÞ :¼ fi 2 f1, . . . , pgjhci, xi ¼ 0g: Moreover, we introduce the following two families of

index sets:

I 1 :¼ IðxÞ x 2 Pj
��� �

I 2 :¼ I�f1, . . . , pg dj =2 span ci i 2 Ijf g þ con
�� ci i 2 Icjf g

� �
:

Here, Ic :¼ {1, . . . , p}\I and, as before, ‘con’ denotes the conic convex hull whereas ‘span’

refers to the linear hull.

LEMMA 4.2 I 1�I2 and for any I 2 I 2, there exists some x 2 Pj such that I�IðxÞ.

Proof By Motzkin’s Theorem, the condition

dj =2 span ci i 2 Ijf g þ con ci i 2 Icjf g

is equivalent with the existence of some x such that

hci, xi ¼ 0 ði 2 IÞ, hci,xi � 0 ði 2 IcÞ, h�dj, xi < 0:
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Now, the two assertions of the Lemma follow immediately from the respective definitions

of I 1 and P j. g

PROPOSITION 4.3 The partial contribution (17) computes as

[
x2Pj

N̂�1
ðxÞ ¼

[
I2I 2

con ci i 2 Ijf g:

Proof First, we use the well-known identity

N̂�1
ðxÞ ¼ con ci i 2 IðxÞ

��� �
, ð18Þ

which holds true for all x 2 �1 and so for all x 2 Pj. Thus,

[
x2Pj

N̂�1
ðxÞ ¼

[
x2Pj

con ci i 2 IðxÞ
��� �

¼
[
I2I1

con ci i 2 Ijf g�
[
I2I 2

con ci i 2 Ijf g,

where the last inclusion follows from the first statement of Lemma 4.2. On the other hand,

let

h 2
[
I2I2

con ci i 2 Ijf g

be arbitrary, so h 2 con fciji 2 Ig for some I 2 I2. From the second statement of

Lemma 4.2, we derive the existence of some x 2 Pj such that I�IðxÞ. Then, (18) implies

that

con ci i 2 Ijf g�con ci i 2 IðxÞ
��� �

¼ N̂�1
ðxÞ,

whence h 2 N̂�1
ðxÞ. This establishes the reverse inclusion[

I2I 2

con ci i 2 Ijf g�
[
x2Pj

N̂�1
ðxÞ:

g

THEOREM 4.4 The limiting normal cone to the union � of two polyhedral cones �1 and �2

may be represented by the formula

N�ð0Þ ¼ ��1 \��1
� �

[
[q
j¼1

[
I2Aj

con ci i 2 Ijf g [
[p
i¼1

[
J2Bi

con dj j 2 J
��� �

,

where

Aj :¼ I�f1, . . . , pg
��dj =2 span ciji 2 If g þ con ciji 2 Icf g

� �
Bi :¼ J�f1, . . . , qg

��ci =2 span dj
��j 2 J

� �
þ con dj

��j 2 Jc
� �� �

:

Proof The result follows directly from Proposition 4.3 upon aggregating the contribu-

tions of all Pj via (16), exchanging the role of �1 and �2 in (16) and applying (14). g

Optimization 69



D
ow

nl
oa

de
d 

B
y:

 [H
en

rio
n,

 R
.] 

A
t: 

13
:1

5 
23

 J
an

ua
ry

 2
00

8 

The following example illustrates Theorem 4.4:

Example 4.5 Consider the union � :¼ �1 [�2�R
2, where �1 and �2 are described

according to (15) by c1¼ (0, 1), c2¼ (�1, 1), d1¼ (�1, 0), d2¼ (�1,�1) (Figure 3). Then,
��1 ¼ con fc1, c2g, ��2 ¼ con fd1, d2g. The upper estimate (2) provides the cone

��1 \��2
� �

[ bd ��1 [ bd ��2 ¼ Rþðfc1g [ fc2g [ fd1g [ fd2gÞ

which is the union of the thin half-rays in the right part of Figure 3. On the other hand,
one immediately identifies the normal cone from the figure as

N�ð0Þ ¼ Rþðffc2g [ fd1gÞ

which is the union of the thick half-rays in the right part of Figure 3. This example is an
instance for a situation where the normal cone is strictly smaller than the upper estimate
(2). None of the special cases from Section 3 applies in this situation and actually cannot
apply due to the normal cones coinciding with the upper estimate in all of these cases.
On the other hand, one may use Theorem 4.4 here. For instance, from the relations

d1, d2 2 span fc1g þ con fc2g; d1, d2 =2 span fc2g þ con fc1g;

d1, d2 2 span fc1g þ span fc2g; d1, d2 =2 con fc1g þ con fc2g

one derives that A1 ¼ A2 ¼ ff2g,1g. Similarly, B1 ¼ B2 ¼ ff1g,1g. Since ��1 \��2 ¼ f0g
(i.e., the solid part vanishes, see Figure 3), Theorem 4.4 provides

N�ð0Þ ¼ con fc2g [ con fd1g ¼ Rþðfc2g þ [fd1gÞ:

5. An algorithm for the numerical calculation

The formula provided by Theorem 4.4 may be used for a numerical calculation. Leaving
aside the solid part, all one has to do is to determine the index sets Aj and Bi. For the
Aj, this amounts to checking the relations

dj =2 span ciji 2 If g þ con ciji 2 Icf g

c1
c2

d1

d2

Figure 3. Illustration of Theorem 4.4.
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for all j 2 f1, . . . , qg and all subsets I�f1, . . . , pg (analogously for the Bi). This can be done
numerically, for instance, via solving the linear program

max hdj, xi
��hci, xi ¼ 0 ði 2 IÞ, hci, xi � 0 ði 2 IcÞ, x 2 ½�1, 1�n

� �
(see the equivalence in the proof of Lemma 4.2). The relation above will be satisfied
whenever the optimal value of this program is strictly positive, otherwise it will be violated.
As an illustration, we determine the normal cone to the union of the two cones
�1 ¼ fx 2 R

5
jCx � 0g and �2 ¼ fx 2 R

5
jDx � 0g, where C and D were randomly

generated as:

C ¼

0:11 0:77 �0:74 0:06 �0:51

�0:11 �0:51 0:82 �0:42 �0:10

�0:45 0:99 0:33 0:48 0:61

0:36 �0:72 �0:47 0:95 �0:87

�0:05 �0:68 0:19 0:12 0:84

�0:46 �0:06 �0:94 0:35 0:65

0
BBBBBBBB@

1
CCCCCCCCA

;

D ¼

�0:55 �0:76 �0:22 �0:24 0:90

�0:75 0:44 0:28 �0:71 �0:11

0:17 �0:25 �0:66 �0:24 �0:79

�0:57 0:15 0:64 �0:63 0:89

�0:79 0:58 0:02 �0:76 0:77

0:35 �0:76 0:49 0:87 0:10

0
BBBBBBBB@

1
CCCCCCCCA
:

Applying the procedure described above and leaving aside the obvious solid part, we get
the following two contributions to the normal cone:

Contribution by �1\�2:

con fc2, c3, c4, c5g [ con fc1, c3, c4, c5g [ con fc1, c2, c4, c5g

[ con fc1, c2, c3, c5g [ con fc1, c2, c3, c4g:

Contribution by �2\�1:

con fd2, d3, d4, d6g [ con fd1, d3, d4, d6g [ con fd2, d4, d5, d6g [ con fd2, d3, d5, d6g

[ con fd2, d3, d4, d5g [ con fd1, d4, d5, d6g [ con fd1, d3, d5, d6g [ con fd1, d3, d4, d5g:

It has to be noted that the formula in Theorem 4.4 does not generate minimal
representations of the normal cone because certain parts may be contained in others and
some part may appear in copies. The representation given in the example above is minimal.

Although, the example demonstrates that the numerical calculation of the normal cone
is possible in principle, it becomes quickly inefficient when the number of inequalities
describing the two cones exceeds ten or so. The reason is that the index sets Aj and Bi are
determined by checking all subsets of {1, . . . , p} and {1, . . . , q}, respectively. In the
following we derive a more efficient procedure, where only possibly small subsets have to
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be checked. As in the previous section, by symmetry, we may restrict our considerations to

the contribution (16).
We introduce the following selection operator � : ½Rnf0g�mþ1!! ½Rnf0g�

m for mþ 1

non-zero vectors by

�ðfv1, . . . , vm,wgÞ ¼ vijRþvi is an extremal ray of con fv1, . . . , vm,wg
� �

:

Fix an arbitrary j 2 f1, . . . , qg. The selection operator � provides a partition of the total

index set {1, . . . , p} into

I1 :¼ i 2 f1, . . . , pg cij 2 �ðfc1, . . . , cp, � djgÞ
� �

, I2 : f1, . . . , pgnI1: ð19Þ

Note that, by definition of � and I1, one always has that

ck 2 con ci i 2 I1jf g [ �dj
� �� �

8k 2 f1, . . . , pg: ð20Þ

Finally, as a refinement to the argumentation in the previous section, we introduce the

index set

I 3 : I�I1 dj
�� =2 span ci i 2 Ijf g þ con ci i 2 Ij 1nI

� �� �
:

Clearly, I 3�I 2 (compare definition of I2 in the previous section). Now, generalizing

Lemma 4.2, we get the following result:

LEMMA 5.1 For any I 2 I3, there exists some x 2 Pj such that I�IðxÞ. Moreover, if the set

{c1, . . . , cp} is positive linearly independent and is a minimal set describing �1, then, I 1�I3.

Proof The first statement follows immediately from Lemma 4.2 along with the inclusion

I3�I 2. Concerning the second statement, let I 2 I1 be arbitrary. By definition, there is

some x 2 Pj such that I ¼ I(x). We show first that I2 \ I ¼1 for I2 introduced in (19).

Choose an arbitrary i� 2 I2. From (20), one gets that ci� 2 con ½fciji 2 I1g [ f�djg�. From

Gordan’s Lemma, it follows that the strict inequality system

hci, ui5 0 ði 2 I1Þ, h�dj, ui5 0, hci� , ui4 0; ð21Þ

has no solution. On the other hand, from x 2 Pj, we know that

hci, xi � 0 ði 2 I1Þ, h�dj, xi < 0, hci� , xi � 0: ð22Þ

We claim that the equality

0 ¼
X
i2I1

�ici � �0ci� : ð23Þ

does not hold for coefficients �i � 0 ði 2 I1 [ f0gÞ other than the trivial one. Indeed,

if �0¼ 0, then X
i2I1

�ici ¼ 0,
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where not all of the �i’s vanish. This would mean that the set fciji 2 I1g is positive linearly

independent, and much more this holds true for the larger set {c1, . . . , cp}, whence a

contradiction with the first assumption of our Proposition. On the other hand, if �0 6¼ 0,

then ci� 2 con fciji 2 I1g which contradicts the second assumption of our Proposition (the

inequality hci� , yi � 0 would follow then from the inequalities hci, yi � 0 for i 2 I1, and,

since i� =2 I1, this would allow to delete ci* from the set of vectors {c1, . . . , cp} describing �1).

The stated non-existence of a relation (23) with non-negative coefficients, not all of them

being zero, allows to apply Gordan’s Lemma once more and to derive the existence of

some � satisfying the strict inequality system

hci, �i5 0 ði 2 I1Þ, hci� , �i > 0: ð24Þ

We put xt :¼ t�þ (1� t)x (t� 0) and obtain from (22) along with our assumption

hci� ,xi ¼ 0, that, for sufficiently small t40,

hci, x
ti5 0 ði 2 I1Þ, h�dj, x

ti5 0, hci� , x
ti4 ð1� tÞ hci� ,xi:

Now, if i� 2 I, then hci� , xi ¼ 0 and hci� , x
ti > 0. This, however, contradicts our

observation that (21) has no solution. Therefore, the assumption i� 2 I must be wrong,

so I2 \ I ¼1 and, thus, I�I1. Moreover, observe that x 2 Pj and I¼ I(x) imply that the

system

hci, xii ¼ 0 ði 2 IÞ, hci, xi � 0 ði 2 I1nIÞ, h�dj, xi < 0

has a solution. By Motzkin’s Theorem, it follows that

dj =2 span ciji 2 If g þ con ciji 2 I1nI
� �

:

Summarizing, I 2 I 3. g

Now, using the stronger statement of Lemma 5.1 rather than that of Lemma 4.2 in the

proof of Proposition 4.3, we may replace the index set I2 there by the smaller index set I3.

From here, we derive a refined formula for the normal cone as compared to Theorem 4.4.

In the statement of the result, we have to take care about the fact that the index set I1
actually depends on j (which has been arbitrarily fixed before).

THEOREM 5.2 If the sets {c1, . . . , cp} and {d1, . . . , dq} in (15) are positive linearly

independent and are minimal sets describing �1 and �2, respectively, then the limiting

normal cone to the union � ¼ �1 [�2 may be represented by the formula

N�ð0Þ ¼ ½�
�
1 \��2� [

[q
j¼1

[
I2A�j

con ciji 2 If g [
[p
i¼1

[
J2B�i

con dj
��j 2 J

� �
,

where

A
�
j :¼ I�I1ðjÞ

��dj =2 span ciji 2 If g þ con ciji 2 I1ðjÞnI
� �� �

B
�
i :¼ J�J1ðiÞ

��ci =2 span dj
��j 2 J

� �
þ con dj

��j 2 J1ðiÞnJ
� �� �

I1ðjÞ :¼ i 2 1, . . . , p
� ���ci 2 �ðfc1, . . . , cp, � djgÞ

� �
ðj 2 f1, . . . , qgÞ

J1ðiÞ :¼ i 2 1, . . . , p
� ���dj 2 �ðfd1, . . . , dq, � cigÞ

� �
ði 2 f1, . . . , pgÞ:
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The advantage of Theorem 5.1 over Theorem 4.4 is that the index sets A�j and B�i are
(possibly much) smaller than the original index sets Aj and Bi. This comes at the price of
requiring positive linear independence for the ci and dj. However, this additional
assumption will be satisfied as long as �1 and �2 do not contain non-trivial vector
subspaces. Theorem 5.1 suggests the following algorithm for calculating the normal cone:

Algorithm 1 Given positive linearly independent sets {c1, . . . , cp} and {d1, . . . , dq} in (15)
determine the contribution of �1\�2 to the normal cone as follows (and the contribution
of �2\�1 by symmetry):

(i) Eliminate those vectors ci from the set {c1, . . . , cp}, which are not extremal rays of
con {c1, . . . , cp}. Doing so, redundant ci will be removed from the description (15).
We assume now, that {c1, . . . , cp} is free of redundance.

(ii) Put j :¼ 0 and M :¼1.
(iii) Put j :¼ jþ 1. Determine the set E of extremal rays in the cone con {c1, . . . , cp, �dj}

and put I1 :¼ fi 2 f1, . . . , pgjci 2 Eg. Put S :¼ f1g.
(iv) Select I 2 2I1nS and put S :¼ S [ fIg.
(v) Solve the linear program � :¼ maxhdj, xi subject to

hci,xi ¼ 0 ði 2 I1Þ, hci, xi � 0 ði 2 I1nIÞ, x 2 ½�1, 1�n:

(vi) If a40, then M :¼M [ confciji 2 Ig.
(vii) If S 6¼ 2I1 then go to (iv).
(viii) If j5p then go to (iii).
(ix) Select maximal elements in the union M to obtain a union ~M which is free of

redundance. ~M is the desired contribution of �1\�2 to the normal cone.

The set S acting in Steps 3–7 of the algorithm serves to select all possible subsets of
I1 which are then checked in Step 5 for the defining relation of the index family A�j
introduced in the statement of Theorem 5.2. Evidently, all which is needed to realize this
algorithm are codes to solve a linear program and to find the extremal rays in a finitely
generated cone. For the latter problem, one may use, for instance, the Fukuda’s code ‘cdd’
(cf. [3]).

6. The case of N polyhedral cones

We consider now a general finite union

� :¼
[N
i¼1

�1 ð25Þ

of polyhedral cones �i. Generalizing the ideas of Section 4, we partition � as

� ¼
[

I�f1,...,Ng, I6¼;

�In�I
c

� �
,

where, for arbitrary I�f1, . . . ,Ng, I 6¼1, we make use of the concise notation

�I :¼
\
i2I

�i, �I :¼
[
i2I

�i, I
c :¼ f1, . . . ,NgnI
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and adopt the convention �1 :¼1. Now, we develop the first equality in (1) as

N�ð0Þ ¼
[
x2�

N̂�ðxÞ ¼
[

;6¼I�f1,...,Ng

[
x2�In�Ic

\
k2I

N̂�k
ðxÞ: ð26Þ

Here, the second equality follows from the fact that, for x 2 �In�I
c , � coincides, locally

around x, with �I, whence

N̂�ðxÞ ¼ N̂�I
ðxÞ ¼

\
k2I

N̂�k
ðxÞ

due to x 2 \k2I�k. It is convenient, to assume now an explicit description of the polyhedral

cones:

�i ¼ x 2 R
n c
ðiÞ
j , x

D E
� 0 ð j ¼ 1, . . . , niÞ

���n o
ði ¼ 1, . . . ,NÞ:

For I�f1, . . . ,Ng, we introduce the following cartesian product of index sets:

J I :¼
Y
i2I

f1, . . . , nig:

For any integer vector J ¼ ðJ1, . . . , JjIcjÞ 2 J I
c , we put

PJ
I

:¼ x 2 R
n c
ðiÞ
j , x

D E
� 0

��� 8j 2 f1, . . . , nig8i 2 I; c
ðiÞ
Ji
, x

D E
> 0 8i 2 I

c
n o

:

From the very definitions, it follows that �In�I
c ¼

S
J2J Ic

PJ
I
. Consequently, one may

continue (26) as

N�ð0Þ ¼
[

;6¼I�f1,...,Ng

[
J2J Ic

[
x2PJ

I

\
k2I

N̂�k
ðxÞ: ð27Þ

Our goal is to get rid of any dependence on x in the formula for N�(0) in a way that only

the describing data for the �i remain there. Obviously, for each x 2 PJ
I
, there exist subsets

J x, i�f1, . . . , nig for ði ¼ 1, . . . , jIjÞ, such that

c
ðiÞ
j , x

D E
¼ 0 8j 2 J x, i8i 2 I;

c
ðiÞ
j , x

D E
5 0 8j 2 f1, . . . , nignJ x, i8i 2 I;

c
ðiÞ
ji
, x

D E
4 0 8i 2 I

c:

ð28Þ

For such x and a fixed k, one has N̂�k
ðxÞ ¼ confc

ðkÞ
j jj 2 J x, kg. Note that, by convention,

con1 ¼ f0g. For any subset J ¼
Q

i2I J i�J I, we put

RJ , J
I

:¼ con c
ðiÞ
Ji
i 2 I

cj

n o
[ �c

ðiÞ
j i 2 I, j 2 f1, . . . , nignJ i

��n on o
SJ

I
:¼ span c

ðiÞ
jj

i 2 I, j 2 J i

��n o
:
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The solvability of (28) is equivalent, via Motzkin’s Theorem, to the condition

RJ x, J
I
\ SJ x

I
¼ f0g,

where J x ¼
Q

i2I J x, i. We have shown that x 2 PJ
I
if and only if there exists some

J ¼ �i2IJ i�J I such that RJ , J
I
\ SJ

I
¼ f0g. Therefore, given I�f1, . . . ,Ng, I 6¼1 and

J ¼ ðJ1, . . . , JjIcjÞ 2 J I
c , we may write

[
x2PJ

I

\
k2I

N̂�k
ðxÞ ¼

[
J2A

J
I

\
k2I

con c
ðkÞ
j j 2 J k

��n o
,

where AJ
I
¼ fJ �J IjR

J , J
I
\ SJ

I
¼ f0gg. Combining this with (27), we may state the desired

formula for the normal cone just in terms of the data describing the polyhedral cones �i in
the following

THEOREM 6.1 The limiting normal cone to a finite union of polyhedral cones as in
(25) calculates as (for notation see text above)

N�ð0Þ ¼
[

;6¼I�f1,...,Ng

[
J2J Ic

[
J2AJ

I

\
k2I

con c
ðkÞ
j j 2 J k

��n o
:

7. An application

Consider a constraint set mapping � :¼ R
k
!!R

m defined by

�ðpÞ :¼
[N
i¼1

y 2 R
m Aifðp, yÞ � bi
��� �

, ð29Þ

where f : R
k
� R

m
! R

n is continuously differentiable, and, for i¼ 1, . . . ,N, Ai are
matrices of order (li, n) and bi 2 R

li . Let �y 2 �ð �pÞ. We want to examine the Aubin property
(see [10]) of � around ð �p, �yÞ.

PROPOSITION 7.1 Assume that rfð �p, �yÞ is surjective and define

Pi : x 2 R
n Aix � bi
��� �

ði ¼ 1, . . . ,NÞ; P :¼
[N
i¼1

Pi:

Then, � has the Aubin property around ð �p, �yÞ if and only if the implication

p�

0

� �
2 rfð �p, �yÞTNPðfð �p, �yÞÞ ) p� ¼ 0 ð30Þ

holds true.

Proof Clearly, gph� ¼ fðp, yÞ 2 R
k
�R

m
jfðp, yÞ 2 Pg. By virtue of [10, Exercise 8.14 and

Exercise 10.7],

Ngph�ð �p, �yÞ ¼ ðp�, y�Þ 2 R
k
� R

m p�

y�

� �
2 rfð �p, �yÞTNPðfð �p, �yÞÞ

����
� 	

:
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It suffices now to apply the Mordukhovich criterion [10, Theorem 9.40] to arrive at the

implication (30). g

As an application of Proposition 7.1, we consider a linear probabilistic constraint as

it arises in stochastic optimization problems:

PðTy � �Þ � �: ð31Þ

Here, � denotes an s-dimensional random vector and P is a probability measure. The

meaning of (31) is that a decision vector y is declared to be feasible, if the stochastic

inequality system Ty� � is satisfied with a probability not smaller than � 2 ½0, 1�.
Assuming that � has a discrete distribution, one can show (see Remark 1 in [1]) that there

exists a finite number, say N, of points qi such that (31) can be equivalently rewritten as

Ty 2
[N
i¼1

fqig þR
s
þ


 �
:

Assume that we want to add a deterministic safety buffer of magnitude �p > 0 to the

inequality system Ty� �. Then, (31) will be replaced by

PðTy � � þ �p1Þ � �,

where 1¼ (1, . . . , 1). The meaning of this modified constraint is that a decision y is feasible

if Ty over-dominates the random vector � by a value of at least �p at a probability of at least

a. As the choice of an appropriate value for �p may be arbitrary, it may be interesting to

know, how the set of feasible decisions y changes upon perturbations of a nominal value �p.

Passing to the equivalent description of the probabilistic constraint presented above, but

now adding the dependence on some variable safety buffer p, we might be led to investigate

the Aubin property of the mapping

�ðpÞ :¼ y Ty� p1 2
[N
i¼1

fqig þR
s
þ


 ������
( )

,

at a point ð �p, �yÞ, where �y is feasible for the nominal buffer �p. Obviously, we are in the

setting of Proposition 7.1 by putting (for i¼ 1, . . . ,N)

fðp, yÞ :¼ Ty� p1; Ai :¼ �I, bi :¼ �qi; Pi :¼ fqig þ R
s
þ:

If T is surjective, then rfð �p, �yÞ ¼ ð�1,TÞ is surjective too and Proposition 7.1 may be

invoked to derive that the Aubin property around ð �p, �yÞ of the considered contraint set

mapping is equivalent with the constraint qualification (30) which turns out to be always

satisfied. Indeed, if

p�

0

� �
2 rfð �p, �yÞTNPðfð �p, �yÞÞ,

then there exists some z� 2 NPð f ð �p, �yÞÞ with TTz*¼ 0 and p*¼�1Tz*. Surjectivity of

T implies that z*¼ 0 and, thus, p*¼ 0.
However, in many situations, T may fail to have full rank (e.g. in stochastic network

design problems, where the number of inequalities may be substantially larger than the
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dimension of the decision vector, see [8]). Then, an application of Proposition 7.1 is not

possible in the formulation chosen before because rfð �p, �yÞ ¼ ð�1, TÞ may not be surjective

either. Fortunately, we can find another description for the same constraint set mapping

by putting (for i¼ 1, . . . ,N)

f ðp, yÞ :¼ ðp, yÞ; Ai :¼ ð1, � TÞ; bi :¼ �qi; Pi :¼ ðx, tÞ Tx� t1 � qi
��� �

:

As surjectivity of rfð �p, �yÞ ¼ I is always satisfied, we may invoke once more Proposition 7.1

to derive that the Aubin property around ð �p, �yÞ of the considered contraint set mapping is

equivalent with the constraint qualification

p�

0

� �
2 NPð �p, �yÞ ¼) p� ¼ 0:

In order to check this relation, one has to be able to calculate the normal cone to the finite

union P of the polyhedra Pi.
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[8] A. Prékopa, Stochastic Programming, Kluwer, Dordrecht, 1995.
[9] S.M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Program. Study 14 (1981),

pp. 206–214.
[10] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.

78 R. Henrion and J. Outrata


