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Introduction

[Rockafellar and Wets, 1991] addressed the following stochastic
optimization problem:

min J(u) = Zpsj(u(s)vs)
e N seS

N ={u € & | u; is constant on each bundle A € A;}

S is a finite set of scenarios. A; is the “information structure”,
A€ A; is called a “bundle”. The scenarios in any one bundle are
regarded as observationally indistinguishable at time t. “For most
purpose it is reasonable to suppose that the partition A;11 is a
refinement of the partition A;.".
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Introduction

The same problem has been addressed under a continuous form:

min E [j(u(X), X)]
ue N(F)

N(F) = {U € L2(R?, Bra, Px) | ug is Fy adapted function}

This kind of problem can be embedded in the set of problems with
measurability constraints !
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Introduction

Consider the following stochastic optimization problem:
V(B) = min{||v — ul|,2 | uis B measurable}
clearly we have:
V(B) = [lv —Ep[v | B]ll
V' has the 1-lipschitz-continuous property:

\V(B) - V(B)| < |[Eelv|B]-Ee[v|B]|,

pseudo-metric on the space of o-algebra

Now we can provide a way to compute the conditional expectation,
but at the beginning the problem already satisfies a Lipsichitz
property according to specific metric on the space of o-algebra.
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Introduction

If now we want to compute the conditional expectation arising in
the problem then we replace the underlying probability measure by
the empirical probability measure denoted IP,;:

[V(B) = Va(B')| < |V(B) = V(B')| +|V(B') — Va(B')]
< |[Ee[v|B] —Eplv|B]lz+[Eplv | B] —Eg, [v | Bl
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Theoretical framework

e Let (2, F,P) be a measurable probability space.

o Let Bra denote the Borel o-algebra. The smallest o-algebra
of subset of RY which contains all open subsets of RY;

o Let X : Q — RY be a random variable, X~ (Bgd) C F;
@ Px be the distribution of the random variable X defined by:

VA € Bga, Px(A) =P(X(A))

o If u:RY — R™ we define o(u) = u~1(Bgm), the smallest
o-algebra for which v is measurable;

o Let j: R™ x R? — R be a random functional (normal
integrand)

o Let C denote a closed convex subset of L2(RP, Px; R™)
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For any Borel function u: RY — R™ we define J(u) by:

J(u) = E[j(u(X), X)] =/ (u(x), x)Px (dx)

J
Rd
J is the objective function. Let S be defined by:
S= {u € [2(R?, Px; R™) | u(x) = u(—x), an.s.}

Let S denote the smallest o-algebra for which any v € S is
measurable. S is called the symmetric o-algebra. With that
definition:

S= {u € [2(RY, Px; R™) | o(u) C S}
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Consider now the following problem:

P{ min E [j(u(X), X)]

uesS
or equivalently:
minE [j(u(X), X)]
P{ ue 2(RY Py;R™)
u=E[u|S]

where E [u | S] is the conditional expectation with respect to S:

_E 2 _ 2
lu—E[u ] S]II° = minflu—v]|
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The problem

We want to compute the value of P defined by:

V = inf {E [j(u(X),X)] | u € S}
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We could formulate directly a discrete problem:

N
1 Py
mmNZJ(u , X") (1)
i=0
X=X =u=0u. (2)

Whenever the distribution Px absolutely continuous with respect
to the Lebesgue measure the event:

(X = -xi}

is null mass.
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Transformation

The conditional expectation with respect to S is quite easy to
calculate:

E[uS]:W (3)

then we can transform the initial problem to the unconstraint

problem:
minE [j(E [u [ §](X), X)]
PS{ u € L2(R?, Px; R™)

if u* is optimal for Ps, E [u* | S] is obviously optimal for P.
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@ How to transform:

to :

Js(u) = E[js(u(X), X)] (3)

@ How to link the optimal solution of the constraint problem P
with the solution of the unconstraint problem Pg ?
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Answer

[Dynkin and Evstigneev, 1976] have proved that:
E[(E[u ] S](X), X) | 8] = js(E[u | S](X), X)

where js is the regular conditional expectation of the normal
integrand j:

Js(u,-) =E[j(u,-) [ S]
That result has been also studied by J.M. Bismut.
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The problem without information constraint

Let js denote the following normal integrand:

Js(u,x) =E[j(u,-) | S](x) = J(u,x) +j(u, =)

2

consider now the following problem:

;[ minE [js(u(X), X)]
PS{ u € (R, Px; R™)

there is not information constraint in that new formulation.
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A first result

o Vues, js(u(x),x)=E[(u(),-)]|S](x) (Dynkin
Evstigneev);

o Moreover if u — j(u,x) is convex then if u* € L2(RY,Px; R™)
is solution of Pg then:

@ v is solution of Ps;
@ v* defined by:

is solution of P

We can state this result without convexity assumption, but we
couldn’t establish a practical expression for the optimal decision
rule v* just its existence
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The proof

E[js(u(--) | S] = J(U(X)?x)+£(u(_x),_x) o
_ (9 x) +2J(u(x),—x) -
= Sll0x) (8)

That result holds true in more general cases, see E.B. Dynkin and
I.V. Evstigneev, 1976.
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The proof

EJ(E[u™ | ST(x),x)]

VAN VANN VAN

E[E [j(E[u* | 8] (x),x) | S]] (Cond Exp)
E [js(E[u" | 8] (x), x)] (Dyn Evs)

E [js(u*(X), X
Els(Elv | 8]

~—

] (Cond Jensen In for Integ)
x), x)] (Optimality)

—~

EL(E[v [ ST(x),x)] (Dyn Evs)




Open loop problems

The problem Pg turns out to be a Monte-Carlo simulation:

P s E[urglg)njs(u,X)]

In lack of information constraint we can use for P’ a Monte-Carlo
approximation technique.

Kengy Barty Quantization in discretization of stochastic programs.



Numerical scheme

We propose the following numerical scheme:

e Draw (X1,...,XN) Niid of X;
o compute : JY(ut, ..., uN) = %vazljs(u",X")

Hence:

N—oo Niz1,..,N

lim (( Ginf UV, uN)> = Optimal value of P

But at this stage we suppose we are able to compute exactly the
normal integrand j!
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Conditional expectation approximation

The simplest idea is to replace the g-algebra S by a o-algebra
denoted SP generated by a finite partition of RY. Hence instead of
handle js we will handle j, defined by:

Jp(u, x) = E[j(u,) | 7] (x)

Ip
() =Y Px(lAf)E [0, X)L ()] Lp ()

i=1

where (A?)i—1, .4, is a partition such that SP = o((A?)i=1,..1,). Is
it consistent to replacing the continuous o-algebra by a discrete
one ?
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o-algebra metric

It well known that the space of sub-o-algebra of S is metrizable.

Let S',S” C S then:
d(s',8") = Z smin ([E[f 8T -E[f|5"]].1)

where (f;);en is a separable set of L2(R?, Px; R) is a metric
introduced first by Neveu in 1975. d is consistent with the weakest
topology with respect to which all functions defined by:

L2(RY,Px;R) — L2(RY,Px;R), f—E[f|S] withS' CS

is continuous with respect to the norm topology.
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Other metrics

oy (S, 8" = inf P(AAB inf P(AAB
dBoy (S, S7) sup inf, ( )+;§§,,425, (AAB)

dgar(S',S") = inf {1 —P(A) | S NA=8"NA, AcB)}

Unfortunately discrete o-algebras fail to be a discrete
approximation of continuous o-algebra with respect to those
metrics.
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Asymptotic result

it is easy to show from Neveu's metric definition that the following
holds:

lim d(SP,8) =0=YueR™ lim |jp(u,") — js(u, )] 2 = O
p—00

p—o0
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Theoretical results

We consider now the following discrete problem:

Pos m|anZj up, X I[Ap (X"

i=1 k=1
u; € R™

e We denote V), , the optimal value of P, , with respect to the
partition SP and to the empirical distribution

Pn = £ Y k1 Oxi
@ we denote V,, the optimal value defined by:

V, = inf ZE[ J(u X)L (X)] | 0 € R

@ V is the optimal value of the problem denoted P



Theoretical results

We assume that Px(9A?) = 0, [Dupatové and Wets, 1988]:

lim |V, p — Vp| =0 J. Dupacova, A. Shapiro etc . ..
n—oo
[Artstein, 1991] for a convex (J is convex) stochastic allocation

problem and Barty (PhD, 2004) for a stochastic optimization
program under continuity assumption (J is continuous) that:

p—oo

lim d(SP,S)=0= lim |V, — V|=0.
p—0o0
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The information is given by a signal

Let h: RP — R’ be a Borel measurable function. We suppose now
the constraint is given by:

S= {u e 12(RY, Px; R™) | o(u) C a(h)}
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General result

min J(u) = E [j(u(X), X)]
P(h){ u € L2(RY Px;R™)
o(u) C a(h)

Let (hp)nen be a sequence of random variable.

@ J is continuous with respect to the norm topology;
e o(hp) C a(h);
@ (hn)nen converge in probability to h;

then lim |V(h,) — V(h)| = 0.
n—oo

min E [j(u(X), X)]
P(hn) { uis a(h,)
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General result with quantization

Let (@p : R — RY),cn be a sequence of random variable.

@ J is continuous with respect to the norm topology;

@ the sequence @, converges pointwise to identity;

then lim_[V(Qy(h)) — V(h)| = 0.

min E [j(u(X), X)]
P(Qp(h)) { uis o(Qp(h))
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The discrete problem

It is easy now to formulate a discrete problem:

Jp(u;-) = Eli(u;-) | Qp(h)]

Pa(@p(h)) & m'”’zzf i, X)Ly =y} (X¥)

i=1 k=1
(ula"'vulp)e(Rm)p
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Conclusion

The class of problems for which quantization technique can be
applied (or scenarios tree technique for multistage program with
non-anticipativity constraint) contains the space of continuous
objective functions J;
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Comments

© Due to the need of separable set of functions it doesn't seem
relevant to consider the Neveu's metric for numerical
applications. It would be better to consider a more intrinsic
(eigentlich) metric like the following one:

d(B,B") = inf {1 —Px(A) | BNA=B'NAAE€ B(Rd)}

(introduced by KB 2004).

@ AIl these results can be written for multistage problems (see
C.Strugarek PhD.)
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