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Stability in Stochastic Programming

@ Optimization problems including uncertainty €& ~ P - often not
numerically solvable until supp IP is finite and sufficiently

small.

@ Discretization / Scenario reduction - substitute the initial

measure P by Q, such that the problem becomes tractable.
@ How to choose representative scenarios?

@ Stability-based: If there is a distance a on the space of
probability measures such that the optimal value 6(-) behaves

continuously w.r.t. «, i.e.
[W(P) —9(Q)| < C- (P, Q),

find a measure Q such that o(P, Q) is small.



Stability of two-stage problems

Linear problems:

oB) £ minfe)+ [ (a(€).(€) PO
s.t.

Wy(€) = h(e)~ T(E)x

y(€) = 0,
x € X.

Stability! of the optimal value w.r.t. perturbations of P:

[9(P) —9(Q)| < L fia(P, Q),

with the Kantorovich functional

)2 inf [ max (1€l 181} 16l ntd(é ).

nmn=P,mn=Q J=

le.g. Rémisch(2003), Thm. 23



Stability of two-stage problems

Mixed integer problems - Example:

oB) & [ minn(€)+2(0) B(e)

s.t. yi(€)+y2() > &,

Optimal control y; (). Optimal value ®(§).



Stability of two-stage problems
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Contour plot of ®(¢).
Support of P.



Stability of two-stage problems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Contour plot of ®(&).
Support of P. Support of Q. with Q.[A] £ P[A+ ( °)].



Stability of two-stage problems

Mixed integer problems - Example ( with slack variables )

o) 2 [ minyn(€) + 20(6) P(e)

5.t
y2(§)
1 1 -1 0 &
<0>y1(€)+<1 0 1) y3(£) =< )
ya(§) ©
Y1 € Ly, y2,y3,ya € Ry

Observation?: the continuity regions of the integrand can be
described via pos W = W(R2).

2Blair and Jeroslow (1977), Bank et al. (1982)



Stability of two-stage problems

Mixed integer problems :
O(B) £ mincx)+ / (@, y(6)) + (8. 9(6)) B(de)
=CRs
s.t.
Wy(&) + Wy(¢) = ¢&— Tx,
y(€),57(€) > 0, yeR" yeZt
x € X.

Stability® of the optimal value w.r.t. perturbations of P:

[9(P) — 9(Q)| < L ag,,, (B, Q)5,

with the polyhedral discrepancy

Booywy (@) = sup [P(B) — Q(B)|.

BEBpoy(w)

3S':hultz (1996), Rémisch and Vigerske (2007)



The polyhedral discrepancy

w(P.Q)=  sup  |P(B) —Q(B)|,

poly
BeBpoy(w)

where B, w) denotes the class of all closed bounded polyhedra in
R® each of whose facets (i.e. (s — 1)-dimensional faces) parallels a
facet of pos W or a facet of the unit cube x3_,[0,1].

2|
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pos W, W = ( i -1 2 ) Support of P. Support of Q.



o Purely integer recourse (W = 0): ap,, w) = WBrea-
@ Chance constrained models: Kolmogorov-Smirnov distance

chelI .
Objective: Development of suitable techniques for

stability-based scenario reduction w.r.t. these discrepancies

for chance constrained and mixed-integer two-stage models.



Scenario reduction

Let IP be a discrete probability measure on R® with support
{,...,¢"}and p; 2 P(¢') > 0,i=1,...,N.

Problem

Find another probability measure Q on R® with

suppQ <C suppP,
#suppQ = n<N,

which deviates from PP as little as possible w.r.t. the discrepancy
ag, i.e.
o N n
minimize OzB(P, Q) = aB(Z;:1 pi 55/, Zj:l q;j - (577,‘)

stint,...,n"} C {51,...,5'\’},
n
qi >0, g =1

J=1




Scenario reduction

This optimization problem can be decomposed into two

subproblems:
e determine the scenario set suppQ = = {n*,...,n"},

e fix the weights ¢ = (qg1,...,qn):

Ap 2 min{ inf ag(P,(n,q)) | nc{,... 75N}a#77 = nj},
n qeS,

with the standard simplex

Sné{qERn|qJZO7j:1,,n, qJ:]'}

j=1



Solution techniques

A = min{ inf ag(P,(n.q)) | 1 C{¢....&"} #n = n},

7
Bilevel approach:

@ outer iteration - choose support 1, NP-hard combinatorial
problem.

@ Heuristics or branch-and-bound

@ inner iteration - determine optimal probabilities g, given the
fixed support 7.

@ This can be formulated as a linear optimization problem.

@ We assume that the support is given by

{nt,....n"} = {gl,...,g"}.



Critical index sets

For B € B, we define a critical index set /(B) by the relation
={ie{l,...,N}: ¢ € B}.
We obtain

|P(B Z pi — Z q;|-

icl(B) jel(B)N{1,...,n}

Thus, we can define the system of critical index sets
Ig:={lIC{1,...,N}|3B e B: 1 =1(B)},

and arrive at

oap(P.Q) =max\> pi— >, .

icl Jein{1,...,n}



Critical index sets

ap(P,Q) = max Zp, Z qj

1€T,
Bliel jeln{1,...,n}

Minimizing this w.r.t. ¢ = (q1,...,qn) is equivalent to

minimize t subjectto gqg € S,,

- Zje/ﬂ{lw-,n} YOS T L } | € Ip.
Zjelﬂ{l,...,n} q; <t D ie Pi

Problem: Zz is very large, in general. (< 2N)

Idea: Many different index sets | € Zg may lead to the same
intersection / N {1,...,n}. Then only the r.h.s. of the
corresponding inequalities differ. Zj; = {I N {1,...,n}|/ € Zp}.



Critical index sets

For J € I3 we set

J A Ay H

=  max g i and =  min g ;

Y e Pi YJ Ie1 5 pi,
J=In{1,...,n} i€l J=In{1,...,n} i€l

and obtain the problem

minimize t subjectto g€ S,,

i A
“2jesd = = .
<

How to determine Zj; = {/ N {1,...,n}|l € I}, 74,77



Supporting Polyhedra

How to determine Zj; = {I N {1,...,n}|l € Zp},vs, 7’7

Observation: IE,’YJ,’YJ are determined by those polyhedra P, each

of whose facets contains an element of {¢1,...,£"}, such that P
can not be enlarged without changing its interior’s intersection
with {€,...,¢&}.

These polyhedra P are called supporting.



Supporting Polyhedra

*

Loy = 1JS{L.n}:3Pwith Uey (&Y ={&, .., "  nint P}
v = max{ P(int P) : Ui, {¢} = {€, .., €"} Nint P}
vo= Y pi withl:={ie{l,....N}: & e[{&:je N}

i€l




Optimal redistribution algorithm

Algorithm

Q Set Ij;=0.
@ For every supporting polyhedron P :
O Define J via Ujc {¢} ={&',..,&"}Nint P
@ If J ¢ T} then update Z;; = I U {J} and v,.
©® Update ny.
© With the additional data Zj; and 7,7’ for J€ I} :

Solve the linear optimization problem.




Supporting Polyhedra

Supporting polyhedra P = polyhedra each of whose facets is
parallel to pos W and x:_,[0,1]'s k facets and contains an
element of £1,...,&" in its interior .
Using a k-tupel (mq, ..., my) of associated normal vectors, each P
can be written as a (k x 2) matrix [a, 3] , where the entries of the
j—th row are contained in {<mj,§i> Ji=1,...,n}U=o0, or,
equivalently, in {1,...,n} U +o0.
(n+2 k . . . .

5 ) potential supporting polyhedra = recursive construction,

verifying the supporting-condition at each step.



The polyhedral discrepancy ag,,, ., - optimal redistribution

k n=5 n=10 n=15 n=20

cell | 0.01 0.01 0.01 0.05

R3 3 | 001 0.04 0.56 6.02
N=100 6 | 0.03 1.03 14.18 157.51
9 | 015 7.36 94.49 048.17

cell | 0.01 0.01 0.05 0.30

R4 4 | 001 0.19 1.83 17.22
N=100 8 | 011 5.66 59.28 521.31
12 | 067 39.86 37415  3500.34

cell | 0.01 0.01 0.01 0.07

R3 3 | 001 0.05 0.53 4.28
N=200 6 | 0.03 0.76 11.80 132.21
9 | 012 422 78.49 815.79

cell | 0.01 0.01 0.06 0.29

R4 4 | 001 0.20 2.56 41.73
N=200 8 | 011 4.44 73.70  1042.78
12 | 074 2829 47372  6337.68

Running times [sec| of the optimal redistribution algorithm.



The polyhedral discrepancy ag,, ., - optimal redistributio

k n=>5 n=10 n=15 n=20

cell | 0.42 0.28 0.20 0.17

R3 3| 066 0.48 0.41 0.36
N=100 6 | 071 0.48 0.42 0.36
9 | 071 0.48 0.42 0.39

cell | 0.65 0.28 0.22 0.22

R* 4 | 085 0.53 0.38 0.31
N=100 8 | 086 0.53 0.38 0.31
12 | 086 0.53 0.38 0.31

cell | 035 0.27 0.21 0.20
R3 3| 054 0.47 0.35 0.32
N=200 6 | 056 0.47 0.37 0.34
9 | 056 0.48 0.37 0.34

cell | 054 0.40 0.28 0.20

R* 4 | 080 0.55 0.46 0.40
N=200 8 | 0.80 0.56 0.50 0.46
12 | 0.80 0.56 0.50 0.46

Discrepancies resulting from optimal redistribution.



The polyhedral discrepancy ag,,, ., - selection heuristics

Rectangular discrepancies resulting from
e forward selection (solid line, 3s),
@ backward reduction (dashed line, 10s), and
e complete enumeration (dots, 34min!),
depending on the number of remaining scenarios n. The initial

measure consists of 20 equally weighted scenarios on R?.
1




The polyhedral discrepancy ag,,, ., - selection heuristics

Cell discrepancy and running time in the course of forward
selection. The initial measure consists of 10000 equally weighted

points in R?, sampled from a standard normal distribution.
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The polyhedral discrepancy ag,,, ., - selection heuristics

Results of forward selection w.r.t. the cell discrepancy of 20 out of
10000 points in R?, sampled from a standard normal distribution.
The resulting cell discrepancy is 0.0951.




@ More appropriate heuristics for the outer problem.
o Stability of multistage mixed-integer stochastic programs?

@ Comparison with other scenario generation methods.

Thank you very much.
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