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1 Introduction

We consider the uncertain linear inequality system

{
a′x ≤ b,

(
a

b

)
∈ U

}
, (1)

where x ∈ R
n is the vector of variables and the uncertainty set U is assumed to

be a nonempty closed subset of Rn+1. All elements in R
n are regarded as column-

vectors and y′ denotes the transpose of y ∈ R
n. Accordingly, elements in R

n+1 will
be written in the form

(u
v

)
, where u ∈ R

n and v ∈ R. Observe that (1) is in general a
linear semi-infinite inequality system (i.e., with finitely many decision variables but
possibly infinitely many constraints). Linear semi-infinite inequality systems have
been extensively studied in [11].

The uncertainty setU is considered as the parameter to be perturbed. So, formally,
we are considering the parameter space CL

(
R

n+1
)
of all nonempty closed subsets

in R
n+1. From the topological side, the space of variables Rn is endowed with an

arbitrary norm ‖·‖ , and the parameter space is equipped with the (extended) Haus-
dorff distance, dH , specified in Sect. 2.1 (see e.g. [1] for a comprehensive analysis
of the Hausdorff metric).

Associated with the parametrized system (1), roughly speaking referred to as
system U, we consider the feasible set mapping, F : CL (

R
n+1

)
⇒ R

n, given by

F (U ) :=
{
x ∈ R

n | a′x ≤ b for all

(
a

b

)
∈ U

}
.

Observe that the closedness assumption on U is not restrictive since the feasible set
mapping has the same values if general sets are replaced with their closures, and the
same happens with the definition of excess—see (3)—and hence with dH .

Our main goal consists of providing calmness constants (cf. Sect. 2.2) forF at a
nominal (fixed) element of its graph (U0, x0) . We can find in the literature different
contributions to the calmness of the feasible set mapping in the context of linear
systems with a fixed index set T , say F T : (

R
n+1

)T ⇒ R
n, which is given by

F T (σ ) := {
x ∈ R

n | a′
tx ≤ bt, t ∈ T

}
, (2)

where

σ (t) =
(
at
bt

)
∈ R

n+1, t ∈ T .

In this framework, the parameter space
(
R

n+1
)T

is assumed to be endowed with the
uniform converge topology; see Sect. 2.1 for details.

With the aim of taking advantage of the vaste literature about calmness for map-
pings in the formatF T to derive calmness constants forF ,we introduce in Sect. 3.1
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a specific indexation function,I : CL (
R

n+1
) → (

R
n+1

)Rn+1

,which assigns to each

setU ∈ CL
(
R

n+1
)
a certain functionIU ∈ (

R
n+1

)Rn+1

with rgeIU = U,where rge
stands for range (image). In this way, if U is the set of coefficient vectors of system
(1), σ = IU (whose index set is the whole Rn+1) can be interpreted as ensentially
the same system but with the addition of repeated constraints.

The definition of our indexation function I is inspired, but sensibly different
(see Sect. 3 for details), by the one introduced in [6] with the aim of analyzing the
stability of the optimal value function of linear optimization problems with uncertain
constraints. In the present paper the properties ofI will enable us to derive calmness
constants (and associated neighborhoods) for F from those for FR

n+1
. In a second

step we wonder whether Rn+1 may be replaced with a smaller index set T ⊂ R
n+1.

Paper [4] provides the calmness modulus ofF T in the particular case when T is
finite (see [2] for an extension to the nonlinear case), whereas [5] proves that this
calmnessmodulus is in fact a calmness constant for a certain neighborhood (specified
therein) when we restrict oursleves to right-hand-side perturbations. In Sect. 5 of the
present paper we show how to extend this result to perturbations of all coefficients.
Coming back to our framework of uncertain linear systems, the reader is addressed to
[7, 8] for the study of robust local and global error bounds, respectively. Recall that,
the local error boundproperty is closely related to calmness of feasible solutionswhen
only right-hand-side perturbations are allowed. See also [10] for the development of
dualy theory in robust linear optimization with infinitely many uncertain constraints.

Now we summarize the main original contributions of the paper. Section3 moti-
vates (see Example 3.1) and introduces the announced indexation functionI which
allows us to derive calmness constants for F at (U0, x0) ∈ gphF (the graph of F )
via calmness constants for FR

n+1
at (σ0, x0) , with σ0 := IU0 . After that, Sect. 4

solves the question of whether or not Rn+1 may be replaced with a smaller subset
T . Specifically, for U0 ⊂ T ⊂ R

n+1, we prove that the calmness of F T is equiva-
lent to the calmness ofFR

n+1
, with the same calmness constants and closely related

neighborhoods. We also analyze the particular case when U0 is the convex hull of
some subset inRn+1. Finally, Sect. 5 allows to derive from [5] operative point-based
expressions (in terms of the nominal data) for a tight calmness constant forF and a
neighborhood where it works.

2 Preliminaries

Given X ⊂ R
k, k ∈ N, we denote by convX and coneX the convex hull and the

conical convex hull of X, respectively. It is assumed that coneX always contains the
zero-vector 0k , in particular cone(∅) = {0k}. IfX is a subset of any topological space,
intX, clX and bdX stand, respectively, for the interior, the closure and the boundary
of X.
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2.1 Hausdorff and Chebyshev Distances

The space CL
(
R

n+1
)
will be endowed with the (extended) Hausdorff distance dH :

CL
(
R

n+1
) × CL

(
R

n+1
) → [0,+∞] given by

dH (U1,U2) := max{e (U1,U2) , e (U2,U1)},

where e
(
Ui,Uj

)
, i, j = 1, 2, represents the excess of Ui over Uj. Recall that (see

[1, Lemma 1.5.1] for the last equality)

e
(
Ui,Uj

) := inf
{
ε > 0 | Ui ⊂ Uj + εB

}
(3)

= sup
{
d

(
x,Uj

) | x ∈ Ui
}

= sup
{
d

(
x,Uj

) − d (x,Ui) | x ∈ R
n+1

}
.

Here B represents the unit open ball in Rn+1 endowed with the norm

∥∥∥∥
(
u

v

)∥∥∥∥ = max {‖u‖∗ , |v|} ,

(
u

v

)
∈ R

n+1, (4)

where ‖·‖∗ represents the dual norm in Rn given by ‖u‖∗ = sup‖x‖≤1 u
′x.

For any set T , the space of functions
(
R

n+1
)T

is endowed with the uniform
convergence topology, through the (extended) Chebyshev (supremum) distance
d∞ : (

R
n+1

)T × (
R

n+1
)T → [0,+∞], given by

d∞ (σ1, σ2) := sup
t∈T

‖σ1 (t) − σ2 (t)‖ .

From now on, BH (U ; ε) and B∞ (σ ; ε) represent the open balls of radius ε >

0 centered at U ∈ CL
(
R

n+1
)
and σ ∈ (

R
n+1

)T
, respectively, with respect to the

Hausdorff and Chebyshev distances (for the sake of simplicity, B∞ (σ ; ε) represents
a ball in all spaces

(
R

n+1
)T

, for any T , which will be distinghished by the context).

2.2 Calmness of Multifunctions

Consider a generic multifunction between metric spaces Y and X (with distances
denoted indistinctly by d), M : Y ⇒ X. The multifunction M is said to be calm at
(y, x) ∈ gphM if there exist a constant κ ≥ 0 and neighborhoods W of x and V of
y such that

d (x,M (y)) ≤ κd (y, y) , whenever x ∈ M (y) ∩ W and y ∈ V . (5)
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Sometimes we will be interested in finding some specific neighborhoods and calm-
ness constants; in order to make explicit reference to these elements, we say thatM
is calm at (y, x)with constant κ on V × W when (5) holds.

The calmness property is known to be equivalent to themetric subregularity of the
inverse multifunction M−1 : X ⇒ Y , given by M−1 (x) := {y ∈ Y | x ∈ M (y)} ;
the metric subregularity of M−1 at (x, y) ∈ gphM−1 is stated in terms of the exis-
tence of a (possibly smaller) neighborhoodW of x, as well as a constant κ ≥ 0, such
that

d (x,M (y)) ≤ κd
(
y,M−1 (x)

)
, for all x ∈ W. (6)

In other words, (6) can be read as: M is calm at (y, x) with constant κ on Y × W .
The reader is addressed to the monographs [9, 12–14] for a comprehensive analysis
of these notions among others variational concepts.

The infimum of all possible constants κ in (5) (for some associated W and V ) is
equal to the infimum of constants κ in (6) and is called the calmness modulus ofM
at (y, x) , denoted as clmM (y, x) , defined as ∞ ifM is not calm at (y, x) .

3 Calmness via an Indexation Strategy

In this section we discuss three indexation strategies. The first one, the projection
strategy J , at a first glance seems to be the most natural, but it turns out not to be
adequate as far as

d∞
(
JU ,JU0

)  dH (U,U0) (7)

may occur in any neighborhood of a given U0 ∈ CL
(
R

n+1
) ; where the notation 

means lim supU→U0

(
d∞

(
JU ,JU0

)
/dH (U,U0)

) = ∞; see Example 3.1 below.
The second strategy, traced out from [6], acts on pairs of closed subsets, say
(U1,U2) �→ JU1;U2 , and satisfies

d∞
(
JU1;U2 ,JU2;U1

) = dH (U1,U2) . (8)

The main drawback of this strategy is that, for a givenU0 ∈ CL
(
R

n+1
)
, the indexa-

tion of the nominal systemU0 depends on the systemU we are comparing with. The
third strategy, giving rise to the aimed indexation mappingI , gathers the good fea-
tures of the other two, as far as it provides an indexation of any systemU exclusively
in terms of U and the nominal system U0 and satisfies

d∞
(
IU ,IU0

) = dH (U,U0) (9)

(see Theorem 3.1), which turns out to be enough for the study of the calmness ofF
at (U0, x0) for any given x0 ∈ F (U0) .
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Hereafter in the paperweconsider a givennominal set (or system)U0 ∈ CL
(
R

n+1
)

and an arbitrarily chosen selection, P, of the metric projection multifunction, � :
R

n+1 × CL
(
R

n+1
)

⇒ R
n+1, which is given by

�(t,U ) := {z ∈ U | ‖t − z‖ = d (t,U )} , (t,U ) ∈ R
n+1 × CL

(
R

n+1
)
.

Observe that �(t,U ) is always non-empty by the closedness of U. For simplicity
we will write PU (t) instead of P (t,U ) .

3.1 The Projection Strategy

We defineJ : CL (
R

n+1
)→(

R
n+1

)Rn+1

asJU := PU for allU ∈CL
(
R

n+1
)
. Now

we are going to show an example where (7) happens even for compact convex sets.

Example 3.1 ConsiderR2 endowed with the Euclidean norm and letR3 be equipped
with the norm (4).

U0 := {(x1, x2, 0)′ ∈ R
3 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x2/31 }

andpick any ε > 0. Ifwemove from
(
ε, ε2/3, 0

)′
orthogonally to the surface x2 = x2/31

until we meet the plane x1 = 0, then we reach uε := (
0, ε2/3 + 3

2ε
4/3, 0

)′
. If our

orthogonal movement starts at
(
8
27ε,

4
9ε

2/3, 0
)′

and ends at the plane x1 = −ε1/3,

then we reach zε := (−ε1/3, 13
9 ε2/3 + 8

27ε
4/3, 0

)′
. For each ε > 0 let

Uε = conv (U0 ∪ {uε}) .

In this case, for 0 < ε ≤ (24/65)3/2 in order to guarantee 13
9 ε2/3 + 8

27ε
4/3 ≥ ε2/3 +

3
2ε

4/3, we have

PU0 (zε) =
(

8

27
ε,

4

9
ε2/3, 0

)′
and PUε

(zε) = uε.

Accordingly, as ε ↓ 0 we have

d∞
(
JUε

,JU0

) ≥ ∥∥PUε
(zε) − PU0 (zε)

∥∥ ≈ 5

9
ε2/3,

dH (Uε,U0) =
∥∥∥∥
(
0, ε2/3 + 3

2
ε4/3, 0

)′
− (

ε, ε2/3, 0
)′
∥∥∥∥ ≈ ε,

d (zε,U0) ≈ ε1/3,
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where ≈ means (as usual) that the quotient between left-hand and right-hand sides
tends to 1 as ε ↓ 0. This clearly entails d∞

(
JUε

,JU0

)  dH (Uε,U0) , even if
R

n+1 is replaced with any neighborhood of U0 (i.e., a set of the form U0 + δB, for
any δ > 0).

3.2 The Pairwise Strategy

The following indexation strategy is inspired in [6, Theorem 4.2]. For eachU1,U2 ∈
CL

(
R

n+1
)
let us define JU1;U2 ∈ (

R
n+1

)Rn+1

given by

JU1;U2 (t) :=
{
PU1 (t) if t ∈ U1 ∪U2,(0n

1

)
if t /∈ U1 ∪U2.

Observe that
(0n
1

)
is associated with the trivial inequality 0′

nx ≤ 1.
The proof of (8) for this pairwise indexation mapping is essentially given in

[6, Theorem 4.2], although in that theorem the uncertainty is confined to the left-
hand-side coefficients. Example 3.1 shows that points t /∈ U1 ∪U2 may ‘spoil’
d∞

(
JU1 ,JU2

)
in relation to the projection strategy. As said at the beginning of

this section, the main drawback of the current pairwise strategy is that the indexa-
tion of the nominal system U0 depends on the system U we are comparing with. In
other words, when U varies around a fixed U0, the indexations of U0 vary with U,

so that we cannot apply the literature background to a fixed σ0 ∈ (
R

n+1
)T

. Recall-
ing the indexation mapping J providing the projection strategy in Sect. 3.1, we
immediately observe thatJU coincides with our current JU ;Rn+1 .

3.3 The U0-Based Strategy

Now we are going to define the indexation function I announced at the beginning
of this section. Recall that we are considering a given nominal setU0 ∈ CL

(
R

n+1
)
,

although, for the sake of simplicity, the notation does not reflect the dependence on

U0. We define I : CL (
R

n+1
) → (

R
n+1

)Rn+1

as follows: For each U ∈ CL
(
R

n+1
)
,

let σ := IU ∈ (
R

n+1
)Rn+1

be given by

σ (t) :=
{
t, if t ∈ U,

(PU ◦ PU0)(t), if t /∈ U.
(10)

In this way, one easily checks that rgeIU = U, for all U ∈ CL
(
R

n+1
)
, Obviously,

IU0 = PU0 . Next we establish (9).
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Theorem 3.1 LetI : CL (
R

n+1
) → (

R
n+1

)Rn+1

be the indexation function defined
in (10) and let σ0 := IU0 . Then,

d∞ (σ, σ0) = dH (U,U0) , whenever σ = IU , U ∈ CL
(
R

n+1
)
. (11)

Proof Consider anyU ∈ CL
(
R

n+1
)
. In order to establish the inequality ‘≤’ in (11),

take any t ∈ R
n+1 and distinguish two cases: If t ∈ U, then

‖σ (t) − σ0 (t)‖ = ∥∥t − PU0 (t)
∥∥ = d (t,U0) ≤ e (U,U0) ,

where we have taken (3) into account. Otherwise, if t /∈ U, then

‖σ (t) − σ0 (t)‖ = ∥∥(PU ◦ PU0)(t) − PU0 (t)
∥∥

= d
(
PU0 (t) ,U

) ≤ e (U0,U ) .

So,‖σ (t) − σ0 (t)‖ ≤ dH (U,U0) , for all t ∈ R
n+1, and thend∞ (σ, σ0) ≤ dH (U,U0) .

Let us see the opposite inequality. We have that

e (U,U0) = sup
t∈U

d (t,U0) = sup
t∈U

d
(
t,PU0 (t)

)
= sup

t∈U
d (σ (t) , σ0 (t)) ≤ d∞ (σ, σ0) .

e (U0,U ) = sup
t∈U0

d (t,U ) = sup
t∈U0

d (t,PU (t))

= sup
t∈U0

d
(
PU0 (t) ,PU

(
PU0 (t)

))
= sup

t∈U0

d (σ0 (t) , σ (t)) ≤ d∞ (σ, σ0) .

Consequently, d∞ (σ, σ0) ≥ dH (U,U0) . �

Finally, the following result formalizes the fact that the calmness of FR
n+1

turns
out to be equivalent to the calmness ofF ,with the same constants and closely related
neighborhoods.

Theorem 3.2 Let x0 ∈ F (U0) , W ⊂ R
n be a neighborhood of x0, and σ0 = IU0 .

Then FR
n+1

is calm at (σ0, x0) with constant κ ≥ 0 on B∞ (σ0; ε) × W if and only
ifF is calm at (U0, x0) with the same constant κ on BH (U0; ε) × W.

Proof First assume that FR
n+1

is calm at (σ0, x0) with constant κ on B∞ (σ0; ε) ×
W. From Theorem 3.1 we get I −1 (B∞ (σ0; ε)) = BH (U0; ε) . Take any (U, x) ∈
BH (U0; ε) × W, such that x ∈ F (U ) and let σ = IU ∈ B∞ (σ0; ε) .

Then, applying Theorem 3.1 we have

d (x,F (U0)) = d
(
x,FR

n+1
(σ0)

)
≤ κd∞ (σ, σ0) = κdH (U,U0) .
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On the other hand, assume thatF is calm at (U0, x0)with constant κ onBH (U0; ε) ×
W. Picking any σ ∈ B∞ (σ0; ε) and defining U := clσ

(
R

n+1
)
, i.e., U =cl {σ (t),

t ∈ R
n+1

}
, it is clear from the definitions that d∞ (σ, σ0)≥dH (U,U0) . More in

detail, for each t ∈ R
n+1 we have ‖σ (t) − σ0 (t)‖ ≥ d (σ (t) ,U0) and, accordingly,

d∞ (σ, σ0) = sup
t∈Rn+1

‖σ (t) − σ0 (t)‖ ≥ sup
t∈Rn+1

d (σ (t) ,U0) = e (U,U0) .

In a completely analogous way se obtain d∞ (σ, σ0) ≥ e (U0,U ) . Consequently
dH (U,U0) ≤ ε and

d
(
x,FR

n+1
(σ0)

)
= d (x,F (U0)) ≤ κdH (U,U0) ≤ κd∞ (σ, σ0) .

�

4 Calmness and Minimal Indexations

This section tackles the question of replacing Rn+1 with a smaller index set. In fact,
keeping the notation of the previous sections, if we consider U0 ∈ CL

(
R

n+1
)
, and

the corresponding indexed system σ0 = IU0 ∈ (
R

n+1
)Rn+1

, we wonder if U0 itself
could play the role of the index set, yielding to a certain minimal indexation (where
repetitions of constraints are eliminated).

Let us consider U0 ⊂ T ⊂ R
n+1, and the corresponding feasible set mapping,

F T : (
R

n+1
)T ⇒ R

n defined in (2). From now on σ0|T : T → R
n+1 represents the

usual rectriction of function σ0 to the domain T . Obviously

σ0|U0
(t) = σ0|T (t) = σ0 (t) = PU0 (t) = t, for all t ∈ U0.

Accordingly, rge σ0|U0
= rge σ0|T = rgeσ0 = U0, which entails

FU0
(
σ0|U0

) = F T (σ0|T ) = FR
n+1

(σ0) = F (U0) .

Roughly speaking, σ0|U0
, σ0|T and σ0 correspond to three systems with different

index sets but having the same coefficient vector set,U0. So, σ0|T and σ0 are formed
by the same inequalities as σ0|U0

but with different amount of repetitions. In order to
identify the repetitions of constraints in σ0, we define the following sets of indices:

Rt0 := {
t ∈ R

n+1 | σ0 (t) = t0
}
, t0 ∈ U0;

so, t ∈ Rt0 is indexing an inequality which is a repetition of the one associated with
t0 ∈ U0. Clearly

{
Rt0

}
t0∈U0

constitutes a partition of Rn+1.
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Theorem 4.1 Let U0,T ∈ CL
(
R

n+1
)
with U0 ⊂ T . Let x0 ∈ F (U0) and W ⊂ R

n

be a neighborhood of x0. Let σ0 = IU0 . Then, the following conditions are equiva-
lent:

(i) FR
n+1

is calm at (σ0, x0) with constant κ on B∞ (σ0; ε) × W ;
(ii) F T is calm at (σ0|T , x0) with constant κ on B∞ (σ0|T ; ε) × W ;
(iii) FU0 is calm at

(
σ0|U0

, x0
)
with constant κ on B∞

(
σ0|U0

; ε
) × W.

Moreover, in the case when U0 = conv (T0) with T0 ∈ CL
(
R

n+1
)
, the following

condition is also equivalent to the previous ones:
(iv) F T0 is calm at

(
σ0|T0 , x0

)
with constant κ on B∞

(
σ0|T0 ; ε

) × W.

Proof (i) ⇒ (ii) . Consider any (σ, x) ∈ gphF T ∩ (B∞ (σ0|T ; ε) × W ) and let us

see that d
(
x,F T (σ0|T )

) ≤ κd∞ (σ, σ0|T ) . Define σ̃ ∈ (
R

n+1
)Rn+1

as an extension
of σ in the following natural way:

σ̃ (t) := σ (t0) , whenever t ∈ Rt0\T , t0 ∈ U0.

Note that, σ̃ (t) is well defined since for each t ∈ R
n+1 there exists a unique t0 ∈ U0

such that t ∈ Rt0 (because of the definition of Rt0 ).
In this way, one easily checks that F T (σ ) = FR

n+1
(̃σ ) and d∞ (̃σ , σ0) =

d∞ (σ, σ0|T ) < ε. In fact, for each t0 ∈ U0 and each t̃ ∈ Rt0\T we have

∥∥σ̃
(̃
t
) − σ0

(̃
t
)∥∥ = ‖σ (t0) − σ0 (t0)‖ ≤ sup

t∈U0

‖σ (t) − σ0 (t)‖
≤ sup

t∈T
‖σ (t) − σ0 (t)‖ = d∞ (σ, σ0|T ) .

Accordingly, d∞ (̃σ , σ0) = d∞ (σ, σ0|T ) . Then, applying (i) we have our aimed
inequality

d
(
x,F T (σ0|T )

) = d
(
x,FR

n+1
(σ0)

)
≤ κd∞ (̃σ , σ0) = kd∞ (σ, σ0|T ) .

(ii) ⇒ (iii). It is completely analogous to (i) ⇒ (ii) .

(iii) ⇒ (i) .Assume (iii) , take any (σ, x) ∈ gphFR
n+1 ∩ (B∞ (σ0; ε) × W ) , and

let us show that
d

(
x,FR

n+1
(σ0)

)
≤ κd∞ (σ, σ0) .

Since σ |U0
may be seen as a subsystem of system σ, we immediately have that

FR
n+1

(σ ) ⊂ FU0
(
σ |U0

)
and d∞

(
σ |U0

, σ0|U0

) ≤ d∞ (σ, σ0) < ε.

So, we have
(
σ |U0

, x
) ∈ gphFU0 ∩ (

B∞
(
σ0|U0

; ε
) × W

)
and

d
(
x,FR

n+1
(σ0)

)
= d

(
x,FU0

(
σ0|U0

)) ≤ kd∞
(
σ |U0

, σ0|U0

) ≤ kd∞ (σ, σ0) .
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From now on we assume that U0 = conv (T0) for some T0 ∈ CL
(
R

n+1
)
. In this

case, we are going to establish (iii) ⇔ (iv) .

(iii) ⇒ (iv) . Assume that FU0 is calm at
(
σ0|U0

, x0
)
with constant κ on

B∞
(
σ0|U0

; ε
) × W.

Take any (σ, x) ∈ gphF T0 ∩ (
B∞

(
σ0|T0 ; ε

) × W
)
and let us see that

d
(
x,F T0

(
σ0|T0

)) ≤ κd∞
(
σ, σ0|T0

)
.

To do that, we are going to define an appropiate extension of σ ∈ (
R

n+1
)T0

,

say σ̃ , to the domain U0. Let R
(T0)+ denote the set of functions from T0 to R+

which are zero except at finitely many elements of T0. For each t ∈ T0 we define
λt = (

λt
t0

)
t0∈T0 by λt

t0 = 1 if t0 = t and λt
t0 = 0 otherwise. For each t ∈ U0\T0, recall-

ing U0 = conv (T0) , choose arbitrarily λt ∈ R
(T0)+ satisfying t = ∑

t0∈T0 λt
t0 t0, and∑

t0∈T0 λt
t0 = 1. Then define

σ̃ (t) :=
∑
t0∈T0

λt
t0σ (t0) , for all t ∈ U0.

In this way, any inequality in σ̃ is a consequence of σ, and σ is a subsystem of σ̃ .

Therefore, FU0 (̃σ ) = F T0 (σ ) . Moreover

d∞
(
σ̃ , σ0|U0

) = sup
t∈U0

∥∥σ̃ (t) − σ0|U0
(t)

∥∥ = sup
t∈U0

∥∥∥∥∥
∑
t0∈T0

λt
t0σ (t0) − t

∥∥∥∥∥
= sup

t∈U0

∥∥∥∥∥
∑
t0∈T0

λt
t0(σ (t0) − t0)

∥∥∥∥∥
= sup

t∈U0

∥∥∥∥∥
∑
t0∈T0

λt
t0(σ (t0) − σ0|T0 (t0))

∥∥∥∥∥ = d∞
(
σ, σ0|T0

)
.

The last equality comes from the triangular inequality together with the definiton
of λt for t ∈ T0. Consequently, (̃σ , x) ∈ gphFU0 ∩ (

B∞
(
σ0|U0

; ε
) × W

)
and, then,

d
(
x,F T0

(
σ0|T0

)) = d
(
x,FU0

(
σ0|U0

)) ≤ kd∞
(
σ̃ , σ0|U0

) = kd∞
(
σ, σ0|T0

)
.

Finally, the proof of (iv) ⇒ (iii) follows exactly the same argument as (iii) ⇒ (i)
just by replacing R

n+1 and U0 with U0 and T0, respectively. �
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5 Calmness Constants for Polyhedral Uncertainty Sets

Throughout this section we assume that U0 := conv (T0) , where ∅ �= T0 ⊂ R
n+1 is

a finite set, say

T0 :=
{(

ai
bi

)
: i = 1, ...,m

}
,

withm standing for the cardinality of T0 (i.e., there are no repetitions). Obviously, as
an index set T0 can be identified with {1, ...,m} . Let us denote by F T0

a : Rm ⇒ R
n

the feasible set mapping associated with the system

{
a′
ix ≤ bi, i = 1, ...,m

}
,

with b = (bi)i=1,...,m being the parameter to be perturbed around b. Theorem 4 in
[4] provides a point-based formula (depending exclusively on the nominal data)

for clmF T0
a

(
b, x0

)
, with

(
b, x0

)
∈ gphF T0

a . Further, [5, Theorem 3] provides a

point-based neighborhood Ub (x0) such that clmF T0
a

(
b, x0

)
is indeed a calmness

constant for F T0
a at

(
b, x0

)
on R

m ×Ub (x0) ; see also the comment just after (6).

Denoting σ = (ai
bi

)
i=1,...,m

∈ (
R

n+1
)m ≡ (

R
n+1

)T0
, Theorem 5.1 below provides a

way to construct, from [5, Theorem 3], a calmness constant for F T0 at (σ , x0) on a
certain neighborhood of (σ , x0) , which is also provided by Theorem 5.1.

Theorem 5.1 Assume that κ ≥ 0 is a calmness constant for F T0
a at

(
b, x0

)
∈

gphF T0
a on R

T0 × W, where W is a neighborhood of x0. Then, for any given ε > 0
and σ being defined as above, κ (‖x0‖ + 1 + ε) is a calmness constant for F T0 at
(σ , x0) on

(
R

n+1
)T0 × (W ∩ B (x0, ε)) .

Proof Lemma 10 in [3] establishes, for our norm choice (4),

d
(
σ ,

(
F T0

)−1
(x)

)
=

max i∈{1,...,m}
[
a′
tx − bi

]
+

‖x‖ + 1
for all x ∈ R

n,

where [α]+ := max {α, 0} stands for the positive part of α ∈ R. Also observe that

max i∈{1,...,m}
[
a′
tx − bi

]
+
may be written as d∞

(
b,

(
F T0

a

)−1
(x)

)
.

Accordingly, for all x ∈ W ∩ B (x0, ε) we have
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d
(
x,F T0(σ )

) = d
(
x,F T0

a (b)
)

≤ κd∞
(
b,

(
F T0

a

)−1
(x)

)

= (‖x‖ + 1) κ

max i∈{1,...,m}
[
a′
tx − bi

]
+

‖x‖ + 1

≤ κ (‖x0‖ + 1 + ε) d∞
(
σ ,

(
F T0

)−1
(x)

)
. �

Remark 5.1 (i) A straightforward combination of Theorems 3.2, 4.1 and 5.1 pro-
vides a calmness constant and an asociated neighborhood for F at (U0, x0) . For
comparative purposes see also [4, Theorem 5] in relation to clmF T0 (σ , x0) .

(ii) The previous theorem may be applied in the context when T0 is our nominal
(finite) system and the uncertainty on these coefficient vectors leads to a robust
counterpart where each coefficient

(ai
bi

)
, i = 1, ...,m, may move in a closed box

centered at such a point. In this way, in the robust counterpart of T0 we may replace
the union of such boxes with its convex hull, which is a polyhedral set. Also observe
that the perturbed uncertainty sets need not to be polyhedral.
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