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TECHNICAL NOTE

On Constraint Qualifications’
R. HENRION?

Communicated by O. L. Mangasarian

Abstract. The linear independence constraint qualification (LICQ) and
the weaker Mangasarian-Fromovitz constraint qualification (MFCQ)
are well-known concepts in nonlinear optimization. A theorem is proved
suggesting that the set of feasible points for which MFCQ essentially
differs from LICQ is small in a specified sense. As an auxiliary result, it
is shown that, under MFCQ, the constraint set (even in semi-infinite
optimization) is locally representable in epigraph form.

Key Words. Nonlinear optimization, constraint qualifications, repre-
sentation of constraint sets, semi-infinite optimization.

1. Introduction

Constraint qualifications are of extraordinary interest in optimization
problems including (in)equality restrictions. The linear independence con-
straint qualification (LICQ) and the Mangasarian-Fromovitz constraint
qualification (MFCQ) are among the most important conditions in non-
linear optimization. Both are essential for the implementation of solution
algorithms [e.g., MFCQ in homotopy methods (Ref. 1)], for stability investi-
gations (Refs. 2-4), or for a structural analysis in parametric optimization
(Refs. 5, 6). In refs. 4 and 6, LICQ and MF CQ are related to the geometrical
properties of the constraint set.

It is well known that MFCQ is weaker than LICQ. In this paper,
however, it is confirmed that the difference between both conditions is small
in the following sense. Let M °< M consist of those points of a constraint
set M which have at least one binding inequality restriction. Evidently,
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MFCQ and LICQ are equivalent in M\ M 0. therefore, only M ° is of interest.
Now, let MFCQ be fulfilled for M°, and consider the subset 4 =M ° having
the property that, at all points of 4, the constraint set M may be locally
described by a representation satisfying LICQ. An easy example shows that,
in general, A #M °. nevertheless, it turns out that A4 is open and dense in
the relative topology of M°. The corresponding theorem requires essentially
a local description of the constraint set in epigraph form. Therefore, first a
lemma is proved showing that this is always possible under MFCQ. Since
the last fact is not only true in finite optimization, but even in semi-infinite
optimization, we prove a bit more than needed in the theorem.

2. Results

Let
M={zeR"|h{z)=0, j=1,...,p,
and g(2) =0, i=1,...,s}, 1)

with A, g.€ C'(R", R), be an ordinary constraint set in finite-dimensional
optimization. For z°e M, denote by

1(2°:={ie{l,...,s}|g(z>) =0}
the set of active indices.

Definition 2.1. The linear independence constraint qualification
(LICQ) is said to hold at z°e M if the set of gradients

is linearly independent.

Definition 2.2. The Mangasarian-Fromovitz constraint qualification
(MFCQ) is said to hold at z’e M if:

(a) rank {Dhi(z")};-1,..,=P;
(b) there exists a vector £eR” satisfying Dh(2°) - £=0, j=1,...,p,
and Dg(2°) - £>0, ieI(z°).

Obviously, LICQ implies MFCQ, whereas the converse is not true. In
semi-infinite programming, a constraint set is defined as

B={zeR"|h(2)=0, j=1, ..., p, and g(x, z) 20, vxeK},
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where K< R™ is compact, ,,e C'(R", R),j=1, ..., p,and ge C'(R" x R", R).
In the case of a finite index set K, one obviously deals with an ordinary
constraint set in finite-dimensional optimization. For z°eB, denote the set
of active indices by

E(z%) ={xeK|g(x, z)=0}.

Evidently, E(z° is compact as well.

Definition 2.3. See Ref. 7. The extended Mangasarian-Fromovitz
constraint qualification (EMFCQ) is said to hold at z°eB if':

(a) rank {Dhj(z )}j Le.p=Ps
(b) there exists a vector £eR” satlsfymg Dh{(z% - £=0, j=1,...,p,
and D.,g(x, 2°) - £>0, VxeE(Z°).

Both MFCQ and EMFCQ imply p <n and, if the set of active indices
is nonempty, £ #0. Furthermore, EMFCQ coincides with MFCQ in finite-
dimensional programming if K is a finite set.

Lemma 2.1. If 0<p<n—2, then for each z’eB with E(z°) # &, the
following statements are equivalent:

(i) EMFCQ is fulfilled at 2°;

(i) there ex1sts a local C' -coordmate transformation y= y(z) map-
ping z° onto 0eR” such that, in the new coordinates, the defining
(in)equalities for B locally become

NZ2P(X, Y2, .o s Yn—p)s VxeK*,

and

Yn—p+1=" " =y,=0 ifp>1;

here, K* is a compact set with

E(®)cKk*<K and ¢eC'(K*xV,R),

with ¥ being an open neighborhood of 0eR" 77!,
Proof.

(i)—(ii) Let EMFCQ be fulfilled at 2°, and define a coordinate trans-
formation y* by

(W2 =0v/("~2), i=1,...,n—p,
(vla)n—p+j(z):=hj(z)3 j= 1’ R 7
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where v;eR” are vectors with

span{{vi}i= L..n—p\Y {Dhj(zo)}j-l ..... p} =R";

see Definition 2.3(a). Since Dy“(z°) is nonsingular, y* represents a C'-
diffeomorphism of an open neighborhood @,(z°) onto a neighborhood of
0eR". Put

§*=Dy"(z")- £/IDy"(2") - &,

with £ from Definition 2.3(b). Note that &£50. By the same definition, it
follows that &*"=(&#7,07), where £#eR"” and OcR®. Evidently,

§¥T¢#=1; hence, one may choose an (n—p)x (n—p—1) matrix W
satisfying

(E*IMT(E*\W)=1,_,.
Now, put

W)=y, (WP =wl107) -y, i=1,...,n—p—1,
(V’b)j(y):=.}’j, j=n—p+1"°-sn’

with w; being the ith column of W. One easily verifies that y” is an invertible
linear mapping with

[Dy*(0)]"=[Dy*(0)] ",

Therefore, y:=y’oy” yields a C'-diffecomorphism y: 0,(z°)—0,(0),
with y(z®)=0 and 0, an open neighborhood of 0eR”. Defining
g*(x, y):=g(x, y'(»)), we have g*e C'(R™ x 0(0), R) and

w(Bn 0:i(2%)

={y€020)|yn—p+1="--=y,=0 and g*(x, y) >0, Vxek}. (2)
Now, let x’c E(z°) be an arbitrary active index; hence,
g*(x°, 0)=g(x° %) =0. 3)

Since the first column of
Dy~ (0)=[Dy"(z)]"" - [Dy*(0)]"
equals £/|Dy*(z°) - &|, one obtains by Definition 2.3(b)
D, g*(x°,0)=Dg(x’, 2° - £/IDy*(z°) - £>0. 4)

According to the implicit function theorem applied to the equation
g* (X, 15+, Yn=p,0,...,0)=0, (3) and (4) yield the existence of open
neighborhoods U,o of x° and (—68,0, 6,0) X Vo= R! x R*?~! of 0eR""? as
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well as a function ¢,0eC'(Uox V,0, R) such that, for all xeUy» and
ye(—=6,, 8,0) x Vox {0}, 0eR’, the following statements are true:

g*(x, y)=0, if and only if y;=¢@(x, y2, ..., Yu-p)s (5a)
D,g*(x,y)>0, (5b)
|¢x°(xs Y25..4, yn*p)l <d,0. (SC)

Note that (5¢) holds, since ¢,°(x° 0, . 0) =0 by (3) and (5a). Considering
similar neighborhoods for all er(z ), one gets an open covering

Uer(z) U, of the compact set E(z°). Denote by U:=| )~ Usi a finite sub-
covering of E(z°), and define

(—8,8)x Vi= ﬁl (=8, 8,0) X Vi)

as well as a function ¢eC'(Ux ¥, R) by

¢(xa Y2,... ayn—p):=¢xi(xs Y2,... ’yn—p), X€ Uxi-

By (5a), ¢ is correctly defined and ¢eC'. Then, for all xeU and for all
ye(—46, 6) x V'x {0}, it holds that

g*(x, y) =0, if and only if y1 > @ (x, y2, ..., Vn-p) (6)

To see this, let x and y be arbitrary elements of the indicated neighborhoods
with g*(x, y) >0. Putting u:= @ (x, ¥2, . . . , Ya—p), We have

U= (X, Y2, -+ - s Yn—p)s for some i,
and by (5¢), '
(4, Y2, -+« s Yn—p) €(— 8, Oxi) X Wil
Assuming y; <u, one gets the contradiction [see (5a) and (5b)]

OSg*(x’yl’yZa o v ayPt)<g*(xs U, Y25 .- ,yn)=0-
The reverse direction of (6) is proved in a similar manner. Now, let U* be
an open set with E(z°)c U*ccl(U*) < U (proper inclusions), and define
0 %(0) = 0,(0) such that
g*(x,y)>0, Vye03(0), Vxe K\U*. @)

Note that K\U* is compact and g*(x, 0)>0, Vxe K\U*, by the definitions
“of U* and E(z%. Now, the condition g*(x, y) >0, VxeK, in (2) splits into
g*(x,y)=>0, VxeKncl(U*) [here, (6) applies] and g*(x,y)=0, Vxe
K\cl(U*) [here, (7) applies]. Consequently combination of (2), (6), (7) yields

V(B OH(") = {ye0F*(0) [Yn—ps1=" " -=y,=0and
J’l->-¢(x,y2, .. ,yn—,,), VxGK*},



192 JOTA: VOL. 72, NO. 1, JANUARY 1992

where
03*(0):=030) {(—5,06)x VX RF},
0¥%) =y~ '(03*©0)), K*=Kncl(U).

(ii)—(i) Since EMFCQ is invariant under the local C'-coordinate
transformations (see Ref. 7, Lemma 3.1), it is sufficient to show that the
system of (in)equalities in (ii) satisfies EMFCQ at the origin of R”. But this
is evidently true by choosing £:=(1,0,...,0)eR". O

The proof of Lemma 2.1 has shown that, in general, the set K* of
indices, used for the epigraph representation, properly contains the set E(z%
of active indices. However, the difference between both sets may be kept
arbitrarily small. As a consequence, one may choose K*=E(Z% in the
case of a finite set K. In detail, we have the following finite version of
Lemma 2.1.

Lemma 2.2. Let M be as in (1). If 0<p<n—2, then for each 2eM
with 1(z°) # &, the following statements are equivalent:

(i) MFCQ is fulfilled at 2°;

(if) there exists a local C _coordinate transformation y= y(z) map-
ping z° onto 0eR” such that, in the new coordinates, the defining
(in)equalities for M locally become

B4 Z¢i(}’2, e ’ yn—p)s iEI(Zo),
and

Ynp+1="""=y,=0,  forp=1,

where ¢,€C'(V, R), with ¥ being an open neighborhood of
0eR" 771,

Lemma 2.1 will be used as an auxiliary result in the following, but apart
from this, it has an independent meaning. We mention only two direct
consequences of the lemma. On the one hand, one obtains a result derived
by Jongen et al. (Ref. 7) confirming that, under EMFCQ, a semi-infinite
constraint set B represents an (n — p)-dimensional topological manifold with
boundary. To see this, note that, (due to Lemma 2.1), in the new local



JOTA: VOL. 72, NO. 1, JANUARY 1992 193

coordinates, the constraint set is described by means of the inequality

y|2$(.V2, e 9yn—p)’

where

5()’2, .. ’yn~p):=m?3f ¢(X,y2, e 9yn—p)

is Lipschitz continuous because of the compactness of K*. Therefore, B is
locally homeomorphic with a closed half-space in R”~7 (in the terminology
of Ref. 8, B is epi-Lipschitzian). A second result of the corresponding finite
version of Lemma 2.1 is the theorem of Gauvin (Ref. 9), which indicates
that, under MFCQ, the set of Lagrange multipliers of a Kuhn-Tucker point
represents a compact polyhedron. This is verified by writing the Kuhn—
Tucker conditions for the finite system of inequalities

y12¢f(y2’ .. 9yn—p)s IEI(y)’

where the first equation (partial derivatives with respect to y,;) yields that
the set of multipliers is determined by

2 A=D, f(y) and 2,>0,
iel(y)

with f as objective function; see Ref. 10.
Now, we relate MFCQ to LICQ. To this aim, consider the set M in (D
and define

M°:={ze M|I(z) # &}.

Further, let the subset 4 =M?° consist of those z* being supplied with a
neighborhood U(z*) and functions gfe C'(U(z*), R), =1, . . ., k, such that
M U(z*)={zeU(z*)|h(z) =0, j=1,.. ., p,

and g/(2)=0, I=1,...,k}, 8)
and LICQ holds for (8). In other words, A consists of those points in M°
at which M may be locally described by a system of (in)equalities satisfying
LICQ. Before stating the main result, we emphasize that, in general, MFCQ
does not imply A= M° or in other words: reestablishing LICQ from MFCQ

using a new description of the feasible set (for instance, by deleting local
redundance) may be impossible. This is confirmed by the following example.

Example 2.1. Let
M:= {zeRzlzzz() and z,>h(zy)},
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where

- {sin(l/zl) exp(=(1/z1)),  z#0,
(z1)=
0, Z1 = 0.

Both constraints are even of class C*, and MFCQ is fulfilled at all feasible
points (because of the given epigraph representation, se¢e Lemma 2.2). The
point 0eR? belongs to M° (both inequalities are binding), but 0¢ 4. To see
this, note that the points (¥1/(kx), 0)7, k=1,2, ..., are corners of M i.e,,
two inequalities are binding with linearly independent gradients. Therefore,
in each neighborhood of the origin, there is an infinite number of corners of
M. If 0e A4, then a local redescription of M near 0 should be possible with
LICQ being satisfied. This implies that, near 0, M is locally diffeomorphic
with the positive orthant of R?; see Ref. 11. Since corners are mapped onto
corners by a local diffeomorphism and since the corner of an orthant is
isolated, one gets the contradiction, hence 4 #M 0

The following theorem makes evident that A is at least not much smaller
than M°.

Theorem 2.1. If MFCQ holds at all points ze M, then A4 is open and
dense in the relative topology of M°.

Proof. We show that A is dense, since the openness is clear from the
definition of LICQ. First, the validity of the theorem is verified for the case
n—1<p<n. If p=n, then MFCQ implies that I(z)=, VzeM; ie., A=
M°= . Forp=n—1,itholds again that A= M °. indeed, in this case, M ° (if
nonempty) merely consists of isolated points, at which the one-dimensional
manifold {hj(z)=0},;=1, .1 is transversely intersected by each of the s
hypersurfaces {g.(z) =0} ; see Definition 2.2. Therefore, near a point of M 0
all inequalities except one may be deleted to obtain another local description
of M as required in (8), with k=1. For one single inequality constraint,
however, MFCQ and LICQ are equivalent, hence A=M ® Summarizing,
one may restrict the analysis to the case 0<p<n—2, which is required in
Lemma 2.1.

It has to be shown that, in each neighborhood of an arbitrary point
2%e M°, there is a point z*€ 4. We proceed by induction over the number of
binding inequalities. If #1(z°)=1, then near 2%, M is locally described by
only one inequality; therefore, z°¢ 4 (MFCQ and LICQ equivalent). Now,
let the assertion be true for all points of M °® with at most ¢ binding inequali-
ties, and assume that #I(z°) =¢+ 1. Then, in a neighborhood of 2°, one has
#I(z) <t+1. At this point, Lemma 2.2 comes into play as the finite version
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of Lemma 2.1. Accordingly, one may suppose that, in the new local C!-
coordinates y= y(z), the point z° is mapped onto the origin 0eR” and that
the constraint set M is locally described by the system of (in)equalities.

NS T Yneg)s P=1,. o 1], (%)
Yn—p+1=-° - =yn=Os (9b)

where ¢;€ C'(0(0), R) and 0(0) is an open neighborhood of 0eR"™7~!,
Next, define

Y=y oo s Vap)s PO ={il9(y*) = _max ¢,(y#)}

There are two cases to be distinguished.

Case 1. There is a neighborhood ¢;(0) =R”?~"' such that
FOY#H)=rF0)={1,...,t+1}, VYy¥e0,(0).

In this case, one single inequality [e.g., y1 — ¢1(»™) =0], together with the
equations y,—,+1=- - - =y,=0, yield an equivalent description of (9), the
other inequalities in (9) being redundant. Evidently, this reduced description
fulfills LICQ and it leads, in the old coordinates, to a reduced local descrip-
tion of M near z° which also satisfies LICQ, since linear independence is
invariant under local diffeomorphisms. Consequently, z°c 4.

Case 2. The first case is not met. Then, arbitrarily near 0eR" ™7~ !,
there is a point (y*)* with I*((y*)*) <t. Now, consider the point

y=(1, ())%,0),  where yi:= max ¢.((y“)#) and 0cR?.
By continuity of the function max;-;,__,¢;, one may choose y“eR" arbitrarily
near 0eR”". But now, the induction hypothesis applies to y“, the number of
binding inequalities being less than or equal to ¢. Accordingly, one finds
arbitrarily near y° a feasible point y° such that, in a neighborhood of )°, a
local redescription of the constraint set may be found which satisfies LICQ.
Since y” is arbitrarily near 0eR”, this means that, in the old coordinates,
arbitrarily near z° there exists a point y ~'(3*)€A4. Note that density carries
over by the diffeomorphism y from Lemma 2.2. This terminates the induc-
tion step. , O

3. Concluding Remarks

The proof of Theorem 2.1 confirms that, under the Mangasarian-
Fromovitz constraint qualification, the set of feasible points with binding
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inequalities contains an open and dense subset where one single inequality
together with all equality constraints are sufficient locally to describe the
feasible set. Furthermore, this local description fulfills the linear indepen-
dence constraint qualification. This fact might be of interest for structural
investigations, for instance in parametric optimization. Roughly speaking,
one can argue that weakening of linear independence to the Mangasarian—
Fromovitz constraint qualification has severe consequences for only very
few points of the feasible set. There is yet another interpretation of Theorem
2.1. Under the Mangasarian-Fromovitz constraint qualification, the set of
feasible points with binding inequalities in finite optimization may be
described, in suitable C'-coordinates, by means of a locally Lipschitz-con-
tinuous function ¢: ®—R (O an open subset of R"~ 1, which is differentiable
not only on a set of full Lebesgue measure (Rademachers theorem), but
even on a set which is open and dense in @. This excludes the set of non-
differentiability points of ¢ to be dense in 0.

A straightforward generalization of these results to semi-infinite optimi-
zation (using Lemma 2.1, instead of Lemma 2.2) is not possible, because
the technique of induction does not apply.
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