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Introduction

[Rockafellar and Wets, 1991] addressed the following stochastic
optimization problem:

min J(u) =
∑
s∈S

ps j(u(s), s)

u ∈ N

N = {u ∈ E | ut is constant on each bundle A ∈ At}

S is a finite set of scenarios. At is the “information structure”,
A ∈ At is called a “bundle”. The scenarios in any one bundle are
regarded as observationally indistinguishable at time t. “For most
purpose it is reasonable to suppose that the partition At+1 is a
refinement of the partition At .”.
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Introduction

The same problem has been addressed under a continuous form:

min E [j(u(X ),X )]
u ∈ N (F)

N (F) =
{

u ∈ L2(Rd ,BRd , PX ) | ut is Ft adapted function
}

This kind of problem can be embedded in the set of problems with
measurability constraints !

Kengy Barty Quantization in discretization of stochastic programs.



tu-logo

tu-logo

Introduction

Consider the following stochastic optimization problem:

V (B) = min {‖v − u‖L2 | u is B measurable}

clearly we have:

V (B) = ‖v − EP [v | B]‖L2

V has the 1-lipschitz-continuous property:∣∣V (B)− V (B′)
∣∣ ≤ ∥∥EP [v | B]− EP

[
v | B′

]∥∥
L2︸ ︷︷ ︸

pseudo-metric on the space of σ-algebra

Now we can provide a way to compute the conditional expectation,
but at the beginning the problem already satisfies a Lipsichitz
property according to specific metric on the space of σ-algebra.
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Introduction

If now we want to compute the conditional expectation arising in
the problem then we replace the underlying probability measure by
the empirical probability measure denoted Pn:

|V (B)− Vn(B′)| ≤ |V (B)− V (B′)|+ |V (B′)− Vn(B′)|
≤ ‖EP [v | B]− EP [v | B′]‖L2 + ‖EP [v | B]− EPn [v | B′]‖L2
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Theoretical framework

Let (Ω,F , P) be a measurable probability space.

Let BRd denote the Borel σ-algebra. The smallest σ-algebra
of subset of Rd which contains all open subsets of Rd ;

Let X : Ω → Rd be a random variable, X−1(BRd ) ⊂ F ;

PX be the distribution of the random variable X defined by:

∀A ∈ BRd , PX (A) = P(X−1(A))

If u : Rd → Rm we define σ(u) = u−1(BRm), the smallest
σ-algebra for which u is measurable;

Let j : Rm × Rd → R be a random functional (normal
integrand)

Let C denote a closed convex subset of L2(Rp, PX ; Rm)

Kengy Barty Quantization in discretization of stochastic programs.



tu-logo

tu-logo

For any Borel function u : Rd → Rm we define J(u) by:

J(u) = E [j(u(X ),X )] =

∫
Rd

j(u(x), x)PX (dx)

J is the objective function. Let S be defined by:

S =
{

u ∈ L2(Rd , PX ; Rm) | u(x) = u(−x), PXa.s.
}

Let S denote the smallest σ-algebra for which any u ∈ S is
measurable. S is called the symmetric σ-algebra. With that
definition:

S =
{

u ∈ L2(Rd , PX ; Rm) | σ(u) ⊂ S
}

Kengy Barty Quantization in discretization of stochastic programs.
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Consider now the following problem:

P
{

min E [j(u(X ),X )]
u ∈ S

or equivalently:

P


min E [j(u(X ),X )]
u ∈ L2(Rd , PX ; Rm)
u = E [u | S]

where E [u | S] is the conditional expectation with respect to S:

‖u − E [u | S]‖2 = min
v∈S

‖u − v‖2
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The problem

We want to compute the value of P defined by:

V = inf {E [j(u(X ),X )] | u ∈ S}

Kengy Barty Quantization in discretization of stochastic programs.
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Approximation

We could formulate directly a discrete problem:

min
1

N

N∑
i=0

j(ui ,X i ) (1)

X i = −X j ⇒ ui = uj . (2)

Whenever the distribution PX absolutely continuous with respect
to the Lebesgue measure the event:{

X i = −X j
}

is null mass.

Kengy Barty Quantization in discretization of stochastic programs.
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Transformation

The conditional expectation with respect to S is quite easy to
calculate:

E [u | S] =
u(x) + u(−x)

2
(3)

then we can transform the initial problem to the unconstraint
problem:

PS

{
min E [j(E [u | S] (X ),X )]
u ∈ L2(Rd , PX ; Rm)

if u∗ is optimal for PS , E [u∗ | S] is obviously optimal for P.

Kengy Barty Quantization in discretization of stochastic programs.
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Two questions

1 How to transform:

JS(u) = E
[
j

(
u(X ) + u(−X )

2
,X

)]
(4)

to :

JS(u) = E [js(u(X ),X )] (5)

2 How to link the optimal solution of the constraint problem P
with the solution of the unconstraint problem PS ?

Kengy Barty Quantization in discretization of stochastic programs.
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Answer

[Dynkin and Evstigneev, 1976] have proved that:

E [j(E [u | S] (X ),X ) | S] = js(E [u | S] (X ),X )

where js is the regular conditional expectation of the normal
integrand j :

js(u, ·) = E [j(u, ·) | S]

That result has been also studied by J.M. Bismut.
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The problem without information constraint

Let js denote the following normal integrand:

js(u, x) = E [j(u, ·) | S] (x) =
j(u, x) + j(u,−x)

2

consider now the following problem:

P ′S
{

min E [js(u(X ),X )]
u ∈ L2(Rd , PX ; Rm)

there is not information constraint in that new formulation.
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A first result

∀u ∈ S , js(u(x), x) = E [j(u(·), ·) | S] (x) (Dynkin
Evstigneev);

Moreover if u → j(u, x) is convex then if u∗ ∈ L2(Rd , PX ; Rm)
is solution of P ′S then:

1 u∗ is solution of PS ;
2 v∗ defined by:

v∗(x) =
u∗(x) + u∗(−x)

2

is solution of P

We can state this result without convexity assumption, but we
couldn’t establish a practical expression for the optimal decision
rule v∗ just its existence

Kengy Barty Quantization in discretization of stochastic programs.
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The proof

E [js(u(·, ·)) | S] =
j(u(x), x) + j(u(−x),−x)

2
(6)

=
j(u(x), x) + j(u(x),−x)

2
(7)

= js(u(x), x) (8)

That result holds true in more general cases, see E.B. Dynkin and
I.V. Evstigneev, 1976.
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The proof

E [j(E [u∗ | S] (x), x)] = E [E [j(E [u∗ | S] (x), x) | S]] (Cond Exp)

= E [js(E [u∗ | S] (x), x)] (Dyn Evs)

≤ E [js(u
∗(X ),X )] (Cond Jensen In for Integ)

≤ E [js(E [v | S] (x), x)] (Optimality)

≤ E [j(E [v | S] (x), x)] (Dyn Evs)
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Open loop problems

The problem P ′S turns out to be a Monte-Carlo simulation:

P ′ ⇔ E
[

min
u∈Rm

js(u,X )

]

In lack of information constraint we can use for P ′ a Monte-Carlo
approximation technique.
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Numerical scheme

We propose the following numerical scheme:

Draw (X 1, . . . ,XN) N iid of X ;

compute : JN
S (u1, . . . , uN) = 1

N

∑N
i=1 js(u

i ,X i )

Hence:

lim
N→∞

(
inf

(ui )i=1,...,N

JN
S (u1, . . . , uN)

)
= Optimal value of P

But at this stage we suppose we are able to compute exactly the
normal integrand js !

Kengy Barty Quantization in discretization of stochastic programs.
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Conditional expectation approximation

The simplest idea is to replace the σ-algebra S by a σ-algebra
denoted Sp generated by a finite partition of Rd . Hence instead of
handle js we will handle jp defined by:

jp(u, x) = E [j(u, ·) | Sp] (x)

jp(u, x) =

Ip∑
i=1

1

PX (Ap
i )

E
[
j(u,X )IAp

i
(X )
]

IAp
i
(x)

where (Ap
i )i=1,...,Ip is a partition such that Sp = σ((Ap

i )i=1,...,Ip). Is
it consistent to replacing the continuous σ-algebra by a discrete
one ?

Kengy Barty Quantization in discretization of stochastic programs.
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σ-algebra metric

It well known that the space of sub-σ-algebra of S is metrizable.

Let S ′,S ′′ ⊂ S then:

d(S ′,S ′′) =
∞∑
i=0

1

2i
min

(∥∥E [fi | S ′]− E
[
fi | S ′′

]∥∥ , 1
)

where (fi )i∈N is a separable set of L2(Rd , PX ; R) is a metric
introduced first by Neveu in 1975. d is consistent with the weakest
topology with respect to which all functions defined by:

L2(Rd , PX ; R) → L2(Rd , PX ; R), f 7→ E
[
f | S ′

]
with S ′ ⊂ S

is continuous with respect to the norm topology.
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Other metrics

dBoy (S ′,S ′′) = sup
A∈S′

inf
B∈S′′

P(A∆B) + sup
B∈S′′

inf
A∈S′

P(A∆B)

dBar (S ′,S ′′) = inf
{
1− P(A) | S ′ ∩ A = S ′′ ∩ A, A ∈ B

}
Unfortunately discrete σ-algebras fail to be a discrete
approximation of continuous σ-algebra with respect to those
metrics.

Kengy Barty Quantization in discretization of stochastic programs.



tu-logo

tu-logo

Asymptotic result

it is easy to show from Neveu’s metric definition that the following
holds:

lim
p→∞

d(Sp,S) = 0 ⇒ ∀u ∈ Rm lim
p→∞

‖jp(u, ·)− js(u, ·)‖L2 = 0

Kengy Barty Quantization in discretization of stochastic programs.
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Theoretical results

We consider now the following discrete problem:

Pn,p

 min 1
n

Ip∑
i=1

n∑
k=1

j(ui ,X
k)IAp

i
(X k)

ui ∈ Rm

We denote Vn,p the optimal value of Pn,p with respect to the
partition Sp and to the empirical distribution
Pn = 1

n

∑n
k=1 δX k ;

we denote Vp the optimal value defined by:

Vp = inf


Ip∑

i=1

E
[
j(ui ,X )IAp

i
(X )
]
| ui ∈ Rm


V is the optimal value of the problem denoted P

Kengy Barty Quantization in discretization of stochastic programs.
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Theoretical results

We assume that PX (∂Ap
i ) = 0, [Dupac̀ová and Wets, 1988]:

lim
n→∞

|Vn,p − Vp| = 0 J. Dupacova, A. Shapiro etc . . .

[Artstein, 1991] for a convex (J is convex) stochastic allocation
problem and Barty (PhD, 2004) for a stochastic optimization
program under continuity assumption (J is continuous) that:

lim
p→∞

d(Sp,S) = 0 ⇒ lim
p→∞

|Vp − V | = 0.

Kengy Barty Quantization in discretization of stochastic programs.
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The information is given by a signal

Let h : Rp → R` be a Borel measurable function. We suppose now
the constraint is given by:

S =
{

u ∈ L2(Rd , PX ; Rm) | σ(u) ⊂ σ(h)
}

Kengy Barty Quantization in discretization of stochastic programs.
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General result

P(h)


min J(u) = E [j(u(X ),X )]
u ∈ L2(Rd , PX ; Rm)
σ(u) ⊂ σ(h)

Let (hn)n∈N be a sequence of random variable.

J is continuous with respect to the norm topology;

σ(hn) ⊂ σ(h);

(hn)n∈N converge in probability to h;

then lim
n→∞

|V (hn)− V (h)| = 0.

P(hn)

{
min E [j(u(X ),X )]
u is σ(hn)

Kengy Barty Quantization in discretization of stochastic programs.
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General result with quantization

Let (Qp : R` → R`)p∈N be a sequence of random variable.

J is continuous with respect to the norm topology;

the sequence Qn converges pointwise to identity;

then lim
p→∞

|V (Qp(h))− V (h)| = 0.

P(Qp(h))

{
min E [j(u(X ),X )]
u is σ(Qp(h))

Kengy Barty Quantization in discretization of stochastic programs.



tu-logo

tu-logo

The discrete problem

It is easy now to formulate a discrete problem:

jp(u, ·) = E [j(u, ·) | Qp(h)]

Pn(Qp(h)) ⇔

 min
1

n

Ip∑
i=1

n∑
k=1

j(ui ,X
k)I{Qp(h)=yi}(X

k)

(u1, . . . , uIp) ∈ (Rm)Ip

Kengy Barty Quantization in discretization of stochastic programs.
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Conclusion

The class of problems for which quantization technique can be
applied (or scenarios tree technique for multistage program with
non-anticipativity constraint) contains the space of continuous
objective functions J;

Kengy Barty Quantization in discretization of stochastic programs.
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Comments

1 Due to the need of separable set of functions it doesn’t seem
relevant to consider the Neveu’s metric for numerical
applications. It would be better to consider a more intrinsic
(eigentlich) metric like the following one:

d(B′,B′′) = inf
{

1− PX (A) | B′ ∩ A = B′′ ∩ A,A ∈ B(Rd)
}

(introduced by KB 2004).

2 All these results can be written for multistage problems (see
C.Strugarek PhD.)

Kengy Barty Quantization in discretization of stochastic programs.
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