On scenario reduction with respect to polyhedral discrepancies

René Henrion

Christian Küchler

Werner Römisch

FS Numerik stochastischer Modelle

March 14, 2007

Stability in Stochastic Programming

- Optimization problems including uncertainty ξ ~ P often not numerically solvable until supp P is finite and sufficiently small.
- Discretization / Scenario reduction substitute the initial measure P by Q, such that the problem becomes tractable.
- How to choose representative scenarios?
- Stability-based: If there is a distance α on the space of probability measures such that the optimal value θ(·) behaves continuously w.r.t. α, i.e.

$$|artheta(\mathbb{P}) - artheta(\mathbb{Q})| \leq \mathcal{C} \cdot lpha(\mathbb{P},\mathbb{Q}),$$

find a measure \mathbb{Q} such that $\alpha(\mathbb{P}, \mathbb{Q})$ is small.

Linear problems:

$$\begin{split} \vartheta(\mathbb{P}) &\triangleq \min \langle c, x \rangle + \int_{\Xi \subset \mathbb{R}^s} \langle q(\xi), y(\xi) \rangle \ \mathbb{P}(d\xi) \\ \text{s.t.} \\ Wy(\xi) &= h(\xi) - T(\xi)x, \\ y(\xi) &\geq 0, \\ x &\in X. \end{split}$$

Stability¹ of the optimal value w.r.t. perturbations of \mathbb{P} :

$$|\vartheta(\mathbb{P}) - \vartheta(\mathbb{Q})| \leq L \ \hat{\mu}_2(\mathbb{P}, \mathbb{Q}),$$

with the Kantorovich functional

$$\hat{\mu}_2(\mathbb{P},\mathbb{Q}) \triangleq \inf_{\eta:\pi_1\eta = \mathbb{P}, \pi_2\eta = \mathbb{Q}} \int_{\Xi imes \Xi} \max\left\{1, \|\xi\|, \|\tilde{\xi}\|\right\} \|\xi - \tilde{\xi}\| \ \eta(d(\xi, \tilde{\xi})).$$

¹e.g. Römisch(2003), Thm. 23

Stability of two-stage problems

Mixed integer problems - Example:

$$\begin{split} \vartheta(\mathbb{P}) &\triangleq \int_{\Xi \subset \mathbb{R}^2} \min y_1(\xi) + 2y_2(\xi) \ \mathbb{P}(d\xi) \\ \text{s.t.} \quad y_1(\xi) + y_2(\xi) &\geq \xi_1, \\ y_2(\xi) &\leq \xi_2, \\ y_1 &\in \mathbb{Z}_+, y_2 \in \mathbb{R}_+. \end{split}$$

Stability of two-stage problems

Stability of two-stage problems

Support of \mathbb{P} . Support of \mathbb{Q}_{ε} with $\mathbb{Q}_{\varepsilon}[A] \triangleq \mathbb{P}[A + {\varepsilon \choose -\varepsilon}]$.

Mixed integer problems - Example (with slack variables)

$$\vartheta(\mathbb{P}) \triangleq \int_{\Xi \subset \mathbb{R}^2} \min y_1(\xi) + 2y_2(\xi) \ \mathbb{P}(d\xi)$$

s.t.
$$\begin{pmatrix} 1\\0 \end{pmatrix} y_1(\xi) + \begin{pmatrix} 1 & -1 & 0\\1 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_2(\xi)\\y_3(\xi)\\y_4(\xi) \end{pmatrix} = \begin{pmatrix} \xi_1\\\xi_2 \end{pmatrix}$$

$$y_1 \in \mathbb{Z}_+, \ y_2, y_3, y_4 \in \mathbb{R}_+.$$

Observation²: the continuity regions of the integrand can be described via $pos W = W(\mathbb{R}^3_+)$.

²Blair and Jeroslow (1977), Bank et al. (1982)

Mixed integer problems :

$$\begin{split} \vartheta(\mathbb{P}) &\triangleq \min \langle c, x \rangle + \int_{\Xi \subset \mathbb{R}^s} \langle q, y(\xi) \rangle + \langle \tilde{q}, \tilde{y}(\xi) \rangle \ \mathbb{P}(d\xi) \\ \text{s.t.} \\ \mathcal{N}y(\xi) + \tilde{\mathcal{W}}\tilde{y}(\xi) &= \xi - Tx, \\ y(\xi), \tilde{y}(\xi) &\geq 0, \ y \in \mathbb{R}^{s'}, \tilde{y} \in \mathbb{Z}^{\tilde{s}} \\ &\quad x \in X. \end{split}$$

Stability³ of the optimal value w.r.t. perturbations of \mathbb{P} :

$$|\vartheta(\mathbb{P}) - \vartheta(\mathbb{Q})| \leq L \; \alpha_{\mathcal{B}_{\mathsf{poly}(\mathsf{W})}}(\mathbb{P}, \mathbb{Q})^{\frac{1}{s+1}},$$

with the polyhedral discrepancy

$$lpha_{\mathcal{B}_{\mathsf{poly}(\mathsf{W})}}(\mathbb{P},\mathbb{Q}) \triangleq \sup_{B \in \mathcal{B}_{\mathsf{poly}(\mathsf{W})}} |\mathbb{P}(B) - \mathbb{Q}(B)|.$$

³Schultz (1996), Römisch and Vigerske (2007)

The polyhedral discrepancy

$$lpha_{\mathcal{B}_{\mathsf{poly}(\mathsf{W})}}(\mathbb{P},\mathbb{Q}) \triangleq \sup_{B \in \mathcal{B}_{\mathsf{poly}(\mathsf{W})}} |\mathbb{P}(B) - \mathbb{Q}(B)|,$$

where $\mathcal{B}_{\text{poly}(W)}$ denotes the class of all closed bounded polyhedra in \mathbb{R}^{s} each of whose facets (i.e. (s-1)-dimensional faces) parallels a facet of pos W or a facet of the unit cube $\times_{i=1}^{s}[0,1]$.

- Purely integer recourse (W = 0): $\alpha_{\mathcal{B}_{poly(W)}} = \alpha_{\mathcal{B}_{rect}}$.
- Chance constrained models: Kolmogorov-Smirnov distance $\alpha_{\mathcal{B}_{\text{cell}}}.$

Objective: Development of suitable **techniques for stability-based scenario reduction w.r.t. these discrepancies** for chance constrained and mixed-integer two-stage models.

Scenario reduction

Let \mathbb{P} be a discrete probability measure on \mathbb{R}^s with support $\{\xi^1, \ldots, \xi^N\}$ and $p_i \triangleq \mathbb{P}(\xi^i) > 0, i = 1, \ldots, N$.

Problem

Find another probability measure $\mathbb Q$ on $\mathbb R^s$ with

$$\begin{split} & \operatorname{supp} \mathbb{Q} \quad \subset \quad \operatorname{supp} \mathbb{P}, \\ & \# \operatorname{supp} \mathbb{Q} \quad = \quad n < N, \end{split}$$

which deviates from $\mathbb P$ as little as possible w.r.t. the discrepancy $\alpha_{\mathcal B},$ i.e.

$$\begin{array}{l} \text{minimize } \alpha_{\mathcal{B}}(\mathbb{P},\mathbb{Q}) = \alpha_{\mathcal{B}}(\sum_{i=1}^{N} p_i \cdot \delta_{\xi^i}, \sum_{j=1}^{n} q_j \cdot \delta_{\eta^j}) \\ \text{s.t.} \{\eta^1, \dots, \eta^n\} \subset \{\xi^1, \dots, \xi^N\}, \\ q_j \ge 0, \sum_{j=1}^{n} q_j = 1 \end{array}$$

This optimization problem can be decomposed into two subproblems:

- determine the scenario set $\operatorname{supp} \mathbb{Q} = \eta \triangleq \{\eta^1, \dots, \eta^n\},\$
- fix the weights $q = (q_1, \ldots, q_n)$:

$$\Delta_{\mathcal{B}} \triangleq \min_{\eta} \{ \inf_{q \in S_n} \alpha_{\mathcal{B}} \left(\mathbb{P}, (\eta, q) \right) \mid \eta \subset \{\xi^1, \dots, \xi^N\}, \#\eta = n\},$$

with the standard simplex

$$S_n \triangleq \{q \in \mathbb{R}^n | q_j \ge 0, j = 1, \ldots, n, \sum_{j=1}^n q_j = 1\}.$$

 $\Delta_{\mathcal{B}} = \min_{\eta} \{ \inf_{q \in S_n} \alpha_{\mathcal{B}} (\mathbb{P}, (\eta, q)) \mid \eta \subset \{\xi^1, \dots, \xi^N\}, \#\eta = n\},\$

Bilevel approach:

- outer iteration choose support η, NP-hard combinatorial problem.
- Heuristics or branch-and-bound
- inner iteration determine optimal probabilities q, given the fixed support η .
- This can be formulated as a linear optimization problem.
- We assume that the support is given by $\{\eta^1,\ldots,\eta^n\}=\{\xi^1,\ldots,\xi^n\}.$

Critical index sets

For $B \in \mathcal{B}$, we define a critical index set I(B) by the relation

$$I(B) = \left\{ i \in \{1, \ldots, N\} : \xi^i \in B \right\}.$$

We obtain

$$|\mathbb{P}(B) - \mathbb{Q}(B)| = \left| \sum_{i \in I(B)} p_i - \sum_{j \in I(B) \cap \{1, \dots, n\}} q_j \right|.$$

Thus, we can define the system of critical index sets

$$\mathcal{I}_{\mathcal{B}} := \{I \subseteq \{1, \ldots, N\} | \exists B \in \mathcal{B} : I = I(B)\},\$$

and arrive at

$$\alpha_{\mathcal{B}}(\mathbb{P},\mathbb{Q}) = \max_{I \in \mathcal{I}_{\mathcal{B}}} \left| \sum_{i \in I} p_i - \sum_{j \in I \cap \{1,...,n\}} q_j \right|.$$

Critical index sets

$$\alpha_{\mathcal{B}}(\mathbb{P},\mathbb{Q}) = \max_{I \in \mathcal{I}_{\mathcal{B}}} \left| \sum_{i \in I} p_i - \sum_{j \in I \cap \{1,\dots,n\}} q_j \right|$$

Minimizing this w.r.t. $q = (q_1, \ldots, q_n)$ is equivalent to

Problem: $\mathcal{I}_{\mathcal{B}}$ is very large, in general. $(\leq 2^N)$ Idea: Many different index sets $l \in \mathcal{I}_{\mathcal{B}}$ may lead to the same intersection $l \cap \{1, \ldots, n\}$. Then only the r.h.s. of the corresponding inequalities differ. $\mathcal{I}_{\mathcal{B}}^* \triangleq \{l \cap \{1, \ldots, n\} | l \in \mathcal{I}_{\mathcal{B}}\}.$

Critical index sets

For
$$J\in \mathcal{I}_{\mathcal{B}}^{*}$$
 we set

$$\gamma^{J} \triangleq \max_{I \in \mathcal{I}_{\mathcal{B}} \atop J = I \cap \{1, \dots, n\}} \sum_{i \in I} p_{i} \text{ and } \gamma_{J} \triangleq \min_{I \in \mathcal{I}_{\mathcal{B}} \atop J = I \cap \{1, \dots, n\}} \sum_{i \in I} p_{i},$$

and obtain the problem

$$\begin{array}{rcl} \text{minimize} & t & \text{subject to} & q \in S_n, \\ & -\sum_{j \in J} q_j & \leq & t - \gamma^J \\ & \sum_{j \in J} q_j & \leq & t + \gamma_J \end{array} \right\} J \in \mathcal{I}_{\mathcal{B}}^*.$$

How to determine $\mathcal{I}_{\mathcal{B}}^* = \{I \cap \{1, \dots, n\} | I \in \mathcal{I}_{\mathcal{B}}\}, \gamma_J, \gamma^J$?

Supporting Polyhedra

How to determine $\mathcal{I}_{\mathcal{B}}^* = \{I \cap \{1, \ldots, n\} | I \in \mathcal{I}_{\mathcal{B}}\}, \gamma_J, \gamma^J$?

Observation: $\mathcal{I}_{\mathcal{B}}^*, \gamma_J, \gamma^J$ are determined by those polyhedra \mathcal{P} , each of whose facets contains an element of $\{\xi^1, \ldots, \xi^n\}$, such that \mathcal{P} can not be enlarged without changing its interior's intersection with $\{\xi^1, \ldots, \xi^n\}$. These polyhedra \mathcal{P} are called supporting.

Supporting Polyhedra

Proposition

$$\mathcal{I}^{*}_{\mathcal{B}_{\mathsf{poly}}(\mathsf{W})} = \{ J \subseteq \{1, ..., n\} : \exists \mathcal{P} \text{ with } \cup_{j \in J} \{\xi^{j}\} = \{\xi^{1}, ..., \xi^{n}\} \cap \operatorname{int} \mathcal{P} \}$$

$$\gamma^{J} = \max\{ \mathbb{P}(\operatorname{int} \mathcal{P}) : \cup_{j \in J} \{\xi^{j}\} = \{\xi^{1}, ..., \xi^{n}\} \cap \operatorname{int} \mathcal{P} \}$$

$$\gamma_{J} = \sum_{i \in I} p_{i} \quad \text{with } I := \{i \in \{1, ..., N\} : \xi^{i} \in [\![\{\xi^{j} : j \in J\}]\!] \}.$$

Algorithm

$${f 0}$$
 Set ${\cal I}_{{\cal B}}^*=\emptyset.$

- 2 For every supporting polyhedron ${\mathcal P}$:
 - **O** Define J via $\cup_{j \in J} \{\xi^j\} = \{\xi^1, .., \xi^n\} \cap \operatorname{int} \mathcal{P}$
 - **Q** If $J \notin \mathcal{I}_{\mathcal{B}}^*$ then update $\mathcal{I}_{\mathcal{B}}^* \triangleq \mathcal{I}_{\mathcal{B}}^* \cup \{J\}$ and γ_J .
 - $\textbf{0} \quad \texttt{Update} \ \gamma^J.$
- With the additional data $\mathcal{I}_{\mathcal{B}}^*$ and γ_J, γ^J for $J \in \mathcal{I}_{\mathcal{B}}^*$: Solve the linear optimization problem.

Supporting Polyhedra

Supporting polyhedra \mathcal{P} = polyhedra each of whose facets is parallel to pos W and $\times_{i=1}^{s} [0,1]$'s k facets and contains an element of ξ^1, \ldots, ξ^n in its interior.

Using a *k*-tupel (m_1, \ldots, m_k) of associated normal vectors, each \mathcal{P} can be written as a $(k \times 2)$ matrix $[\underline{a}, \overline{a}]$, where the entries of the *j*-th row are contained in $\{\langle m_j, \xi^i \rangle, i = 1, \ldots, n\} \cup \pm \infty$, or, equivalently, in $\{1, \ldots, n\} \cup \pm \infty$. $\binom{n+2}{2}^k$ potential supporting polyhedra \Rightarrow recursive construction, verifying the supporting-condition at each step.

	k	n=5	n=10	n=15	n=20
	cell	0.01	0.01	0.01	0.05
\mathbb{R}^3	3	0.01	0.04	0.56	6.02
N=100	6	0.03	1.03	14.18	157.51
	9	0.15	7.36	94.49	948.17
	cell	0.01	0.01	0.05	0.30
\mathbb{R}^4	4	0.01	0.19	1.83	17.22
N=100	8	0.11	5.66	59.28	521.31
	12	0.67	39.86	374.15	3509.34
	cell	0.01	0.01	0.01	0.07
\mathbb{R}^3	3	0.01	0.05	0.53	4.28
N=200	6	0.03	0.76	11.80	132.21
	9	0.12	4.22	78.49	815.79
	cell	0.01	0.01	0.06	0.29
\mathbb{R}^4	4	0.01	0.20	2.56	41.73
N=200	8	0.11	4.44	73.70	1042.78
1	12	0.74	28.29	473.72	6337.68

Running times [sec] of the optimal redistribution algorithm.

	k	n=5	n=10	n=15	n=20
	cell	0.42	0.28	0.20	0.17
\mathbb{R}^3	3	0.66	0.48	0.41	0.36
N=100	6	0.71	0.48	0.42	0.36
	9	0.71	0.48	0.42	0.39
	cell	0.65	0.28	0.22	0.22
\mathbb{R}^4	4	0.85	0.53	0.38	0.31
N=100	8	0.86	0.53	0.38	0.31
	12	0.86	0.53	0.38	0.31
	cell	0.35	0.27	0.21	0.20
\mathbb{R}^3	3	0.54	0.47	0.35	0.32
N=200	6	0.56	0.47	0.37	0.34
	9	0.56	0.48	0.37	0.34
	cell	0.54	0.40	0.28	0.20
\mathbb{R}^4	4	0.80	0.55	0.46	0.40
N=200	8	0.80	0.56	0.50	0.46
	12	0.80	0.56	0.50	0.46

Discrepancies resulting from optimal redistribution.

The polyhedral discrepancy $\alpha_{\mathcal{B}_{poly(W)}}$ - selection heuristics

Rectangular discrepancies resulting from

- forward selection (solid line, 3s),
- backward reduction (dashed line, 10s), and
- complete enumeration (dots, 34min!),

depending on the number of remaining scenarios *n*. The initial measure consists of 20 equally weighted scenarios on \mathbb{R}^2 .

Cell discrepancy and running time in the course of *forward* selection. The initial measure consists of 10 000 equally weighted points in \mathbb{R}^2 , sampled from a standard normal distribution.

Results of forward selection w.r.t. the cell discrepancy of 20 out of 10 000 points in \mathbb{R}^2 , sampled from a standard normal distribution.

The resulting cell discrepancy is 0.0951.

- More appropriate heuristics for the outer problem.
- Stability of *multistage* mixed-integer stochastic programs?
- Comparison with other scenario generation methods.

Thank you very much.