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Abstract This note addresses the issue of computing the inradius and the circumra-
dius of a convex cone in a Euclidean space. It deals also with the related problem of
finding the incenter and the circumcenter of the cone. We work out various examples
of convex cones arising in applications.
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1 Introduction

The recent paper [20] studies four notions of center for a closed convex cone in a
reflexive Banach space: the incenter, the circumcenter, the inner center, and the
outer center. These four notions are different in general, but they reduce to two if
the space is Hilbert. The main emphasis of [20] is on existence, unicity, and stability
properties for each type of center. Such theoretical questions have deep connections
with geometric aspects of infinite dimensional Banach spaces.
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The context of the present paper is more down-to-earth: the underlying space, say
(X, ‖ · ‖), is assumed to be Euclidean, i.e., Hilbert and finite dimensional:

2 ≤ dimX < ∞.

Our chief aim is computing the incenter and the circumcenter of various convex
cones arising in concrete applications. The notation that we use is for the most part
standard: SX and BX are, respectively, the unit sphere and the closed unit ball of X;
the symbols ∂K and int(K) stand, respectively, for the boundary and the interior of
K, etc. We also introduce the hyperspace �(X) of nontrivial closed convex cones in
X, and the subsets

�sol(X) = {K ∈ �(X) : K is solid}
�ptd(X) = {K ∈ �(X) : K is pointed}.

That a convex cone is nontrivial simply means that it is different from the singleton
{0} and different from the whole space X. A convex cone is solid if its topological
interior is nonempty, and it is pointed if it contains no line.

Definition 1.1 Let K ∈ �sol(X). The incenter of K, denoted by πinc(K), is the unique
solution to the variational problem

ρ(K) = max
x∈K∩SX

dist[x, ∂K] . (1)

The coefficient ρ(K) is called the inradius of K.

The inradius is well defined even if the cone is not solid, but the solidity assump-
tion is needed for guaranteeing uniqueness of solutions to (1). Solidity has further
consequences: the incenter lies in the interior of the cone and the inradius is a positive
number.

Let us open a parenthesis and give a quick look at the structure of (1) when K is a
polyhedral cone in the usual Euclidean space R

n.

Example 1.2 Suppose that K is a polyhedral cone given in its canonical form

K = {
x ∈ R

n : f T
1 x ≥ 0, . . . , f T

m x ≥ 0
}
,

where { f1, . . . , fm} is a finite collection of unit vectors in R
n and the superscript “T”

indicates transposition. Since

dist[x, ∂K] = min
1≤i≤m

f T
i x

for all x ∈ K, we are led to solve

maximize min
1≤i≤m

f T
i x (2)

‖x‖ = 1

f T
i x ≥ 0 ∀i ∈ {1, . . . , m}.

If K is solid, then the maximization problem (2) admits a unique solution. Further-
more, the inequality constraints in (2) are inactive at the solution.
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We close the parenthesis on polyhedral cones and come back to the general
setting. The geometric meaning of the incenter and the inradius has been discussed
in detail in [20] and also in references [5, 12, 14, 15, 24, 27]. We recall that (1)
is equivalent to the problem of finding the radius and center of the largest ball
contained in K:

maximize r

‖x‖ = 1

r ∈ [0, 1]
x + rBX ⊂ K. (3)

By an obvious reason, one asks the center of the ball to be a unit vector. The
coefficient ρ(K) is the radius of such largest ball and πinc(K) is its center (Fig. 1).

The concept of circumcenter is somewhat dual to that of incenter. One considers
instead the problem of finding the radius of the smallest ball whose generated cone
contains K:

minimize s

‖w‖ = 1

s ∈ [0, 1]
K ⊂ M(w, s). (4)

Fig. 1 The center of the
largest ball is the incenter of
the cone. For easy of
visualization, the apex of the
cone has been taken away
from the origin
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The notation M(w, s) stands for the closed convex cone generated by the ball w +
sBX , that is,

M(w, s) = cl
[
R+(w + sBX)

]
. (5)

The closure operation in (5) is superfluous for s ∈ [0, 1[.

Definition 1.3 Let K ∈ �ptd(X). The circumradius of K, denoted by μ(K), is the
radius of the smallest ball whose center is a unit vector and whose generated cone
contains K. The circumcenter of K, denoted by πcirc(K), is the center of such
smallest ball.

The number μ(K) is thus the optimal value of the minimization problem (4). Such
number is well defined even if the cone is not pointed, but pointedness is essential
for guaranteeing the uniqueness of the circumcenter. It is clear that

0 ≤ ρ(K) ≤ μ(K) ≤ 1

for all K ∈ �(X). Inspired by the definition of the condition number of a nonsingular
matrix, we refer to

cond(K) = μ(K)

ρ(K)

as the condition number of a solid cone K. It can be proven in a formal way that
cond(K) ≈ 1 if and only if K is “near” a ball-generated cone.

The next theorem, borrowed from [20], displays a very interesting connection
between the optimal balls

Bcirc(K) = πcirc(K) + μ(K) BX (6)

Binc(K) = πinc(K) + ρ(K) BX . (7)

Recall that the norm ‖ · ‖ derives from an inner product. This is a crucial assumption
indeed.

Theorem 1.4 For all K ∈ �(X), one has

μ(K) =
√

1 − [ρ (K+)]2 and ρ(K) =
√

1 − [μ (K+)]2

with K+ standing for the (positive) dual cone of K. Furthermore,

πinc(K) = πcirc(K+) if K is solid

πcirc(K) = πinc(K+) if K is pointed.

It is worth mentioning that the circumcenter of a pointed cone lies in the cone
itself, but not necessarily in its interior (even if the cone is solid as well). Hence,
the concept of circumcenter is different from that of incenter. This remark will
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be illustrated with the help of Example 3.7. Anyhow, a direct consequence of
Theorem 1.4 yields:

Corollary 1.5 Let K ∈ �(X). Then

πinc(K) ∈ SX ∩ K+ ∩ int(K) if K is solid

πcirc(K) ∈ SX ∩ K ∩ int(K+) if K is pointed.

Inradiuses and circumradiuses are left invariant by orthogonal transformations.
Incenters and circumcenters are transformed as described in the next proposition.
The proof is omitted because it is easy.

Proposition 1.6 If U : X → X is an orthogonal linear transformation, then

ρ(U(K)) = ρ(K) and μ(U(K)) = μ(K)

for all K ∈ �(X). Furthermore,

πinc(U(K)) = Uπinc(K) if K is solid

πcirc(U(K)) = Uπcirc(K) if K is pointed.

This is all what we need to know at a theoretical level. Once we have understood
the geometric meaning of the balls (6–7) and their duality relations, we can proceed
to practical computations.

2 Cones in R
n

A wide battery of examples is always useful to build up a theory. The most intuitive
results on incenters and circumcenters are obtained by restricting the attention to
convex cones in the usual Euclidean space R

n with n ≥ 2. We shall work out first
some easy examples and then gradually increase the degree of difficulty.

2.1 Orthogonal Cones

The incenter of the Pareto cone (or nonnegative orthant) is a unit vector whose
components are all equal, namely,

1̂n =
(

1√
n

, . . . ,
1√
n

)T

.

A straightforward generalization of this principle to the case of an arbitrary orthog-
onal cone reads as follows:

Proposition 2.1 Suppose that K is an orthogonal cone in R
n, that is, K is generated by

an orthonormal basis {u1, . . . , un} of R
n. Then

πinc(K) = πcirc(K) = u1 + . . . + un√
n

.

Furthermore, ρ(K) = √
1/n and μ(K) = √

1 − (1/n).
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Proof Since K is the image of R
n+ under the orthogonal matrix U = [u1, . . . , un],

one gets

πinc(K) = Uπinc(R
n
+) = U 1̂n.

One also gets ρ(K) = ρ(Rn+) = √
1/n. The remaining part of the proposition follows

from Theorem 1.4 and the fact that K is self-dual. 
�

Recall that a simplicial cone in R
n is a polyhedral cone generated by a basis of R

n.
As shown in [3, Proposition 3.2], a simplicial cone is orthogonal if and only if it is
self-dual. The next corollary is then an immediate consequence of Proposition 2.1.

Corollary 2.2 Suppose that K is a self-dual simplicial cone in R
n. Then ρ(K) = √

1/n
and μ(K) = √

1 − (1/n).

A word of caution is however in order: the class of self-dual polyhedral cones
is wider than the class of orthogonal cones. That K is the image of a nonnegative
orthant under an orthogonal transformation is crucial in the proof of Proposition 2.1.

Example 2.3 It is possible to construct a self-dual polyhedral cone in R
3 whose inra-

dius is different from
√

1/3. To see this, consider the polyhedral cone K generated
by the vectors

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦ ,

⎡

⎣
−1
0
1

⎤

⎦ ,

⎡

⎣
0

−1
1

⎤

⎦ ,

⎡

⎣
1

−1
1

⎤

⎦ .

This cone is self-dual (cf. [2]), but not simplicial. The representation of K as intersec-
tion of hyperplanes is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + x2 + x3 ≥ 0
x2 + x3 ≥ 0

−x1 + x3 ≥ 0
−x2 + x3 ≥ 0

x1 − x2 + x3 ≥ 0.

Hence,

dist[x, ∂K] = min
{

x1 + x2 + x3√
3

,
x2 + x3√

2
,
−x1 + x3√

2
,
−x2 + x3√

2
,

x1 − x2 + x3√
3

}

for all x ∈ K. Since u = (1/10, 0,
√

99/10)T is a unit vector in K, it follows that

ρ(K) ≥ dist[u, ∂K] = 1√
3

(
1 + √

99
10

)

>
√

1/3.

2.2 Revolution Cones and Elliptic Cones

Another instance where the incenter can be easily computed is that of a revolution
cone. By this expression we mean a set of the form

�(y, θ) = {
x ∈ R

n : yT x ≥ ‖x‖ cos θ
}
,
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where y is a unit vector that determines the revolution axis and θ is a parameter
called the half-aperture angle. Revolution cones are used in various fields of applied
mathematics, including mathematical programming [9] and coding theory [39]; see
also [4, 17, 36].

Proposition 2.4 Let y be a unit vector in R
n and θ ∈]0, π/2[. Then

πinc(�(y, θ)) = πcirc(�(y, θ)) = y.

Furthermore, ρ(�(y, θ)) = μ(�(y, θ)) = sin θ.

Proof In a Euclidean space setting, the class of revolution cones coincides with the
class of ball-generated cones. To be more precise, one has

�(y, θ) = M(y, sin θ). (8)

The above formula can be found in Goffin [17] and in other places. For a ball-
generated cone, it is clear that the optimal balls (6–7) coincide. In fact,

Bcirc(M(y, s)) = Binc(M(y, s)) = y + sBRn (9)

for all s ∈]0, 1[. The combination of (8) and (9) completes the proof. 
�

Example 2.5 The n - dimensional Lorentz cone

�n =
{

x ∈ R
n : [x2

1 + · · · + x2
n−1

]1/2 ≤ xn

}

is a particular instance of a revolution cone. One gets

πinc(�n) = πcirc(�n) = en := (0, . . . , 0, 1)T

and ρ(�n) = μ(�n) = √
2/2.

The analysis of elliptic cones is a bit more involved. A standard elliptic cone in R
n

is a set of the form

E(A) =
{
(z, t) ∈ R

n−1 × R :
√

zT Az ≤ t
}

(10)

with A standing for a symmetric positive definite matrix of order n − 1. Three
dimensional elliptic cones have applications in mechanics [13, 47], electromagnetic
scattering [46], and many other areas. General background on higher dimensional
elliptic cones can be found in [24–26, 28]. Stern and Wolkowicz [42, 43] work with a
wider class of elliptic cones, namely, those that are represented as the image of the
n - dimensional Lorentz cone under a nonsingular linear transformation. Note that
(10) can be rewritten as

E(A) = M(�n) (11)

with M being the nonsingular linear transformation given by

M =
[

A−1/2 0n−1

0T
n−1 1

]

.
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Proposition 2.6 Let A be a symmetric positive def inite matrix of order n − 1. Then

πinc(E(A)) = πcirc(E(A)) = en.

Furthermore,

ρ(E(A)) =
√

1
1 + λmax(A)

and μ(E(A)) =
√

1
1 + λmin(A)

with λmin(A) and λmax(A) denoting, respectively, the smallest and largest eigen-
value of A.

Proof We do not rely on the transformation mechanism (11) because M is not
orthogonal. The formula for the inradius of E(A) has been established by Iusem
and Seeger [24, Proposition 6.4]. Such formula and the expression for the incenter of
E(A) are obtained by solving explicitly the minimization problem (3). The remaining
part of the proposition follows from Theorem 1.4 and the fact that

[
E(A)

]+ = E
(

A−1) . (12)

The relation (12) is known (cf. [24]), but it is not clear to us who proved it for the first
time. 
�

The condition number of the elliptic cone E(A) is near 1 if and only if the condition
number

cond(A) = λmax(A)

λmin(A)

of the matrix A is near 1. This observation is consistent with the fact E(A) reduces to
a ball-generated cone if all the eigenvalues of A are equal.

2.3 Epigraphical Cones

A large variety of convex cones in R
n are expressible as the epigraph

epi f = {
(z, t) ∈ R

n−1 × R : f (z) ≤ t
}

of a function f : R
n−1 → R ∪ {∞} satisfying the following properties:

⎧
⎪⎪⎨

⎪⎪⎩

f is sublinear,
f is nonnegative,

f is lower-semicontinuous,
f vanishes at the origin.

(13)

As usual, sublinearity is understood as the combination of subadditivity and positive
homogeneity. In view of (13), the set epi f is a nontrivial closed convex cone in R

n.
One refers to epi f as the epigraphical cone associated to f .

Lemma 2.7 Let f : R
n−1 → R ∪ {∞} be as in (13). Then

(a) en ∈ int
(
epi f

)
if and only if f is f inite everywhere.

(b) epi f is pointed if and only if f −1(0) = {z ∈ R
n−1 : f (z) = 0} is pointed.



Inradius and Circumradius of Various Convex Cones Arising in Applications 491

Proof Let f be finite everywhere. Then (z, t) �→ f (z) − t is continuous. Since
f (0n−1) − 1 < 0, it follows that f (z) − t ≤ 0 for all (z, t) in a neighborhood of en.
This proves that en belongs to the interior of epi f . Conversely, suppose that en ∈
int
(
epi f

)
. Hence, there exists ε > 0 such that

en + ε Bn ⊂ epi f,

where Bn stands for the closed unit ball of R
n. In particular, f (εh) ≤ 1 for all h ∈

Bn−1. This proves that f is finite on the ball ε Bn−1. By positive homogeneity, f is
finite everywhere. Part (b) is a consequence of the equality

lin
(
epi f

) = [
lin
(

f −1(0)
)]× {0},

where lin(Q) = Q ∩ −Q indicates the lineality space of a convex cone Q. 
�

The next proposition shows that, up to orthogonal transformation, each element
of �sol(R

n) is an epigraphical cone associated to a finite-valued function. In the
sequel, we use the symbol On to indicate the group of orthogonal matrices of order n.

Proposition 2.8 Let K ∈ �sol(R
n). Then K = U(epi f ) for some U ∈ On and some

nonnegative sublinear function f : R
n−1 → R.

Proof By Corollary 1.5, the vector c = πinc(K) belongs to K+. Pick a matrix U ∈ On

such that U Tc = en. In such a case, the closed convex cone Q = U T(K) is contained
in the half-space R

n−1 × R+. Since c ∈ int(K), it follows that en ∈ int(Q). We claim
that Q is an epigraphical cone. For proving this, one just needs to examine the
function

z ∈ R
n−1 �→ f (z) = inf{t : (z, t) ∈ Q}.

One can easily show that f is nonnegative and sublinear. The condition en ∈ int(Q)

implies that f is finite everywhere (and therefore it is a continuous function). It
remains to check that Q = epi f , but this is a mere routine. 
�

As explained in the next lemma, computing the dual cone of epi f amounts to
evaluating a certain function f ◦ : R

n−1 → R ∪ {∞} defined by

f ◦(w) = inf
{
s ≥ 0 : wT z ≤ sf (z) for all z ∈ dom f

}

with dom f = {z ∈ R
n−1 : f (z) < ∞} denoting the effective domain of f . In the

convex analysis literature (cf. [37]), one refers to f ◦ as the polar function of f . One
can check that

f ◦(w) = inf
{
s ≥ 0 : w ∈ s � f

}
, (14)

where

� f = {
w ∈ R

n−1 : wT z ≤ f (z) for all z ∈ R
n−1} = { f ≤ 1}◦

is a closed convex set containing the origin. In the above line we employ the notation

{ f ≤ 1} = {
z ∈ R

n−1 : f (z) ≤ 1
}

C◦ = {
w ∈ R

n−1 : wT z ≤ 1 for all z ∈ C
}
.
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By the way, the right-hand side of (14) corresponds to the usual definition of the
gauge function of � f . It is not difficult to show that f ◦ satisfies all the properties
listed in (13).

Remark 2.9 If f is a norm on R
n−1, then

w ∈ R
n−1 �→ f ◦(w) = max

z�=0

wT z
f (z)

is nothing but the polar (or dual) norm of f . Of course, the polar of f ◦ is f itself.

Lemma 2.10 Let f : R
n−1 → R ∪ {∞} be as in (13). Then the dual cone of epi f is

again an epigraphical cone, namely

(epi f )+ = {
(w, s) ∈ R

n−1 × R : f ◦(−w) ≤ s
}
. (15)

If, in addition, f is an even function, then so is f ◦ and

(epi f )+ = epi f ◦. (16)

Proof Formula (15) can be obtained by working out [37, Theorem 14.4], but we
prefer to give a short and self-contained proof. Let (w, s) ∈ (epi f )+, that is,

wT z + st ≥ 0 for all (z, t) ∈ epi f.

This condition breaks down into two pieces:

s ≥ 0

wT z + sf (z) ≥ 0 for all z ∈ dom f.

The combination of these two pieces is equivalent to saying that f ◦(−w) ≤ s. This
takes care of the equality (15). Since f ◦ satisfies (13), so does the function

w ∈ R
n−1 �→ f �(w) = f ◦(−w).

Hence, the right-hand side of (15) is an epigraphical cone. Finally, suppose that f is
even, i.e., f (−z) = f (z) for all z ∈ R

n−1. In such a case, −dom f = dom f and

f ◦(−w) = inf
{
s ≥ 0 : (−w)T z ≤ sf (z) for all z ∈ dom f

}

= inf
{
s ≥ 0 : wT(−z) ≤ sf (−z) for all z ∈ −dom f

}

= f ◦(w)

for all w ∈ R
n−1. This and (15) lead to (16). 
�

The elliptic cone (10) is perhaps the most prominent example of an epigraphical
cone. The duality formula (12) can be recovered as a particular case of (16). Another
interesting example of epigraphical cone is

�p,n = {
(z, t) ∈ R

n−1 × R : ‖z‖p ≤ t
}

(17)
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with p ∈ [1,∞] and ‖ · ‖p standing for the 
p - norm in R
n−1. One refers to (17) as the

n - dimensional 
p - cone. As a second application of (16), one obtains the well known
relation (cf. [9, 18])

�+
p,n = �q,n

with p, q ∈ [1, ∞] standing for a pair of conjugate numbers. This means that p−1 +
q−1 = 1 with the usual convention 1/∞ = 0 being in force.

The next theorem provides a formula for computing the inradius of an epigraphi-
cal cone. Everything boils down to being able to evaluate an expression of the form


( f ) = sup
‖u‖≤1

{
f (u) +

√
1 − ‖u‖2

}
. (18)

The above maximization problem is quite interesting by itself, so we shall come back
to the analysis of (18) in a moment.

Theorem 2.11 Let f : R
n−1 → R be a nonnegative sublinear function. Suppose, in

addition, that f is even. Then

πinc(epi f ) = en and ρ(epi f ) = 1/
( f ) . (19)

Proof The function f satisfies not only (13), but more than that. The fact that f is
finite everywhere implies that epi f is a solid cone. The unicity of its incenter is then
guaranteed. Having said this, we now work out the maximization problem (3), which
takes here the form

maximize r (20)

‖z‖2 + t2 = 1 (21)

r ∈ [0, 1] (22)

(z, t) + rBn ⊂ epi f. (23)

That f is an even function imposes a certain symmetry on the feasible set

M = {
(z, t, r) ∈ R

n+1 : (z, t, r) satisfies (21–23)
}
.

Indeed, one can show that

(z, t, r) ∈ M =⇒ (−z, t, r) ∈ M. (24)

Let (z̄, t̄, r̄) be the unique solution to the maximization problem (20–23). In view
of the symmetry property (24), it follows that z̄ = 0n−1, in which case t̄ = 1. This
proves the first equality in (19). The inradius of epi f is then the optimal value of the
unidimensional maximization problem

maximize r (25)

r ∈ [0, 1] (26)

en + rBn ⊂ epi f. (27)
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The constraint (27) says that f (ru) ≤ 1 + rτ for all (u, τ ) ∈ Bn. By a convexity
argument, it is enough to let (u, τ ) range over the boundary of Bn. We also know
that f is positively homogeneous. Hence, (27) can be written in the form

r f (u) ≤ 1 + rτ whenever ‖u‖2 + τ 2 = 1.

This is yet equivalent to saying that

r
[

f (u) +
√

1 − ‖u‖2
]

≤ 1 for all u ∈ Bn−1.

Hence, the maximum in (25–27) is attained at r = 1/
( f ), showing the second
equality in (19). 
�

Which is the geometric meaning of 
( f ) and how to compute this expression in
practice? As we saw already, under the assumptions of Theorem 2.11, one has


( f ) = 1
dist

[
en, ∂(epi f )

] .

Evaluating the distance from en to the boundary of epi f is not always an easy task,
so we propose below an alternative characterization of 
( f ).

Proposition 2.12 Let f : R
n−1 → R be a sublinear function. Then


( f ) =
√

1 + ‖� f ‖2 (28)

with ‖� f ‖ = maxw∈� f ‖w‖.

Proof The starting point of the proof is the observation that


( f ) = sup
u∈Rn−1

{ f (u) − κ(u)} ,

where κ : R
n−1 → R ∪ {∞} is the convex lower-semicontinuous function given by

κ(u) =
{

−√1 − ‖u‖2 if u ∈ Bn−1

∞ otherwise.

By applying the Toland-Singer duality theorem (cf. [11, 21, 45]), one gets


( f ) = sup
w∈Rn−1

{
κ∗(w) − f ∗(w)

}
, (29)

where the superscript ∗ refers to the operation of Legendre-Fenchel conjugation.
The conjugate of κ is given by κ∗(w) = √

1 + ‖w‖2, whereas the conjugate of the
sublinear function f is the indicator function of the set � f , that is,

f ∗(w) =
{

0 if w ∈ � f

∞ otherwise.
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By the way, � f is bounded because f is finite everywhere. By plugging this informa-
tion in (29), one gets the equality


( f ) = max
w∈� f

√
1 + ‖w‖2,

which leads in turn to (28). 
�

The next theorem provides a formula for computing the circumradius of an
epigraphical cone.

Theorem 2.13 Let f : R
n−1 → R ∪ {∞} be as in (13). Suppose, in addition, that f is

even and vanishes only at the origin. Then

πcirc(epi f ) = en and μ(epi f ) =
√

1 −
[

1

( f ◦)

]2

.

Proof That f vanishes only at the origin has two important consequences. First of
all, the cone epi f is pointed, and therefore it admits a unique circumcenter. And,
secondly, the polar function f ◦ is finite everywhere. By combining Lemma 2.10 and
Theorem 1.4, one gets

πcirc(epi f ) = πinc
(
epi f ◦) and μ(epi f ) =

√
1 − [

ρ
(
epi f ◦)]2

.

The rest of the proof consists in applying Theorem 2.11 to the function f ◦. 
�

Example 2.14 Consider again the cone �p,n given by (17). This in an epigraphical
cone with f (z) = ‖z‖p and � f = {w ∈ R

n−1 : ‖w‖q ≤ 1}. A matter of computation
yields

‖� f ‖ =
{

(n − 1)
1
p − 1

2 if p ∈ [1, 2]
1 if p ∈ [2, ∞].

Hence (Fig. 2),

ρ(�p,n) =
{[

1 + (n − 1)(2−p)/p
]−1/2 if p ∈ [1, 2]√

2/2 if p ∈ [2, ∞].

μ(�p,n) =

⎧
⎪⎨

⎪⎩

√
2/2 if p ∈ [1, 2]

[
1 − 1

1 + (n − 1)(p−2)/p

]1/2

if p ∈ [2, ∞].

Remark 2.15 The class of Bishop–Phelps cones include the revolution cones, the
elliptic cones, and the 
p-cones as well. If X is a vector space equipped with a certain
norm ‖ · ‖X , then

�BP(y, c) = {x ∈ X : c ‖x‖X ≤ y(x)}
is referred to as the Bishop–Phelps cone with parameters y and c (cf. [7, 31, 35]).
Here y : X → R is a linear function whose (operator) norm is equal to 1 and c is a
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Fig. 2 Behavior of ρ(�p,n) as
function of p. One considers
n = 3 (upper curve), n = 10
(middle curve), and n = 1000
(lower curve)
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positive real. The interest of this class of cones is that the norm ‖ · ‖X does not need
to be Euclidean. By using a suitable orthogonal transformation, any Bishop–Phelps
cone can be brought to an epigraphical form.

2.4 Fitted Cones

A common way of constructing a nontrivial closed convex cone in R
n is to pick a

closed convex set C ⊂ R
n−1 containing the origin and form

F(C) = cl
[
R+(C × {1})] (30)

= cl
[{

(z, t) ∈ R
n−1 × R : t ≥ 0, z ∈ tC

}]
. (31)

The equality (30) is the definition of F(C), whereas (31) is a useful characterization.
Clearly, F(C) belongs to �(Rn). One says that F(C) is the cone f itted by C. This
terminology, although not widely spread in the literature, is used by a number of
authors [18, 29, 40]. Be aware, however, that not everyone asks the same properties
to the ingredient set C. See Fig. 3 for a geometric representation of a fitted cone.

The whole section on epigraphical cones can be translated into the language of
fitted cones. Conversely, every result concerning a fitted cone has a counterpart in
the realm of epigraphical cones.

Lemma 2.16 Fitted and epigraphical cones are the same mathematical objects. More
precisely:

(a) If f : R
n−1 → R ∪ {∞} is as in (13), then its sublevel set C f = { f ≤ 1} is a closed

convex set containing the origin and epi f = F(C f ).
(b) If C ⊂ R

n−1 is a closed convex set containing the origin, then its gauge function

z ∈ R
n−1 �→ fC(z) = inf{t ≥ 0 : z ∈ t C}

satisf ies the properties listed in (13) and F(C) = epi fC.
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Fig. 3 Cone fitted by the set C

The proof of the above lemma is easy and therefore omitted. It is essentially a
matter of exploiting the theory of gauge functions as developed in Rockafellar’s book
[37]. Without further ado we reformulate the main results of Section 2.3. The next
two corollaries are obtained by applying Theorems 2.11 and 2.13, respectively, to the
gauge function fC.

Corollary 2.17 If C ⊂ R
n−1 is a symmetric closed convex set containing the origin in

its interior, then F(C) is solid and

πinc(F(C)) = en, ρ(F(C)) = [
1 + ‖C◦‖2]−1/2

.

Corollary 2.18 If C ⊂ R
n−1 is a symmetric compact convex set containing the origin,

then F(C) is pointed and

πcirc(F(C)) = en, μ(F(C)) =
√

1 − 1
1 + ‖C‖2 .

2.5 Permutation Invariant Cones

The Pareto cone can be embedded in the larger class of permutation invariant cones.
Let Pn denote the group of permutation matrices of order n. A set V in R

n is called
permutation invariant if P(V) = V for all P ∈ Pn.

Proposition 2.19 Let K ∈ �sol(R
n) be permutation invariant. Then

πinc(K) =
{

1̂n if 1̂n ∈ K

−̂1n if 1̂n /∈ K.
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Proof Since K is permutation invariant, so are the sets {x ∈ K : ‖x‖ = 1} and ∂K.
Hence, dist[ · , ∂K] is a permutation invariant function, i.e.,

dist[Px, ∂K] = dist[x, ∂K] for all P ∈ Pn.

With this information at hand, one readily sees that the solution set to (1) is
permutation invariant. Since this solution set contains πinc(K) as unique element,
it follows that P πinc(K) = πinc(K) for all P ∈ Pn. Therefore, πinc(K) = a 1̂n for some
a ∈ R. Since πinc(K) is a unit vector, the scalar a must be either −1 or 1. 
�

Corollary 2.20 Let K ∈ �ptd(R
n) be permutation invariant. Then

πcirc(K) =
{

1̂n if 1̂n ∈ K

−̂1n if 1̂n /∈ K.

Proof That K ∈ �ptd(R
n) is permutation invariant implies that K+ ∈ �sol(R

n) is
permutation invariant. It suffices then to combine Theorem 1.4 and Proposition 2.19.


�

Proposition 2.19 gives no information on the inradius of K. It settles however the
question of identifying the incenter. To evaluate ρ(K) is now a matter of computing

ρ(K) =
{

dist
[

1̂n, ∂K
]

if 1̂n ∈ K

dist
[−̂1n, ∂K

]
if 1̂n /∈ K.

The example below illustrates the use of this formula.

Example 2.21 Let x↑ denote the vector which is obtained by rearranging in nonde-
creasing order the components of x ∈ R

n. Consider the closed convex cone

Kp,n =
{

x ∈ R
n : x↑

1 + . . . + x↑
p ≥ 0

}
. (32)

Note that K1,n is the Pareto cone in R
n. The case p = n is of no interest because

Kn,n =
{

x ∈ R
n : x↑

1 + . . . + x↑
n ≥ 0

}

= {
x ∈ R

n : x1 + . . . + xn ≥ 0
}

is simply a half-space. The intermediate case 2 ≤ p ≤ n − 1 appears in concrete
problems of optimization [34] and principal components analysis [38]. Note that Kp,n

is pointed, solid, permutation invariant, and contains the vector 1̂n. Hence,

πinc(Kp,n) = πcirc(Kp,n) = 1̂n.

For computing ρ(Kp,n) we evaluate the distance from 1̂n to the boundary of Kp,n. In
other words, we solve

minimize

[(
u1 − 1√

n

)2

+ . . . +
(

un − 1√
n

)2
]1/2

u↑
1 + . . . + u↑

p = 0. (33)



Inradius and Circumradius of Various Convex Cones Arising in Applications 499

If one permutes the components of a solution to (33), then one gets another solution
to (33). So, there is no loss of generality in searching for a solution whose components
are already arranged in nondecreasing order:

minimize

[(
u1 − 1√

n

)2

+ . . . +
(

un − 1√
n

)2
]1/2

u1 ≤ . . . ≤ un

u1 + . . . + up = 0. (34)

The later problem admits as solution the vector u given by

ui =
{

0 if i ∈ {1, . . . , p}
n−1/2 if i ∈ {p + 1, . . . , n}.

By plugging this vector in the cost function of (34) and simplyfing, one gets ρ(Kp,n) =√
p/n .

Remark 2.22 Computing the circumradius of Kp,n requires first to find the genera-
tors of Kp,n. For instance, the cone Kn−1,n is generated by n unit vectors, namely, the
permutations of the vector

w = 1√
n2 − 3n + 3

(1, . . . , 1, 2 − n)T .

These generators serve to describe the dual cone K+
n−1,n as intersection of homoge-

neous half-spaces. One gets in this way

ρ
(
K+

n−1,n

) = dist
[̂
1n, ∂

(
K+

n−1,n

)] = (̂
1n
)T

w = 1
√

n
(
n2 − 3n + 3

) .

By using Theorem 1.4, one gets finally

μ(Kn−1,n) =
[

1 − 1
n
(
n2 − 3n + 3

)

]1/2

.

2.6 Monotonic Cones

We continue next with some convex cones arising in maximum likelihood estima-
tion. The upward monotonic cone and the downward monotonic cone are defined
respectively by

Kup
n = {

x ∈ R
n : x1 ≤ . . . ≤ xn

}

Kdown
n = {

x ∈ R
n : x1 ≥ . . . ≥ xn

}
.

These cones are used, for instance, in the modeling of isotone regression problems
[6, 16]. Both cones are solid. Where are their incenters? Since these cones are
mutually opposite, we just need to examine the upward monotonic case.
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Proposition 2.23 One has

ρ
(
Kup

n

) = h/
√

2

πinc
(
Kup

n

) = (a, a + h, a + 2h, . . . , a + (n − 1)h)
T (35)

with

=
√

12
n(n − 1)(n + 1)

and a = −
√

3(n − 1)

n(n + 1)
.

In particular, the components of πinc(Kup
n ) are equidistant and symmetrically distrib-

uted around 0.

Proof The variational problem (1) for the choice K = Kup
n takes the form

maximize min
{

x2 − x1√
2

, . . . ,
xn − xn−1√

2

}

x1 ≤ . . . ≤ xn

x2
1 + . . . + x2

n = 1. (36)

This is a matter of placing a collection of points x1, . . . , xn on the interval [−1, 1]
in such a way that the smallest distance between two succesive points is a large
as possible. The unique solution x̄ to (36) has necessarily the form (35) i.e., the
components of x̄ are equidistant. Since x̄ must be a unit vector, one has

n−1∑

k=0

(a + kh)2 = 1.

After simplification, one gets na2 + 2tnah + snh2 = 1 with

tn =
n−1∑

k=1

k = n(n − 1)

2

sn =
n−1∑

k=1

k2 = n(n − 1)(2n − 1)

6
.

We are led to a maximization problem with two decision variables subject to an
elliptic constraint:

maximize
{

h
/√

2 : a ∈ R, h ≥ 0, na2 + 2tnah + snh2 = 1
}

. (37)

For completing the proof one just needs to observe that

a = − tn
n

[
sn − t2

n

n

]−1/2

= −
[

3(n − 1)

n(n + 1)

]1/2

h =
[

sn − t2
n

n

]−1/2

=
[

12
n(n − 1)(n + 1)

]1/2

is the optimal solution to (37). 
�
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Table 1 Analysis of the
upward monotonic cone

n ρ(Kup
n ) πinc(Kup

n )

2 1 1√
2

(−1, 1)T

3 1
2

1√
2

(−1, 0, 1)T

4 1√
10

1√
20

(−3,−1, 1, 3)T

5 1√
20

1√
10

(−2,−1, 0, 1, 2)T

Table 1 displays the incenter and inradius of Kup
n as function of n. Note that the

components of πinc(Kup
n ) are equidistant and symmetrically distributed around 0.

2.7 Unimodal Cones

In unimodal regression theory [8, 44], a vector x ∈ R
n is called unimodal with a peak

at the q-th component (q-unimodal, for short) if

x1 ≤ . . . ≤ xq−1 ≤ xq ≥ xq+1 ≥ . . . ≥ xn.

For applications of the concept of unimodality in other areas of mathematics, see the
interesting survey by Stanley [41]. The set

Uq,n = {
x ∈ R

n : x is q -unimodal
}

is a polyhedral convex cone because it is expressible as intersection of n − 1 homo-
geneous half-spaces.

The extreme cases U1,n = Kup
n and Un,n = Kdown

n have been considered already in
Section 2.6. Another configuration of interest is the one in which the peak xq occurs
at a central component of the vector x, i.e.,

q =
{

(n + 1)/2 if n is odd

n/2 or (n/2) + 1 if n is even.
(38)

The next proposition concerns an odd dimension n.

Proposition 2.24 Let n be odd. For q = (n + 1)/2, one has

ρ(Uq,n) = h/
√

2

πinc(Uq,n) = (a, a + h, . . . , a + (q − 2)h, a + (q − 1)h, a + (q − 2)h . . . , a + h, a)
T

with

h =
√

3(2q − 1)

q(q − 1)
(
q2 − q + 1

) and a = −
√

3(q − 1)3

q(2q − 1)
(
q2 − q + 1

) .

In particular, the components of πinc(Uq,n) are equidistant (but they are not symmetri-
cally distributed around 0).
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Proof The variational problem (1) for the choice K = Uq,n takes the form

maximize min
{

x2 − x1√
2

, . . . ,
xq − xq−1√

2
,

xq − xq+1√
2

, . . . ,
xn−1 − xn√

2

}
(39)

x ∈ Uq,n

‖x‖ = 1.

Since Uq,n is solid, this maximization problem admits a unique solution, say x̄. In
order to solve (39) explicitly, we exploit the fact that q indexes the central coordinate
of x̄. By a symmetry argument, x̄ must satisfy

x̄k+1 =
{

x̄k + h if k ∈ {1, . . . , q − 1}
x̄k − h if k ∈ {q, . . . , n − 1}

with h ≥ 0 and x̄1 = a linked by the normalization condition

q−2∑

k=0

(a + kh)2 + (a + (q − 1)h)2 +
n−q∑

k=1

(a + (q − 1)h − kh)2 = 1. (40)

Since x̄q− j = x̄q+ j for all j ∈ {1, . . . , q − 1}, the equality (40) reduces to

2
q−2∑

k=0

(a + kh)2 + (a + (q − 1)h)2 = 1.

This is equivalent to na2 + 2t̃qah + s̃qh2 = 1 with

t̃q =
q−1∑

k=1

k +
q−2∑

k=1

k+ = (q − 1)2

s̃q =
q−1∑

k=1

k2 +
q−2∑

k=1

k2 = 1
3
(q − 1)

(
2q2 − 4q + 3

)
.

The remaining part of the proof is as in Proposition 2.23. 
�

If q ∈ {1, n} or if q is as in (38), then the components of πinc(Uq,n) are equidistant.
Such an equidistance principle does not hold if q is not chosen as mentioned
above. This fact is illustrated with Fig. 4 and, more formally, with the statement of
Theorem 2.26.

Obtaining an explicit formula for ρ(Uq,n), with q arbitrary, is a cumbersome task.
This can be done, however, with a bit of patience and effort. We need to state first a
lemma.

Lemma 2.25 Suppose that K is a solid polyhedral cone as in Example 1.2. Then x̄ =
πinc(K) if and only if

x̄ ∈ K, ‖x̄‖ = 1, x̄ ∈ cone{ fi : i ∈ I(x̄)}, (41)

where “cone” stands for convex conic hull, and I(x̄) denotes the set of indices j ∈
{1, . . . , m} such that f T

j x̄ = min1≤i≤m f T
i x̄.
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Fig. 4 Distribution of the
components of πinc(Uq,9)

when q = 7 (upper case), q = 5
(middle case), and q = 9
(lower case). Note that the
components of πinc(U7,9) are
not equally spaced
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Proof Let us take a closer look at the maximization problem (2). By positive
homogeneity, the normalization condition ‖x‖ = 1 can be written in the inequality
form 1 − ‖x‖2 ≥ 0. Hence, (2) is about maximizing the concave function

x �→ c(x) = min
1≤i≤m

f T
i x

on the convex set

F = {
x ∈ R

n : 1 − ‖x‖2 ≥ 0, f T
1 x ≥ 0, . . . , f T

m x ≥ 0
}
.

The Slater qualification condition holds because K is solid. In such a case, a natural
thing to do is to introduce the Lagrangean function

L(x, y0, y1, . . . , ym) = c(x) − y0
(
1 − ‖x‖2)−

m∑

i=1

yi f T
i x

and work out the standard Karush-Kuhn-Tucker optimality conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ∈ −∂ fenchel(−c)(x̄) − 2y0 x̄ +∑m
i=1 yi fi ,

x̄ ∈ F,

y0 ≥ 0, y0
(
1 − ‖x̄‖2

) = 0,

yi ≥ 0, yi f T
i x̄ = 0 for all i ∈ {1, . . . , m}.

Here, ∂ fenchel refers to the subdifferential operator in the sense of convex analysis, i.e.,

−∂ fenchel(−c)(x̄) = co{ fi : i ∈ I(x̄)}
with “co” standing for the convex hull operation. Since the constraints f T

i x ≥ 0 are
inactive at the solution x̄, the multipliers y1, . . . , ym must be equal to zero. By
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contrast, y0 is positive because otherwise the pointedness of K+ would be contra-
dicted. For completing the proof, it is enough to reformulate

x̄ ∈ 1
2y0

co{ fi : i ∈ I(x̄)}, y0 > 0

as a conic hull inclusion. 
�

Theorem 2.26 Let n and q ∈ {1, . . . , n} be arbitrary, but not as in Proposition 2.24.
Then x̄ = πinc(Uq,n) and ρ(Uq,n) can be explicitly computed as follows:

(a) For q ≥ (n/2) + 1, one has ρ(Uq,n) = h/
√

2 and

x̄i =
{

(2i − q − 1)h/2 if i ∈ {1, . . . , q}
(n + q + 1 − 2i)h/2 if i ∈ {q + 1, . . . , n}

with h = 2
√

3[n(n2 − 3nq + 3q2 − 1]−1/2.
(b) For q < (n/2) + 1, one has ρ(Uq,n) = d/

√
2 and

x̄i =
{

(2i − q)d/2 if i ∈ {1, . . . , q − 1}
(n + q − 2i)d/2 if i ∈ {q, . . . , n}

with d = 2
√

3[n(n2 − 3nq + 3n − 6q + 3q2 + 2]−1/2.

Proof We prove only (a), as (b) follows in an absolutely analogous way. Note that

Uq,n = {
x ∈ R

n : f T
1 x ≥ 0, . . . , f T

n−1x ≥ 0
}

with

fi =
{

(ei+1 − ei)/
√

2 if i ∈ {1, . . . , q − 1}
(ei − ei+1)/

√
2 if i ∈ {q, . . . , n − 1}

and {e1, . . . , en} standing for the canonical basis of R
n. According to Lemma 2.25, we

are done if we can prove the three conditions listed in (41). The first condition can
be easily checked from the very definition of x̄. By the way, it took us a long time to
figure out which was the general structure of the candidate vector x̄. The announced
expression of h corresponds to the positive root of the quadratic equation

(h/2)2

⎡

⎣
q∑

i=1

(2i − q − 1)2 +
n∑

i=q+1

(n + q + 1 − 2i)2

⎤

⎦ = 1.

Such choice of h guarantees that ‖x̄‖ = 1. Concerning the last condition in (41), one
has

√
2 f T

i x̄ =
{

h if i �= q

(q − (n/2)) h if i = q,

and, therefore,

I(x̄) =
{ {1, . . . , n − 1}\{q} if q > (n/2) + 1

{1, . . . , n − 1} if q = (n/2) + 1.
(42)
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Let us consider the first case in (42). The second case can be treated in a similar way.
We must show that

x̄ =
q−1∑

i=1

yi(ei+1 − ei) +
n−1∑

i=q+1

yi(ei − ei+1) (43)

for suitable coefficients y1, . . . , yq−1, yq−1, . . . , yn−1 ≥ 0. By writing (43) componen-
twisely, one gets

x̄1 = −y1

x̄i = yi−1 − yi for i = 2, . . . , q − 1

x̄q = yq−1

x̄q+1 = yq+1

x̄i = yi − yi−1 for i = q + 2, . . . , n − 1

x̄n = −yn−1.

The above linear system admits

yi =
{

i(q − i)h/2 for i = 1, . . . , q − 1
(n − i)(i − q)h/2 for i = q + 1, . . . , n − 1 (44)

as solution. By using the very definition of x̄ one can check that (44) is a collection of
nonnegative coefficients. 
�

Theorem 2.26 shows the components of πinc(Uq,n) are symmetrically distributed
around 0, provided that n and q are not as in Proposition 2.24. We end this section
with an easy corollary.

Corollary 2.27 One has:

(a) ρ(Uq,n) = ρ(Un−q+1,n) for all q ∈ {1, . . . , n}.
(b) The function q ∈ {1, . . . , n} �→ ρ(Uq,n) is unimodal, achieving its peak at q =

(n + 1)/2 if n is odd, and at q ∈ {n/2, (n/2) + 1} if n is even.
(c) In particular, among all unimodal cones in R

n, the monotonic cones Kup
n and

Kdown
n are those that have the smallest inradius.

3 Cones of Symmetric Matrices

The linear space Sn of symmetric matrices of order n is equipped with the trace inner
product 〈A, B〉 = tr(AB). In such a Euclidean space there are plenty of interesting
and widely used convex cones. Some of them are quite simple and some others have
an amazingly complex structure.

3.1 Spectral Cones

A convex cone K in Sn is called spectral (or weakly unitarily invariant) if

A ∈ K =⇒ U T AU ∈ K for all U ∈ On.



506 R. Henrion, A. Seeger

In fact, the concept of spectrality applies to arbitrary sets in Sn and not just to convex
cones. The next lemma is taken from [26]. The notation λ(A) = (λ1(A), . . . , λn(A))T

stands for the vector of eigenvalues of A ∈ Sn arranged in nondecreasing order,
and Diag(x) stands for the diagonal matrix whose entries on the diagonal are the
components of the vector x ∈ R

n.

Lemma 3.1 A convex cone K in Sn is spectral if and only if there is a permutation
invariant convex cone Q in R

n such that

K = {A ∈ Sn : λ(A) ∈ Q} .

Furthermore, such Q is unique and it is given by

QK = {
x ∈ R

n : Diag(x) ∈ K
}
.

A similar lemma could be stated for general convex sets (cf. [32, 33]), but we focus
the attention on convex cones. A list of examples of spectral convex cones is provided
in [26]. What makes a spectral convex cone K so attractive is that everything boils
down to working with the corresponding permutation invariant convex cone QK.
For instance, one can write

int(K) = {A ∈ Sn : λ(A) ∈ int(QK)}
∂K = {A ∈ Sn : λ(A) ∈ ∂ QK}
K+ = {

A ∈ Sn : λ(A) ∈ Q+
K
}

and many other formulas of the same kind. One can also reverse the order and write
instead

int (QK) = {x ∈ R
n : Diag(x) ∈ int(K)}

∂ QK = {x ∈ R
n : Diag(x) ∈ ∂K}

Q+
K = {x ∈ R

n : Diag(x) ∈ K+}.
For the sake of completeness, we recall also the Iusem-Seeger commutation principle
for optimization problems with spectral data (cf. [26, Lemma 4]).

Lemma 3.2 Let Q be a spectral set in Sn and � : Sn → R be a spectral function, i.e.,

�(U T AU) = �(A) for all A ∈ Sn and U ∈ On.

Let Ā, B̄ ∈ Sn. If B̄ is a local minimum (or a local maximum) over Q of the function
〈Ā, · 〉 + �( · ), then Ā and B̄ commute.

With all this information at hand, we are now ready to state:

Theorem 3.3 Let K ∈ �(Sn) be spectral. Then

(a) ρ(K) = ρ(QK) and μ(K) = μ(QK).
(b) K is solid if and only if QK is solid. In such a case, πinc(K) = Diag (πinc(QK)) .

(c) K is pointed if and only if QK is pointed. In such a case, πcirc(K) =
Diag (πcirc(QK)) .
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Proof

Part (a) Spectrality is used at several stages. The starting point is the observa-
tion that

ρ(K) = max
A∈K
‖A‖=1

dist[A, ∂K]

= max
U∈On, x∈QK
‖UDiag(x)UT ‖=1

dist
[
UDiag(x)U T , ∂K

]
. (45)

Since ‖ · ‖ and dist[ · , ∂K] are spectral functions, one can get rid of the
maximization variable U ∈ On and write simply

ρ(K) = max
x∈QK

‖Diag(x)‖=1

dist[Diag(x), ∂K].

In other words, a solution to (45) can be found in the subspace of diagonal
matrices. A clever application of Lemma 3.2 shows that

dist[Diag(x), ∂K] = dist
[
x↑, ∂ QK

]

for all x ∈ R
n. Since QK is permutation invariant, so is the function

dist
[ · , ∂ QK

]
. So, after simplification, one ends up with

ρ(K) = max
x∈QK‖x‖=1

dist[x, ∂ QK]. (46)

This establishes the equality between the inradiuses of K and QK. As a
by-product, one gets

μ(K) =
[
1 − [

ρ
(
K+)]2

]1/2 =
[
1 − [

ρ (QK+)
]2
]1/2 =

[
1 − [

ρ
(
Q+

K
)]2
]1/2

= μ(QK).

Part (b) As a consequence of the previous part, one obtains

K is solid ⇔ ρ(K) > 0 ⇔ ρ(QK) > 0 ⇔ QK is solid.

If K is solid, then the solution to (45) is unique. In fact, it has the form
πinc(K) = Diag (x̄) with x̄ ∈ R

n. As stated implicitly in the proof of (a),
such x̄ must be the unique solution to (46).

Part (c) Similarly,

K is pointed ⇔ μ(K) < 1 ⇔ μ(QK) < 1 ⇔ QK is pointed.

If K is pointed, then

πcirc(K) = πinc
(
K+) = Diag (πinc (QK+)) = Diag

(
πinc(Q+

K)
)

= Diag (πcirc(QK)) .

This completes the proof. 
�
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Example 3.4 The most familiar example of spectral cone is the Loewner cone of
positive semidefinite matrices:

Pn = {
A ∈ Sn : xT Ax ≥ 0 for all x ∈ R

n} .

It has R
n+ as associated permutation invariant cone. One obtains

πinc(Pn) = πcirc(Pn) = În

with În = In/
√

n denoting the normalized identity matrix of order n. One gets also
ρ(Pn) = √

1/n and μ(Pn) = √
1 − (1/n).

Example 3.5 For each p ∈ {2, . . . , n − 1}, consider the positively homogeneous con-
cave function

A ∈ Sn �→ gp(A) = sum of the p smallest eigenvalues of A

and the corresponding closed convex cone Kp,n = {A ∈ Sn : gp(A) ≥ 0}. This cone
has been studied under different angles by many authors [1, 26, 34]. It is known that
Kp,n is a spectral cone with (32) as associated permutation invariant cone. Hence,

πinc(Kp,n) = πcirc(Kp,n) = În and ρ(Kp,n) = √
p/n .

3.2 Cone of Copositive Matrices and Variants

The next proposition is specially tailored for dealing with the cone of copositive
matrices

Cn = {
A ∈ Sn : xT Ax ≥ 0 for all x ∈ R

n
+
}
,

but it can also be applied to more sophisticated cones like

En = {A ∈ Sn : A is stochastically copositive}
Pn,r = {A ∈ Sn : any principal submatrix of A of order r is positive semidefinite}
Cn,r = {A ∈ Sn : any principal submatrix of A of order r is copositive}

with r ∈ {1, . . . , n}. For a gentle introduction to copositivity the reader may consult
the survey papers [22, 23]. See the book by Jacobson [30] for the definition and main
properties of stochastic copositivity.

Proposition 3.6 Let K be a closed convex cone in Sn such that

Pn ⊂ K ⊂ {A ∈ Sn : ai,i ≥ 0 for all i ∈ {1, . . . , n}}.
Then πinc(K) = În and ρ(K) = 1/

√
n.

Proof The proof of this result appears implicitly in [22, Section 6.6]. 
�

The next example shows that the circumcenter of a solid pointed convex cone may
fall in the boundary of the cone. As a consequence, the concept of circumcenter is
different from that of incenter.
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Example 3.7 One says that B ∈ Sn is completely positive if one can find an integer m
and a matrix F of size n × m with nonnegative entries such that B = F FT . As shown
by Hall [19],

Dn = {
B ∈ Sn : B is completely positive

}

is the dual cone of Cn. By combining Proposition 3.6 and Theorem 1.4, one gets
πcirc(Dn) = În. Clearly, πcirc(Dn) is a completely positive matrix. On the other
hand, since any matrix in the interior of Dn is positive entrywise, it follows that
πcirc(Dn) ∈ ∂Dn.

4 By Way of Conclusion

We have derived explicit formulas for the optimal balls (6–7) in a large variety of
situations. Table 2 gives a long list of examples, but it is not exhaustive. The most
remarkable results were obtained in the context of the Euclidean space R

n, but some
advances were made also in the context of the Euclidean space Sn.

We would like to point out that a challenging question concerning the cone
of copositive matrices has been left unsolved, namely, the problem of computing
its circumcenter and its circumradius. In view of Theorem 1.4, this amounts to
computing the incenter and the inradius of the cone of completely positive matrices.
The cone of copositive matrices can be viewed as a particular case of

Cn,Q = {
A ∈ Sn : xT Ax ≥ 0 for all x ∈ Q

}
, (47)

where Q stands for an arbitrary set in R
n. The closed convex cone (47) has been

explored in detail by [10], but not from the point of view of its incenter and its
circumcenter. Such a study remains to be done.

Table 2 Inradius and circumradius for various cones in R
n and Sn

K πinc(K) ρ(K) πcirc(K) μ(K)

R
n+ 1̂n

√
1/n 1̂n

√
1 − (1/n)

�(y, θ) y sin θ y sin θ

E(A) en
[
1 + λmax(A)

]−1/2 en
[
1 + λmin(A)

]−1/2

�p,n (1 ≤ p ≤ 2) en
[
1 + (n − 1)(2−p)/p

]−1/2
en

√
2/2

�p,n (p ≥ 2) en
√

2/2 en

[
1 − 1

1+(n−1)(p−2)/p

]1/2

Kp,n 1̂n
√

p/n 1̂n ?

Kup
n Cf. Proposition 2.23

[
6

n(n−1)(n+1)

]1/2
Not unique 1

Uq,n Cf. Theorem 2.26 Cf. Theorem 2.26 Not unique 1

Pn În
√

1/n În
√

1 − (1/n)

Kp,n În
√

p/n În ?

Cn În
√

1/n ? ?
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