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Abstract The paper considers the computation of the probability of feasible load
constellations in a stationary gas network with uncertain demand. More precisely, a
networkwith a single entry and several exits with uncertain loads is studied. Feasibility
of a load constellation is understood in the sense of an existing flowmeeting these loads
alongwith given pressure bounds in the pipes. In a first step, feasibility of deterministic
exit loads is characterized algebraically and these general conditions are specified to
networks involving at most one cycle. This prerequisite is essential for determining
probabilities in a stochastic setting when exit loads are assumed to follow some (joint)
Gaussian distribution when modeling uncertain customer demand. The key of our
approach is the application of the spheric-radial decomposition of Gaussian random
vectors coupled with QuasiMonte-Carlo sampling. This approach requires an efficient
algorithmic treatment of the mentioned algebraic relations moreover depending on a
scalar parameter. Numerical results are illustrated for different network examples and
demonstrate a clear superiority in terms of precision over simple generic Monte-Carlo

B René Henrion
henrion@wias-berlin.de

Claudia Gotzes
claudia.gotzes@uni-due.de

Holger Heitsch
holger.heitsch@wias-berlin.de

Rüdiger Schultz
ruediger.schultz@uni-due.de

1 Faculty of Mathematics, University of Duisburg-Essen, Campus Essen, Thea-Leymann-Str. 9,
45127 Essen, Germany

2 Weierstrass Institute, Mohrenstraße 39, 10117 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-016-0564-y&domain=pdf


428 C. Gotzes et al.

sampling. They lead to fairly accurate probability values even for moderate sample
size.

Keywords Mathematical models for gas pipelines · Nomination validation ·
Gas network capacity · Uncertainty quantifcation · Optimization under stochastic
uncertainty · Spheric-radial decomposition
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1 Introduction

The present paper deals with mathematical aspects of gas transport in pipeline net-
works. The latter has been exposed to enormous deregulation in the recent past. This
has created new types of economic activity, and has centered categories which had
been rather marginal before. An example of the latter kind is the concept of network
capacity of which the grid operator shall offer plenty in a flexible way, and this without
discriminating potential market participants. Mathematically this poses the question
of what capacity is and how to compute it.

Central objects of study in the present paper are gas flows in the pipes and pressures
at the nodes, both under uncertainty of gas withdrawals from the network (loads)
at exit (delivery) nodes. Assuming the uncertainty of withdrawals is stochastic with
known distributions, an efficient method for calculating probabilities for the feasibility
of load coverage is presented. Numerical tests confirm superiority of the proposed
method over approaches relying on pure Monte Carlo rather than Quasi Monte Carlo
sampling and/or which incorporate less structural knowledge on the (implicit) sets
whose probability is looked for.

A passive steady-state network for the transport of natural gas is considered. Here,
“passive” refers to the absence of controllable (or “active”) network elements as there
are valves, control valves, or compressors, cf. Koch et al. (2015). The network is
assumed to be in steady state, i.e., time dependence of pressure and flow are neglected.

The intention behind working with passive networks in steady-state does not come
fromdirect applicability in practice,which indeed rarely is the case. Instead,motivation
comes from implanting solutions developed this way into larger models which are
much closer to reality and where a probability calculation, for instance, arises as
part of a functional-value or gradient calculation or approximation. At the end of the
present paper some ideas in the context of chance constrained stochastic programs
will be outlined.

The following two-step procedure for gas trading has been established by European
legislation and illustrates the change the natural gas industry has undergone in the
previous decade: First, the gas transport customer, usually so well in advance that
uncertainty is present less or more massively, must book with a transmission system
operator (TSO) capacity contracts. These are rights to inject or withdraw gas up to
certain limits at corresponding nodes of the network. On the day before the booked gas
transport is planned to actually take place the transport customers have to nominate,
i.e., to declare to what extent and where they plan to exercise their rights obtained
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by the booking. This procedure then allows the TSO to schedule the gas transport in
advance.

The paper is organized as follows: In Sect. 2 relevant features of gas transport
are introduced, consequences for mathematical modeling are discussed, and related
literature is reviewed.

The basic prerequisite for determining the desired probability is the derivation of
preferably explicit equalities/inequalities allowing for an efficient feasibility check of
a single nomination. In Sect. 3 this will be provided both for a general network and
for a tree structure.

The explicit description of feasibility enables applying a sample based estimation
of the probability by means of Monte Carlo (MC) or Quasi-Monte Carlo (QMC)
simulation of nominations according to the given distribution. In Sect. 4, we will
consider the so-called spheric-radial decomposition ofGaussian randomvectorswhich
is tailored to multivariate Gaussian distributions and promises a significantly lower
variance for the estimated probabilities.

Section 5 illustrates the application of this method for two simple examples with
3 nodes (one entry, two exits). It will be evident then, that the success of the method
relies on the efficient algebraic determination of the intersection of directional rays
with the set of feasible nominations. The increased difficulty by the presence of cycles
in the network is highlighted.

In Sect. 6, the previous observations will be systemized towards a general applica-
tion of spheric-radial decomposition to networks involving atmost one cycle. Here, the
general algebraic characterization derived in Sect. 3 will be exploited in a parametric
fashion.

Section 7 demonstrates that the presented method provides fairly precise probabil-
ities for cycles or trees even with comparatively large numbers of nodes. In particular
the combination of QMC sampling with spheric-radial decomposition compares very
favourably with simpler approaches such as MC and elementary sampling.

Finally, Sect. 8 provides some outlook of the presented methodology towards an
application within optimization problems involving probabilities such as stochastic
programs with probabilistic constraints. The announced outline of how to employ the
present results in chance constrained stochastic programs will conclude.

2 Mathematics and gas transport: update and literature

Flow and pressure in gas grids are essentially governed by physical conservation laws.
Adopting stationarity, these laws can be modeled by linear and nonlinear equations,
stemming from Kirchhoff’s First and Second Laws (Kirchhoff 1847) and resulting in
equality systems given by multivariate polynomials of degree at most 2.

Gas flows go beyond the standard settings of network flow optimization in oper-
ations research (maximum flow, minimum cost flow, see for instance (Ahuja et al.
1993). Indeed, while flow preservation at nodes is captured by the usual linear
relations, the nodal pressures are crucially ruled by the fact that the drop of their
squares along a line (pipe) is proportional to the squared throughput (flow) on the
line.
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Gas flows are driven by potential differences. In a pipe, they are always directed
towards the node with the lower potential and, due to different kinds of friction of
the molecules, internal or with the pipe wall, potential, i.e., pressure, is lost. This is
compensated by compressors, whose operation leads to further nonlinearities when
building mathematical models.

The article (Wong and Larson 1968) might be one of the first in a vast literature
that has developed in pipeline systems simulation and optimization (also consult the
website www.psig.org). Of course, review of that literature is beyond the scope of the
present paper, but there is an excellent up-to-date review by Ríos-Mercado and Boras-
Sánchez (2015) featuring plenty of references. Furthermore there is the recent fairly
comprehensive volume on evaluating capacities in gas networks (Koch et al. 2015),
and also the classics (Osiadacz 1987; Zucker and Biblarz 2002) shall be mentioned at
this place.

Since the deregulation of the natural gas industry, planning and operation of gas
transportation are subject to new rules which are primarily determined by marketing
and trading, but maintain technical feasibility an indispensable requirement. Tradi-
tional tasks such as fuel cost minimization for compressors are supplemented, if not
outperformed in relevance, by feasibility and optimization problems with strong links
to economics. An example for the latter is the handling of maximum pipeline capacity
under strict transportation contracts.

A principal difference at the European gas market is that, formerly the gas compa-
nies have been simultaneous gas traders and network operators, whereas today there
are either trading or operating companies, now acting independently without sharing
knowledge.

From the position of the network operator who is responsible for reliable network
operation it is mandatory that all nominations which are theoretically possible within
the frame of the bookings are feasible in terms of physical, economical, and techno-
logical side conditions. The feasibility check of a nomination is called nomination
validation, the validation of all theoretically possible nominations is referred to as
verification of booked capacities. See Koch et al. (2015) for a detailed account on
these two basic tasks in modern gas pipeline management.

Among the economical side conditions of gas network operation load coverage is
of supreme importance since it reflects the very purpose of gas transmission, namely
to serve customers. When quantifying coverage of future load it is obvious that uncer-
tainty comes into play. Typically, the nature of uncertainty differs between injection
points (entries), where they aremore price driven, andwithdrawal points (exits), where
they are mainly temperature driven. This suggests to model the latter by means of ran-
dom variables and to leave the former as generally uncertain. This lop-sided situation
suggests to consider a probabilistic set up for exits using some probability distribution
(for instance, estimated from historical data) and to impose a ’worst-case’ requirement
on the entry-side.

In the research literature the move to pipeline capacity driven considerations comes
to the fore to bigger and bigger extent: Nomination validation is addressed in Fügen-
schuh et al. (2014) and Pfetsch et al. (2015). In Misra et al. (2015) throughput
maximization, in Vuffray et al. (2015) robustness of natural gas flows, and in Dvi-
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jotham et al. (2015) existence of optimal solutions to computationally hard problems
in natural gas transmission networks are studied.

In the already mentioned article Ríos-Mercado and Boras-Sánchez (2015), Ríos-
Mercado andBorraz-Sánchez concludewith research challenges from the optimization
perspective caused by the need of greater flexibility in the daily gas transport oper-
ations. Among the topics they address there are (i) analogies with AC load flow in
power grids, (ii) integration and solution of transient models, (iii) the need of stochas-
tic models and approaches, and (iv) the need of analytical models for the optimization
of the pipeline capacity release. The quantification of nomination feasibility in the
present paper contributes to items (iii) and (iv) from that list.

3 Explicit characterization of gas flow feasibility

In a passive gas network feasibility of a nomination is equivalent to the existence
of a pressure-flow profile fulfilling Kirchhoff’s Laws and meeting nodal bounds on
the pressure. For a characterization of the set of all capacities that can be realized,
functional relations in the nomination space are sought, that hold if and only if the
nomination is feasible. These functional relations become closer and closer coupled
among each other themore intertwined cycles there are in the network. Inwhat follows,
a general characterization is derived that still contains as many implicit indeterminates
as there are fundamental cycles in the network.

3.1 The general case

Consider a connected directed graph G = (V+, E), with |V+| = n + 1 nodes and
|E | = m ≥ n edges, modeling a passive gas transportation network. Assume the
network is in steady state and let q ∈ R

m denote the flows along the edges of G and
p+ ∈ R

n+1 the pressure at nodes in V+. Let A+ be the node-arc incidence matrix
of G, with a+

ie = −1 and a+
je = 1 for all i, j ∈ {0, . . . , n} and e = (i, j) ∈ E . The

vector b+ ∈ R
n+1 stands for a balanced load, i.e., it holds 1�b+ = 0, where 1 denotes

the vector of all ones in suitable dimension, here n + 1. Moreover, we make the sign
convention that bi ≤ 0 at injection points (entries) and bi ≥ 0 at withdrawal points
(exits). Mass, or mass flow, conservation at each node in V+ (Kirchhoff’s First Law)
now reads

A+q = b+.

It is well-known that the matrix A+ has rank n and that we can remove an arbitrary
row without changing the solution space. Therefore, the first row A+

0•, corresponding
to the node with index i = 0 in A+ and the first component of b+ = (b+

0 , b) are
deleted, yielding A, b and

Aq = b. (1)
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The pressure drop in pipe (i, j) ∈ E is modeled as

(
p+

i

)2 − (p+
j )2 = Φi j |qi j |qi j

and for the whole network

(
A+)� (p+)2 = −Φ|q|q. (2)

Here,
(

p+)2 denotes the (n + 1)-vector with components (p+
i )2, analogously, Φ|q|q

has the components Φi j |qi j |qi j for all (i, j) ∈ E . The matrix Φ is a diagonal matrix
with positive entries.

It is part of our model simplification to handle Φi j as a constant and dropping in
particular its dependence on pressure and flow.

With lower and upper pressure bounds p+min, p+max we are led to introduce the
following set M̃ of feasible load vectors

M̃ :=
{

b+
∣∣∣1�b+ = 0; ∃(q, p+) with p+ ∈

[
p+min, p+max

]
and (1), (2)

}
.

The following provides a characterization of the set M̃ where all pressure variables
and “most of” (details below) the flow variables are eliminated. The set V is formed
by the nodes with numbers 1, . . . , n.

Theorem 1 Let A = (AB, AN ) be a partition into basis and nonbasis submatrices of
A. Let ΦB, ΦN and qB, qN be according partitions of Φ and q. Let p0 be the pressure
at the node corresponding to the removed row. Define

g : R|V |×R
|N | →R

|V |, g(u, v) :=(A�
B

)−1
ΦB
∣∣A−1

B (u − AN v)
∣∣(A−1

B (u − AN v)
)
.

(3)

Then M̃ consists of all b+ with 1�b+ = 0 for which there is a z such that

A�
N g(b, z) = ΦN |z|z (4)

(pmin
0 )2 ≤ min

i=1,...,n

[
(pmax

i )2 + gi (b, z)
]

(5)

(pmax
0 )2 ≥ max

i=1,...,n

[
(pmin

i )2 + gi (b, z)
]

(6)

min
i=1,...,n

[
(pmax

i )2 + gi (b, z)
]

≥ max
i=1,...,n

[
(pmin

i )2 + gi (b, z)
]

(7)

Proof We first will show that b+ ∈ M̃ implies the existence of some z meeting (4) to
(7). Formula (1) can be written as

qB = A−1
B (b − AN qN ). (8)

123



On the quantification of nomination feasibility in… 433

Rewriting (2) yields

(
A+
0B

)�
p20 + A�

B p2 = −ΦB |qB |qB,
(

A+
0N

)�
p20 + A�

N p2 = −ΦN |qN |qN .

Since the rows of A+ sum up to zero, A+
0B = −1� AB . Multiplication of the first

equation with
(

A�
B

)−1
results in

p2 = 1p20 − (A�
B

)−1
ΦB |qB |qB . (9)

Inserting this into the second equation and using that A+
0N = −1� AN provides

−A�
N1p20 + A�

N1p20 − A�
N

(
A�

B

)−1
ΦB |qB |qB = −ΦN |qN |qN .

Employing (8) we obtain

A�
N

(
A�

B

)−1
ΦB |A−1

B (b − AN qN )|(A−1
B (b − AN qN )) = ΦN |qN |qN ,

or in terms of g,

A�
N g(b, qN ) = ΦN |qN |qN .

Hence, if (q, p+) fulfills (1) and (2), then (4) is valid for z = qN . Now notice that in
g-notation formula (9) reads

p2 = 1p20 − g(b, qN )

Of course, if p+ ∈ [p+min, p+max
]
then the component-wise relation also holds for

the squares and the last formula provides

(
pmin

i

)2 + gi (b, qN ) ≤ p20 ≤ (
pmax

i

)2 + gi (b, qN ) for all i = 1, . . . , n.

Thus

(pmin
0 )2 ≤ p20 ≤ min

i=1,...,n

[
(pmax

i )2 + gi (b, z)
]
,

establishing (5). Formula (6) follows in the sameway, and (7) holds because, otherwise,
p20 would be a member of the empty set.

In the opposite direction, we show that if for some b+ ∈ R
n+1 with 1�b+ = 0

there exists a z such that (4) to (7) are valid, then there exists (q, p+) with p+ ∈[
p+min, p+max

]
fulfilling (1) and (2). Consider the two closed intervals

[
max

i=1,...,n

[
(pmin

i )2 + gi (b, z)
]
, min

i=1,...,n

[
(pmax

i )2 + gi (b, z)
]]

,
[
(pmin

0 )2, (pmax
0 )2

]
.
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We show that their intersection is nonempty. By (7) the first interval is nonempty. If
the intersection were empty then either

min
i=1,...,n

[
(pmax

i )2 + gi (b, z)
]

< (pmin
0 )2

or

(pmax
0 )2 < max

i=1,...,n

[
(pmin

i )2 + gi (b, z)
]
.

Here, both outcomes produce contradictions with (5) and (6), respectively. Hence, the
intersection is nonempty. Now we are in the position to make the following choices:
(pmin

0 )2 ≤ p20 ≤ (pmax
0 )2 and

p20 ∈
[

max
i=1,...,n

[
(pmin

i )2 + gi (b, z)
]
, min

i=1,...,n

[
(pmax

i )2 + gi (b, z)
]]

(10)

p2i := p20 − gi (b, z) for all i = 1, . . . , n, (11)

qN := z, (12)

qB := A−1
B (b − AN z). (13)

From (10) it follows

min
i=1,...,n

[
(pmax

i )2 + gi (b, z)
]

≥ p20 ≥ max
i=1,...,n

[
(pmin

i )2 + gi (b, z)
]

or, equivalently,

(pmax
i )2 ≥ p20 − gi (b, z) ≥ (pmin

i )2 for all i = 1, . . . , n.

and, further, using (11),

(pmax
i )2 ≥ p2i ≥ (pmin

i )2 for all i = 1, . . . , n.

This verifies the pressure bounds p+ ∈ [p+min, p+max
]
.

In vector notation, (11) reads

p2 = 1p20 − g(b, z)

This can be continued as follows

A�
B p2 = A�

B1p20 − A�
B g(b, z)

A�
B p2 = (1� AB

)�
p20 − ΦB |qB |qB = (− A+

0B

)�
p20 − ΦB |qB |qB

(
A+
0B

)�
p20 + A�

B p2 = −ΦB |qB |qB (14)
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In the first row above the equation has been multiplied by A�
B . In the second it was

used that the row sum of A+ is zero, and (14) follows. Because (4) is valid one obtains
by using (12) and adding a zero term

−ΦN |qN |qN = −A�
N1p20 + A�

N1p20 − A�
N

(
A�

B

)−1
ΦB |qB |qB .

With (11) this provides

−ΦN |qN |qN = −A�
N1p20 + A�

N

(
1p20 − (A�

B

)−1
ΦB |qB |qB

)
= −A�

N1p20 + A�
N p2,

and, again, because the rows of A+ sum up to zero, it follows−A�
N1 = −(1� AN

)� =
(

A+
0N

)�
, and further

(
A+
0N

)�
p20 + A�

N p2 = −ΦN |qN |qN .

Together with (14) this yields the pressure drop Eq. (2)

(
A+)� (p+)2 = −Φ|q|q.

It remains to show that the mass/mass flow conservation (1) holds. This follows by
inserting (12) in choice (13), giving

qB = A−1
B (b − AN qN ) which is equivalent to Aq = b.

Finally, since 1�b+ = 0, the conservation extends to the node with index 0:

A+
0•q = −1� Aq = −1�b = b+

0 .

This completes the proof. �	

Up to finding an auxiliary variable z satisfying (4), Theorem 1 identifies fully explicit
feasibility conditionswith respect to the load vector b and the side constraints (pressure
bounds). Therefore, the feasibility test for b reduces to determining the (unique, for
proofs see Ríos-Mercado et al. 2000; Stangl 2014) z solving (4) and then checking
the inequality system (5), (6), (7). Observe that the dimension of z corresponds to the
number of columns of the nonbasis part AN of the reduced incidence matrix A, hence
to the number of fundamental cycles in the network. Obviously, the situation should
be particularly comfortable for networks without cycles, as is illustrated now.

3.2 Trees: connected networks without cycles

Suppose G = (V+, E) is a tree (trivially a spanning tree of itself). Fix an arbitrary
leaf node as root and number it by 0. Direct all edges in E away from the root. In the
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incidence matrix A+ of G delete the line corresponding to the root, yielding A which
already is a basis matrix AB so that there is no nonbasis portion AN .

Using depth-first search, number the nodes so that numbers increase along any
path from the root to one of the leaves. Then assign to any edge (i, j) ∈ E the number
max{i, j}.

Adapting a conclusion in Bertsimas and Tsitsiklis (1997), proof of Theorem 7.3,
p. 281, one confirms that, rows and columns numbered thatway, AB is upper triangular.
So is its inverse, for which all nonzero entries are equal to 1.

More precisely, an entry (i, j) of A−1
B is 1 if and only if the unique path in G from

the root to the node j contains edge number i .
For k, � ∈ V , denote k 
 � if, in G, the unique directed path from the root to k,

denoted Π(k), passes through �.
Since AN is vacuous, one obtains for g as defined in (3)

g(b, z) = g(b) = (A−1
B

)�
ΦB
∣∣A−1

B b
∣∣(A−1

B b
)

and componentwise, for k = 1, . . . , |V|, with h(e) denoting the head of edge e,

gk(b) =
[(

A−1
B

)�]

k• ΦB
∣∣A−1

B b
∣∣(A−1

B b
)

=
∑

e∈E

[
A−1

B

]
ekΦe

∣∣∣
∣∣∣

∑

t∈V,t
h(e)

bt

∣∣∣
∣∣∣

⎛

⎝
∑

t∈V,t
h(e)

bt

⎞

⎠ (15)

=
∑

e∈Π(k)

Φe

∣∣∣∣
∣∣

∑

t∈V,t
h(e)

bt

∣∣∣∣
∣∣

⎛

⎝
∑

t∈V,t
h(e)

bt

⎞

⎠ . (16)

For illustrative purposes, we will come back to trees from time to time. To reduce
technicality we assume that the network has the node 0 as the only entry and all
remaining nodes as exits, again with all edges directed away from 0. Then in (16) flow
and edge directions conform, leading to

gk(b) =
∑

e∈Π(k)

Φe

⎛

⎝
∑

t∈V,t
h(e)

bt

⎞

⎠

2

. (17)

Now, Theorem 1 specializes as follows:

Corollary 1 If the network is a tree with a single entry as its root, then the set of
feasible nominations is given by

M̃ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1�b, b) ∈
R− × R

n+

∣∣∣
∣∣∣∣∣∣
∣

(i) 0 ≤ −y
0
+ min

k=1,...,|V |
{yk + gk(b)}

(ii) 0 ≤ y0 − max
k=1,...,|V |

{y
k
+ gk(b)}

(iii) 0 ≤ min
k=1,...,|V |

{yk + gk(b)} − max
k=1,...,|V |

{y
k
+ gk(b)}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(18)
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where gk(b) is as in (17) and

y
k

:= (pmin
k )2, yk := (pmax

k )2, (k = 0, . . . , |V|). (19)

4 Random exit loads and spheric-radial decomposition of a multivariate
Gaussian distribution

Next, the random nature of the exit load vector b+ is taken into account. Since the
load must be balanced, i.e., 1�b+ = 0, the following set of feasible exit load vectors
becomes relevant

M =
{

b ∈ R
|V | | (−1T b, b) ∈ M̃

}
, (20)

where M̃ is as in Theorem 1. More precisely, if b is identified with some random
vector ξ(ω) on a probability space (Ω,A,P), then for a given (passive) gas network
(topology, pressure bounds),

P {ω ∈ Ω | ξ(ω) ∈ M} , (21)

marks the probability of exit load vectors to be feasible.
Assume that ξ ∼ N (μ,Σ), i.e., the random vector ξ follows a multivariate

Gaussian distribution with mean vector μ and positive definite covariance matrix
Σ . Behind this choice there are the following reasons:

The main variation of exit load data is temperature driven. However, even at fixed
temperature, considerable random variation remains. That is why exit loads can be
understood as a stochastic process depending on temperature andmay be characterized
by a finite family of multivariate distributions, each of them referring to some (rather
narrow) range of temperature and reflecting the joint distribution of loads at the given
set of exit points, see Koch et al. (2015, Chapter 13). As recorded in the same reference
(Koch et al. 2015, Table 13.3), these distributions are most likely to be Gaussian
(possibly truncated) or lognormal. Our assumption to consider amultivariate Gaussian
distribution for ξ can therefore be seen as a prototype settingwhich—using the spheric-
radial decomposition presented next—maybe adapted without much effort to more
realistic settings (multivariate log-normal distributions, probabilities with respect to
several temperature classes simultaneously, etc.).

4.1 Spheric-radial decomposition

Returning to (21), the computation of this probability amounts to the solution of a pos-
sibly highdimensional (number of exit nodes) multiple integral. A favourable situation
to carry out this computation under Gaussian distribution occurs for polyhedral sets
M . For details, we refer to Genz and Bretz (2009), which not only gives an excellent
overview on this topic but also presents a very efficient algorithm developed by the
author himself.Unfortunately, in the setting ofTheorem1wecannot expect the feasible
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set to be polyhedral, not even convex. Therefore, recourse to the mentioned algorithm
is not possible. Still one could resort to Monte Carlo (MC) or Quasi-Monte Carlo
(QMC) simulations of ξ and exploit the relations provided in Theorem 1 in order to
approximate the desired probability directly.We shall rather propose here the so-called
spheric-radial decomposition of a Gaussian distribution (e.g., Deák 2000) as a promis-
ing alternative which not only may significantly reduce the variance of estimating (21)
but moreover offers the possibility of efficiently approximating gradients of (21) with
respect to an external parameter. This last feature is of supreme importance for opti-
mization problems under probabilistic constraints. The following result is well-known:

Theorem 2 (spheric-radial decomposition) Let ξ ∼ N (0, R) be some n-dimensional
standard Gaussian distribution with zero mean and positive definite correlation matrix
R. Then, for any Borel measurable subset M ⊆ R

n it holds that

P(ξ ∈ M) =
∫

Sn−1
μχ {r ≥ 0 | r Lv ∈ M}dμη(v),

where S
n−1 is the (n − 1)-dimensional sphere in R

n, μη is the uniform distribution
on S

n−1, μχ denotes the χ -distribution with n degrees of freedom and L is such that
R = L LT (e.g., Cholesky decomposition).

To make this result available to the present analysis, it has to be adapted to general
Gaussian distributions ξ ∼ N (μ,Σ). This is done by passing to the standardized
random vector

ξ∗ := D−1(ξ − μ) ∼ N (0, R); D := diag (
√

Σi i )i=1,...,n; R := D−1Σ D−1

and observing thatP(ξ ∈ M) = P(ξ∗ ∈ D−1(M −μ)). Now, to computeP(ξ ∈ M),
Theorem 2 has to be applied to P(ξ∗ ∈ M∗) for M∗ := D−1(M − μ).

The previous observations suggest the following conceptual algorithm to approxi-
mate the Gaussian probability of a set M :

Algorithm 3 Let ξ ∼ N (μ,Σ) and L such that L LT = Σ (e.g., Cholesky factor-
ization).

1. Sample N points {v1, . . . , vN } uniformly distributed on the sphere Sn−1.
2. Compute the one-dimensional sets Mi := {r ≥ 0 | r Lvi + μ ∈ M} for i =

1, . . . , N .

3. Set P(ξ ∈ M) ≈ N−1
N∑

i=1
μχ(Mi ).

The simplest way to carry out the first step of the algorithm consists inMC sampling of
the standard Gaussian distribution N (0, In) and then normalizing the obtained sam-
pling points to unit length. This iswell-known to provide a sample of the uniformdistri-
bution on the sphere. It is significantlymore efficient, however, to replaceMCsampling
by QMC sampling of the same standard Gaussian distribution. This will be the method
of choice for this paper. An additional increase of efficiency might be expected from
applying QMC sampling directly tailored to the sphere (Brauchart et al. 2014).
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The second step is at the heart of the algorithm and requires structural knowledge
about the set M . In the simplest case (e.g., if M is convex) the sets Mi are one-
dimensional intervals. Figure 2 in Sect. 5.1 shows an example of sampling points
v1, v2, v3, v4 such that all sets Mi are intervals of the form [0, ri ]. In more com-
plex situations, the Mi may be finite unions of intervals whose endpoints have to be
determined, for instance, as zeros of some higher order polynomial.

The last step consists in determining the probabilities of the sets Mi with respect
to the χ -distribution and in calculating the average over all samples. Note, that the
χ -probabilities are easily evaluated using numerically highly precise standard approx-
imations for the distribution function Fχ of this one-dimensional distribution. If, for
instance,

Mi = ∪l
j=1[a j , b j ]

is a finite and disjoint union of intervals, then

μχ(Mi ) =
l∑

j=1

(Fχ (b j ) − Fχ (a j )).

4.2 Application to tree structured networks

As shown in Corollary 1, the representation of feasibility of nominations becomes
handy if there are no cycles in the network G. This will be discussed now, while the
more involved case of a cycle will be addressed in Sect. 6.

Given a vector vi ∈ S
n−1 sampled in Step 1 of Algorithm 3, the crucial Step 2,

consists in representing the set Mi := {r ≥ 0 | r Lvi + μ ∈ M} as a union of disjoint
intervals. Setting w := Lvi and b(r) := rw + μ, we obtain from (16), (18) and (20)
that

Mi =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ≥0

∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣

(i) 0≤rw + μ

(ii) 0 ≤ −(pmin
0 )2+ min

k=1,...,|V |

[
(pmax

k )2+hk(r)
]

(iii) 0 ≤ (pmax
0 )2 − max

k=1,...,|V |

[
(pmin

k )2+hk(r)
]

(iv) 0 ≤ min
k=1,...,|V |

[
(pmax

k )2 + hk(r)
]

− max
k=1,...,|V |

[
(pmin

k )2+hk(r)
]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(22)

where

hk(r) := gk(b(r)) =
∑

e∈Π(k)

Φe

⎛

⎝
∑

t∈V,t
h(e)

(rwt + μt )

⎞

⎠

2

(k = 1, . . . , |V|). (23)
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Note that (i) in (22) determines the interval, for which b(r) is nonnegative. Later
we will refer to it as regular range. The remaining conditions (ii–iv), however, can be
written as system of quadratic inequalities only, because hk(r) is quadratic in r for all
k due to (23). In particular, we may write

Mi =
{

r ≥ 0
∣∣∣ 0 ≤ p( j)(r) ( j = 1, . . . , s)

}
,

where the p( j)(r) are (multivariate) polynomials of maximum degree 2 and the index
j is running from 1 to s according to the number of inequalities appearing in (22).
Thus, each inequality 0 ≤ p( j)(r) represents a union of at most two disjoint intervals
whose limits are determined in an elementary way. Then, Mi—as an intersection of
such sets—can be easily represented itself as a finite union of disjoint intervals as
required for Step 3 of Algorithm 3 (see discussion at the end of Sect. 4.1).

5 Illustrative examples

In order to illustrate the set M of feasible exit load vectors, two examples of elementary
networks, namely tree and cycle, are presented.

5.1 Simple tree

Consider the simple tree of Fig. 1 with one entry and two exit nodes. Figure 1 displays
the directed graph and flows corresponding to the given network. Recalling (20), and
applying relations (17), (18) one obtains

Fig. 1 Simple tree with one
entry node (0) and two exit
nodes (1, 2)

q1

q2
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1

2
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2b
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Fig. 2 Shape of the set M of feasible exit nodes (left) and its centered versions M −μ alongwith illustration
of spherical-radial decomposition (right) for a special setting of pressure bounds

M =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b ∈ R
2+

∣∣∣∣
∣∣∣∣∣
∣∣

0 ≤ −y
0
+ min{y1 + φ1b21, y2 + φ2b22}

0 ≤ y0 − max{y
1
+ φ1b21, y

2
+ φ2b22}

0 ≤ y1 + φ1b21 − y
2
− φ2b22

0 ≤ y2 + φ2b22 − y
1
− φ1b21

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (24)

For simplicity we put φ1 := φ2 := 1, introduce the short hand notation

α1 := y
0
− y1; α2 := y

0
− y2; α3 := y

1
− y2

β1 := y0 − y
1
; β2 := y0 − y

2
; β3 := y1 − y

2

and derive that

M =

⎧
⎪⎨

⎪⎩
b ∈ R

2+

∣∣∣∣∣
∣∣

(i) α1 ≤ b21 ≤ β1

(ii) α2 ≤ b22 ≤ β2

(iii) α3 ≤ b22 − b21 ≤ β3

⎫
⎪⎬

⎪⎭
.

Figure 2 (left) illustrates the set M of feasible pairs (b1, b2) of exit nodes for
assumed pressure bounds

[y
0
, y0] = [2, 5], [y

1
, y1] = [y

2
, y2] = [1, 2]

implying that α1 = 0, α2 = 0, α3 = −1, β1 = 4, β2 = 4, β3 = 1. As can be seen,
the set M cannot be expected to be convex in general.

Figure 2 (right) illustrates the shifted set M − μ needed in Step 2 of Algorithm 3
when determining the Gaussian probability of M under distribution b ∼ N (μ,Σ) of
the random exit load vector. Here, we have assumed that Σ = I2 and μ = (0.5, 0.8),
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Fig. 3 Simple cycle with one
entry node (0) and two exit
nodes (1, 2)

0p

2p

1p

0

1

2

0b

2b

1bq

q

q

01

02

12

so that the mean load vector is feasible. In this case L = I2 and the sets Mi defined
in Algorithm 3 reduce to intervals [0, ri ] (illustrated in Fig. 2 (right) for a set of four
sample points vi from the sphere).

5.2 Simple cycle

To illustrate the difficulty in contrast to a tree, the elementary cycle depicted in Fig. 3
is considered next. Now, for a description of the set of feasible exit loads, Corollary 1
no longer applies and resorting to Theorem 1 is the option of choice. With the notation
introduced there, the incidence matrix reads

A+ =
⎛

⎝
−1 −1 0
1 0 −1
0 1 1

⎞

⎠ =
⎛

⎝
−1 − 1 0

AB AN

⎞

⎠

With AB = I, AN = (−1, 1)T and φi corresponding to the edge in the i-th column
of A+, the components gi of the mapping g from Theorem 1 become

g1(b, z) = φ1(b1 + z)|b1 + z|,
g2(b, z) = φ2(b2 − z)|b2 − z|.
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Recalling (19) and (20), relations (4), (5), (6), (7) yield the characterization

M =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b ∈ R
2+

∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

∃z :

0=φ1|b1 + z|(b1 + z) − φ2|b2 − z|(b2 − z)+φ3|z|z
0 ≤ −y

0
+ y1 + φ1|b1 + z|(b1 + z)

0 ≤ −y
0
+ y2 + φ2|b2 − z|(b2 − z)

0 ≤ y0 − y
1
− φ1|b1 + z|(b1+z)

0 ≤ y0 − y
2
− φ2|b2 − z|(b2 − z)

0 ≤ y1 + φ1|b1 + z|(b1 + z) − y
2
+φ2|b2 − z|(b2 − z)

0 ≤ y2 + φ2|b2 − z|(b2 − z) − y
1
+ φ1|b1 + z|(b1+z)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(25)

The difficulty here is the implicit dependence on the variable z. To eliminate this
variable one solves

φ1|b1 + z|(b1 + z) − φ2|b2 − z|(b2 − z) + φ3|z|z = 0. (26)

The absolute values require a case distinction, producing a quadratic equation in z for
every individual case. The root formula for quadratic equations in one variable yields
explicit representations of z by the load components bi .

The network at hand being small and, setting once more φ1 = φ2 = φ3 = 1,
symmetric, a substantial (but exceptional) short cut (avoiding a more elaborate case
distinction) is possible. Indeed, observing that, since considered loads, it holds that
b1 ≥ 0, b2 ≥ 0. Imposing b2 ≥ b1 then implies the pressure at node 2 to be less
than or equal to that at node 1, thus the flow is going from node 1 to 2, and z ≥ 0.
Analogously, b1 ≥ b2 implies z ≤ 0.

With z ≥ 0 equation (26) becomes

|b2 − z|(b2 − z) = (b1 + z)2 + z2

It follows that the left-hand side has to be nonnegative, and the equation reads

(b2 − z)2 = (b1 + z)2 + z2.

Analogously, with z ≤ 0, or equivalently b1 ≤ b2 the following equation results

(b1 + z)2 = (b2 − z)2 + z2

Solving these equations leads to

z =
⎧
⎨

⎩
−b1 − b2 +

√
2(b22 + b1b2) ≥ 0 if b2 ≥ b1,

b1 + b2 −
√
2(b21 + b1b2) < 0 otherwise.
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Fig. 4 Shape of the feasible set M for two different pressure bound settings

This permits to eliminate z in (25):

h1(b1, b2) := |b1 + z|(b1 + z) = (b1 + z)2

=

⎧
⎪⎨

⎪⎩

(√
2(b22 + b1b2) − b2

)2
if b2 ≥ b1,

(
2b1 + b2 −

√
2(b21 + b1b2)

)2
otherwise,

h2(b1, b2) := |b2 − z|(b2 − z) = (b2 − z)2

=

⎧
⎪⎨

⎪⎩

(
2b2 + b1 −

√
2(b22 + b1b2)

)2
if b2 ≥ b1,

(√
2(b21 + b1b2) − b1

)2
otherwise,

and arrive at a representation of feasibility in the space of load vectors b:

M =

⎧
⎪⎨

⎪⎩
b ∈ R

2+

∣
∣∣∣∣∣∣

(i) α1 ≤ h1(b1, b2) ≤ β1

(ii) α2 ≤ h2(b1, b2) ≤ β2

(iii) α3 ≤ h2(b1, b2) − h1(b1, b2) ≤ β3

⎫
⎪⎬

⎪⎭
,

where we used the same notation αi , βi as in the previous example.
Figure 4 illustrates the set of feasible exit load vectors for the same pressure bound

setting as in the tree example in Sect. 5.1 (left) and for a different setting (right).

6 Feasibility of exit loads in a cycle with a single entry

As could be seen from the previous examples, dealing with cycles inside the network
increases the amount of numerical work in order to check whether a concrete exit load
scenario is feasible or not, while the same question is more or less evident for a tree
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thanks to Corollary 1. In this section, we present a systematic algorithmic approach for
making relations (4), (5), (6), (7) explicit for a network consisting of a single loop with
a single entry. At the same time, this approach shall be adapted to the sampling step in
the spheric-radial decomposition in order to finally allow a fairly precise computation
of the desired probability P(ξ ∈ M).

6.1 Algebraic representation of the feasibility set

Weassume that the cycle contains |V+| = n+1 nodeswhere node 0 represents the only
entry. For analytical reasons, we label the edges according to their order when running
through the cycle in opposite direction to the nonbasis edge. Then, the (n + 1, n + 1)-
incidence matrix of this network is partitioned as follows:

A+ =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

−1 −1
1 −1

1
. . .

. . . −1
1 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (27)

A special instance of such cycle with its incidence matrix is provided in Sect. 7. Given
the partition above, the basis and nonbasis submatrices of A+ take the form

AB =

⎛

⎜⎜⎜⎜
⎝

1 −1

1
. . .

. . . −1
1

⎞

⎟⎟⎟⎟
⎠

, A−1
B =

⎛

⎜⎜⎜⎜
⎝

1 1 · · · 1
1

. . .
...

. . . 1
1

⎞

⎟⎟⎟⎟
⎠

and AN =

⎛

⎜⎜⎜
⎝

0
...

0
1

⎞

⎟⎟⎟
⎠

. (28)

In order to decide whether an exit load vector b is feasible or not, we, first of all,
have to solve the Eq. (4) for the variable z. Moreover, with regard to the spheric-radial
decomposition approach we need to determine an explicit function z(·) describing the
dependence of z on b. To this end, for a given vector b, we define recursively the
quantities

βn+1 := 0, βk := βk+1 + bk for k = n, . . . , 1, (29)

and state the following result:

Proposition 1 Given the incidence matrix (27), (4) is equivalent to the equation

f A(z) := φ1|β1 − z|∗ + · · · + φn+1|βn+1 − z|∗ = 0, (30)

where φk := Φk−1,k (k = 1, . . . , n), φn+1 := Φ0n and |x |∗ := |x |x. Moreover, f A

is strictly monotonically decreasing, there exists a unique z∗ with f A(z∗) = 0 and it
holds that βn+1 ≤ z∗ ≤ β1.
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Proof Observe that, by (28),

|A−1
B (b − AN z)|∗ =

∣∣∣∣∣
∣∣∣∣

b1+ b2+ · · · +bn − z
b2+ · · · +bn − z

. . .

bn − z

∣∣∣∣∣
∣∣∣∣

∗

=

∣∣∣∣∣
∣∣∣∣

β1 − z
β2 − z

...

βn − z

∣∣∣∣∣
∣∣∣∣

∗

.

Moreover, with (28) we have that

gi (b, z) =
i∑

j=1

φ j |β j − z|∗ (i = 1, . . . , n). (31)

The submatrix ΦN = Φ0n = φn+1 is a scalar coefficient corresponding to edge
(0, n) ∈ E . Therefore, recalling that βn+1 = 0 by definition, we arrive at

AT
N g(b, z) − ΦN |z|∗ = gn(b, z) + φn+1|βn+1 − z|∗ =

n+1∑

j=1

φ j |β j − z|∗.

This implies (30). Next, by φk > 0, each of the functions φk |βk − z|∗ has a nonpositive
derivative vanishing exactly at z = βk . Hence, these functions are strictly monotoni-
cally decreasing and so is f A as their sum. Finally, the sequence βk is decreasing too
by definition and due to bk ≥ 0. This entails that f A(β1) ≤ 0 and f A(βn+1) ≥ 0.
Since f A is strictly decreasing, there exists a unique z∗ with f A(z∗) = 0 and it holds
that βn+1 ≤ z∗ ≤ β1. �	
Proposition 1 provides an algorithmic approach to solve f A(z) = 0, analytically.
Determining the index k∗ such that z∗ ∈ [βk∗+1, βk∗ ] allows us to eliminate the
absolute value in the representation (30) of f A and to compute z∗ as the square root
of a scalar quadratic function. To identify the index k∗, we make use of the property

f A(β1) ≤ f A(β2) ≤ · · · ≤ f A(βn+1).

Since f A(β1) ≤ 0 and f A(βn+1) ≥ 0 we just need to track the sign of function
values in the above sequence and get the index k∗ as the one with f A(βk∗) ≤ 0 and
f A(βk∗+1) ≥ 0. Then z∗ is the (unique) solution of the quadratic equation

k∗∑

i=1

φi (βi − z)2 −
n+1∑

i=k∗+1

φi (βi − z)2 = 0, z ∈ [βk∗+1, βk∗ ] (32)

in the indicated interval. In order to emphasize the dependence of this solution on b
(which will be needed later for applying the spheric-radial decomposition approach),
we shall denote the parametric solution of (32) by z(b). By doing so, Theorem 1 and
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(20) yield that an exit load vector b in the given cycle with single entry at node 0
belongs to the set M if and only if

0 ≤ −(pmin
0 )2 + min

i=1,...,n

[
(pmax

i )2 + gi (b, z(b))
]
, (33)

0 ≤ (pmax
0 )2 − max

i=1,...,n

[
(pmin

i )2 + gi (b, z(b))
]
, (34)

0 ≤ min
i=1,...,n

[
(pmax

i )2 + gi (b, z(b))
]

− max
i=1,...,n

[
(pmin

i )2 + gi (b, z(b))
]
, (35)

where the gi are defined in (31).

6.2 Application to spheric-radial decomposition

Our goal now is to exploit the results for characterizing the set M in case of a cycle, in
order to efficiently compute its probability under uncertain exit loads via spheric-radial
decomposition as made precise in Algorithm 3. As mentioned earlier, the crucial step
of Algorithm 3 (Step 2) consists in determining the one-dimensional set

Rfeas := {r ≥ 0 | rw + μ ∈ M}. (36)

wherew := Lvi for givenmatrix L such that L LT = Σ , for given (mean) vectorμ and
given sample vi ∈ S

n−1. Note that L is regular because the covariance matrix Σ was
required to be positive definite. Hence, w �= 0, because otherwise the contradiction
vi = 0 to vi ∈ S

n−1 would result. Clearly, the role of b in the question ’b ∈ M?’
answered in the previous section, will be taken now by the vector b(r) := rw + μ.
first of all, the range of feasible r ≥ 0 is constrained by the fact that exit loads are
nonnegative. This leads us to define a regular range

Rreg := {r ≥ 0 | rw + μ ≥ 0} ⊇ Rfeas. (37)

The regular range represents an interval Rreg = [r , r ] in R. Now, (33), (34), (35),
applied to b(r) rather than to the fixed b yield

Rfeas

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r ∈ [r , r ]

∣
∣
∣
∣
∣
∣
∣
∣∣
∣
∣

(i) 0 ≤ −(pmin
0 )2 + min

i=1,...,n

[
(pmax

i )2 + hi (r)
]

(ii) 0 ≤ (pmax
0 )2 − max

i=1,...,n

[
(pmin

i )2 + hi (r)
]

(iii) 0 ≤ min
i=1,...,n

[
(pmax

i )2 + hi (r)
]− max

i=1,...,n

[
(pmin

i )2 + hi (r)
]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(38)

where, with the definition z̃(r) := z(b(r)), we put

hi (r) := gi (b(r), z̃(r)) (i = 1, . . . , n). (39)
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In the following, our aim is to determine the one-dimensional set Rfeas as a finite union

Rfeas = ∪l
j=1[a j , b j ] (40)

of disjoint intervals as discussed in Sect. 4, in order to compute the χ -probabilities
μχ(Mi ) in Step 3. of Algorithm 3.

Two steps will be required to achieve this goal: first, we have to find an analytic
expression for the function z̃ in (39), which we will refer to as the outer problem.
Second, given this analytic expression, we have to identify the representation (40),
which we will refer to as the inner problem.

6.2.1 The outer problem

The outer problem consists in determining the roots of function f A given in (30), but
now for parameters β1, . . . , βn+1 depending on r . More precisely, for the r -dependent
vectors b(r) = rw +μ, we may define the sequence of β-values analogously to (29):

βn+1(r) := 0, βk(r) = βk+1(r) + rwk + μk for k = 1, . . . , n. (41)

As before, monotonicity is maintained:

0 = βn+1(r) ≤ βn(r) ≤ · · · ≤ β1(r) ∀r ∈ [r , r ]. (42)

Therefore, we can apply the results of the previous Sect. 6.1 for any r ∈ [r , r ].
Summarizing, in order to solve (30) we have to solve

f̃ A(z, r) := φ1|β1(r) − z|∗ + · · · + φn+1|βn+1(r) − z|∗ = 0 (43)

for z parametrically in r ∈ [r , r ]. The solution function will be called z̃(r) and corre-
sponds to z(b(r)) with respect to the parametric solution z(b) of (32).

Theorem 4 There exists a uniquely defined and continuous function z̃ : [r , r ] → R

such that f̃ A(z̃(r), r) = 0 for all r ∈ [r , r ]. Moreover, there are numbers r1, . . . rt and
indices k1, . . . , kt such that

r0 =: r ≤ r1 ≤ · · · ≤ rt−1 ≤ rt := r and

z̃(r) ∈ [βk j +1(r), βk j (r)] ∀r ∈ [r j−1, r j ] ( j = 1, . . . , t). (44)

The solution function z̃ is of the form

z̃(r) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
2c

(
�(r) +√�2(r) − 4cq(r)

)
if c > 0,

− 1
2c

(
�(r) −√�2(r) − 4cq(r)

)
if c < 0

− q(r)
�(r)

, if c = 0

∀r ∈ [r j−1, r j ] (45)
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( j = 1, . . . , t), where �(r) and q(r) are well-defined affine linear and quadratic

functions, respectively, and, the constant c is given by c =∑k j
k=1 φk −∑n+1

k=k j +1 φk .

Proof Existence and uniqueness of the function z̃(r) follow from Proposition 1 for
any fixed r ∈ [r , r ]. Concerning continuity of z̃, observe first that f̃ A is continuously
differentiable with

∂ f̃ A

∂z
(z, r) = 2

j (z,r)∑

j=1

φ j (β j (r) − z) − 2
n+1∑

j= j (z,r)+1

φ j (β j (r) − z) ≤ 0

∀r ∈ [r , r ] ∀z ∈ R,

where j (z, r) refers to the largest integer j such that β j (r) ≤ z. Clearly, the partial
derivative above is zero at some r∗ ∈ [r , r ] if and only if z = β1(r∗) = · · · =
βn+1(r∗). Assume in such case that r∗ ∈ (r , r). Note that βn+1 ≡ 0 by (41). On the
other hand, again by (41),

βk(r) = r(wk + · · · + wn) + (μk + · · · + μn) (k = 1, . . . , n). (46)

If the slopes wk + · · · + wn of all these affine linear functions were zero, then the
contradiction w = 0 would follow. Hence, there is some k ∈ {1, . . . , n} such that the
slope of βk is different from zero. From βk(r∗) = βn+1(r∗) = 0 it therefore follows
that βk(r ′) < 0 for certain r ′ arbitrarily close to r∗. In particular, we may assume
that r ′ ∈ (r , r) which contradicts (42). Consequently, the assumption r∗ ∈ (r , r) was
wrong and we infer that

∂ f̃ A

∂z
(z, r) < 0 ∀r ∈ (r , r) ∀z ∈ R.

Hence, the implicit function theorem yields that z̃ is continuous on (r , r) and it can
have a discontinuity at r∗ ∈ {r , r} only if z = β1(r∗) = · · · = βn+1(r∗) = 0. Then,
z̃(r∗) = 0 by (43). On the other hand, Proposition 1 implies that βn+1(r) ≤ z̃(r) ≤
β1(r) for all r ∈ [r , r ]. Hence, continuity of β1, βn+1 yields that

lim
r→r∗ z̃(r) = βn+1(r

∗) = 0 = z̃(r∗).

This, however, is continuity of z̃ at r∗ ∈ {r , r}. Summarizing, z̃ is continuous on the
whole interval [r , r ] as asserted.

Next, we want to prove (44). Clearly, for every fixed r, z̃(r) meets a certain interval
[βk+1(r), βk(r)], where k ∈ {1, . . . , n}. Due to continuity of both z̃ and the interval
limits, this index k can only change for some r with z̃(r) = βk+1(r) or z̃(r) = βk(r).
All such points are contained in the set
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S := {r ∈ R | ∃k ∈ {1, . . . , n + 1} : f̃ A(βk(r), r) = 0}. (47)

We note that f̃ A(βk(r), r) is a quadratic function in r for any k ∈ {1, . . . , n + 1}. We
distinguish two cases: first, assume that there exists some k ∈ {1, . . . , n + 1} such
that f̃ A(βk(r), r) = 0 for all r ∈ [r , r ]. Then, z̃(r) = βk(r) for all r ∈ [r , r ] and we
get the representation (44) by choosing t := 1 and k1 := k if k ≤ n and k1 := n if
k = n +1. Otherwise, all quadratic functions f̃ A(βk(r), r) are not identically zero and
thus have at most two roots. Thus, the set S is finite and wemay order its elements such
that

S ∩ [r , r ] = {r1, . . . , rt−1}, where r1 ≤ · · · ≤ rt−1.

Setting r0 := r and rt := r , we arrive at (44).
Finally, we verify the special structure of the solution function z̃. Let j ∈ {1, . . . , t}

be fixed. Then, we have just shown that z̃(r) ∈ [βk j +1(r), βk j (r)] for all r ∈ [r j−1, r j ].
Now, setting

θk :=
{

φk, if k ≤ k j ,

−φk, otherwise,
w̄k :=

{
wk + · · · + wn, if k ≤ n,

0, otherwise,

μ̄k :=
{

μk + · · · + μn, if k ≤ n,

0, otherwise,

for all k = 1, . . . , n + 1, we obtain from (43) that for all r ∈ [r j−1, r j ]

0 = f̃ A(z̃(r), r) =
n+1∑

k=1

θk (βk(r) − z̃(r))2

=
n+1∑

k=1

(
θk z̃2(r) − 2θk(rw̄k + μ̄k)z̃(r) + θk(rw̄k + μ̄k)

2
)

= (θ1 + · · · + θn+1)z̃
2(r) + �(r)z̃(r) + q(r),

where the function �(r) is affine linear and q(r) is quadratic in r . Both are well-
defined by the given parameters. We put c := θ1 + · · · + θn+1. If c = 0, then
�(r) �= 0 for all r ∈ [r j−1, r j ]. Indeed, otherwise therewould exist some r ∈ [r j−1, r j ]
such that z̃(r) could be chosen arbitrarily (in case that q(r) = 0) or such that no
value z̃(r) could be assigned at all (in case that q(r) �= 0). This would contradict
the already stated existence and uniqueness of z̃(r). Hence, the third case of (45)
follows. On the other hand, if c �= 0 then the first two cases of (45) come as a
consequence of the solution formula for quadratic equations. Here, in order to choose
the right out of possibly two solutions, one has to take into account that the function
f̃ A(·, r) is strictly monotonically decreasing for each fixed r (see Proposition 1) and
hence, because f̃ A(·, r) coincides with cz̃2(r) + �(r)z̃(r) + q(r) for any fixed r ∈
[r j−1, r j ], one has to choose the root corresponding to the decreasing branch of that
parabola. �	
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6.2.2 The inner problem

The inner problem consists in finding the representation (40) given the analytic expres-
sion for z̃ from the outer problem. This requires first to make explicit the functions hi

from (39). By (31) we have that

hi (r) =
i∑

j=1

φ j |β j (r) − z̃(r)|∗ ∀r ∈ Rreg ∀i = 1, . . . , n.

From (44) and (42) we infer that for all i = 1, . . . , n, for all j = 1, . . . , t and for all
r ∈ I j :

hi (r) =
k j∑

k=1

φk(βk(r) − z̃(r))2 −
i∑

k=k j +1

φk(βk(r) − z̃(r))2.

This means that, as a consequence of Theorem 4, the hi are fully explicitly given on
Rreg = ⋃t

j=1 I j via (41) and (45). Since the βk are affine linear functions, it follows
from the representation above that, for each j ∈ {1, . . . , t}, the hi can be written in
the form

hi (r) = c̄ j z̃(r) + �̄ j (r)z̃(r) + q̄ j (r) ∀r ∈ Rreg,

where �̄ j and q̄ j are affine linear and quadratic functions, respectively, and c̄ j are some
constants. Together with (38) this implies that we can write the feasible region as

Rfeas =
t⋃

j=1

Ĩ j ,

where

Ĩ j :=
{

r ∈ I j

∣
∣∣ 0 ≤ c̄(i)

j z̃(r) + �̄
(i)
j (r)z̃(r) + q̄(i)

j (r) (i = 1, . . . , s)
}

. (48)

Here, �̄(i)
j and q̄(i)

j are affine linear and quadratic functions, respectively, and c̄(i)
j are

some constants. Note, that the index i running from 1 to s represents all inequalities
(38) occurring in all cases (i), (ii), (iii). According to (45), the function z̃(r) can be
written as

z̃(r) = �̂(r) +
√

q̂(r), z̃(r) = �̂(r) −
√

q̂(r) or z̃(r) = q̂(r)

�̂(r)
,

respectively, where �̂ is affine linear and q̂ is quadratic in r . With this setting it is
easy to see now, that in any case the inequalities in (48) are defined by polynomials
of degree 4. The roots of the latter can be determined efficiently. Given these, each of
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the single inequalities in (48) is represented by at most three disjoint intervals. Hence,
the whole set Ĩ j , as a finite intersection of such sets and of the interval I j , is again
a union of finitely many disjoint intervals. Finally, the same holds true for the crucial
set Rfeas which is a finite union of the Ĩ j . Summarizing, we may write

Rfeas = ∪l
j=1[a j , b j ]

as a finite union of disjoint intervals with explicitly computed boundaries a j , b j . This
allows us to compute the χ -probability of this set as

μχ(Rfeas) =
l∑

j=1

(
Fχ (b j ) − Fχ (a j )

)

by applying an appropriate highly precise numerical approximation of the distribution
function of the one-dimensional χ -distribution. In this way, Step 3 of Algorithm 3
may be executed for each given sample vi ∈ S

n−1.
We note that typically only a few roots of the corresponding polynomials of degree

4 are needed due to Theorem 4, which speeds up the performance considerably.

7 Numerical experiences

In this section we want to test the performance of the presented methodology in
the determination of probabilities for feasible exit loads distributed according to a
multivariate Gaussian law. We shall compare the spheric-radial decomposition with
a generic simulation of Gaussian random vectors. For the sampling on the sphere
needed in spheric-radial decomposition we have used the sampling of a standard
Gaussian distributionN (0, I ) with posterior normalization. Generic sampling means
in contrast the direct simulation of the given normal distribution N (μ,Σ). In both
approaches two different sampling procedures will be applied: the Mersenne-Twister
randomgenerator (taken fromBoost C++Libraries) as an advancedMonteCarlo (MC)
simulator, and a special Quasi-Monte Carlo (QMC) simulator. The QMCmethod used
in this context is based on digital sequences, namely Sobol’ sequences as a special
case of low-discrepancy sequences that are included in the category of (t, m, d)-nets
and (t, d)-sequences (Dick and Pillichshammer 2010).

In order to guarantee realistic results, we are using modified parameters taken from
real low-caloric L-gas and high-caloric H-gas networks of the German gas utility OGE
(Open Grid Europe). All computations are performed by C++ implementations on a
Linux Sun Station equipped with Intel Xeon CPU @ 2.40GHz.

We start the discussion of numerical results with a test net consisting of a cycle
with one entry and 4 exit nodes. Figure 5 shows the network graph and the associated
incidence matrix. We assume a homogeneous network in the sense that physical para-
meters are the same all over the network. In particular, we use lower and upper pressure
limits of pmin = 1.00 and pmax = 40.0, respectively, for every node (entry or exit).
A fixed coefficient φ = 1.00 is assigned to all pipes. For the random vector of exit
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Fig. 5 Network graph and incidence matrix A+ of the cycle net example

Table 1 Spheric-radial versus generic sampling with 10 × 1000 samples at cycle net

Sample set Spheric-Radial Generic sampling

MC (Mersenne) QMC (Sobol) MC (Mersenne) QMC (Sobol)

Series 01 0.981304 0.981442 0.982000 0.982000

Series 02 0.982171 0.981584 0.973000 0.981000

Series 03 0.980530 0.981083 0.977000 0.982000

Series 04 0.981335 0.981639 0.981000 0.981000

Series 05 0.980645 0.981593 0.990000 0.979000

Series 06 0.980313 0.981420 0.988000 0.985000

Series 07 0.981934 0.981634 0.982000 0.981000

Series 08 0.981119 0.981890 0.977000 0.984000

Series 09 0.982377 0.981145 0.982000 0.980000

Series 10 0.981932 0.981631 0.979000 0.984000

Mean Probability 0.981366 0.981506 0.9811 0.9819

Variance 5.2294e−07 5.9061e−08 2.5878e−05 3.6556e−06

SD 7.2315e−04 2.4302e−04 5.0870e−03 1.9120e−03

Time (s) 0.41 0.57 0.29 0.44

Efficiency 35.00 222.97 1.00 4.67

load nominations we prescribe a multivariate Gaussian distribution. The parameters
of this distribution are inspired by the statistical analysis of real load data as described
in Koch et al. (2015, Chapter 13).

Table 1 collects the result of numerical computations for 10 test series of 1000
samples each. We observe for both sampling schemes (MC and QMC) a substantial
variance reduction by a factor of approximately 50 when applying the spheric-
radial decomposition. Due to a larger numerical effort, the computing times for the
spheric-radial decomposition slightly increase. For a fair comparison between differ-
ent methods taking into account the obtained precision (variance) of the result and the
needed numerical effort (computing time) we resort to the concept of efficiency as in
Deák (2000, p. 112):
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Fig. 6 Moving average of computed probability with respect to sample size for Mersenne Twister (left)
and QMC sampling (right)

Method 2 with variance σ 2
2 and computing time t2 is said to have efficieny

(σ 2
1 t1)/(σ 2

2 t2) with respect to Method 1 with variance σ 2
1 and computing time

t1.

This notion is certainly inspired by the well-known fact that in MC simulation the
decrease in variance is proportional to the increase in the sample size needed. In Table 1
efficiencies are indicated relative to generic MC sampling, the method with poorest
performance. Both effects of improvement (use of QMC rather than MC and use of
spheric-radial decomposition rather than generic sampling) are clearly recognized.

Figure 6 displays the curves of estimated probability for an increasing sample size.
It shows the moving average of the probability for sample sizes listed at the abscissa.
The left picture plots the results for spheric-radial decomposition and generic sampling
when using Mersenne Twister, the second one plots the same for QMC. In both cases,
spheric-radial decomposition yields a much faster stabilization of results than generic
sampling and again the effect is enhanced by applying QMC rather than MC.

Finally, we consider the example of two regular trees of different sizes.Both are
single entry nets, where the entry is located at the root of each tree. All remaining nodes
of the trees are assumed to be exit nodes. As before, we deal with a homogeneous
network and we use the same general physical parameters as quoted in the previous
example. The goal of this test series is to investigate the performance of the spheric-
radial decomposition approach, even for large sizes. In example (a) we consider a
number of 4 stages with branching degree 3, which leads to a tree containing a number
of overall 121 nodes. In example (b) we consider 3 stages and branching degree 5, such
that the tree consists of 156 nodes including the entry node. Table 2 summarizes the
numerical results for both examples. It turns out that the computation time increases
reasonably due to the larger size of the networks. In particular, to compute all intervals
Mi in (22), the number of inequalities to be evaluated increases quadratically with
the number of nodes. In the tree examples we only focus on the best performing
method, namely spheric-radial decomposition along with QMC sampling. To realize
a proper estimation for both, mean and variance of the probability to be determined we
generated as before 10 test series of 1000 samples. It turns out that for higher dimension
the variance reduction effect of spheric-radial decomposition is less significant, but, it
is still noticeable. Indeed, the variance of generic sampling can never be less than that
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Table 2 Numerical results for
both regular tree examples and
applying the spheric-radial
decomposition together with
QMC sampling for 10 × 1000
sample size

Tree example (a) Tree example (b)

Nodes 121 156

Degree 3 5

Stages 4 3

Mean probability 0.68004 0.71367

Variance 4.3668e−05 4.6478e−05

SD 6.6082e−03 6.8175e−03

Time (s) 88.3 135.6

of spheric-radial decomposition (Ackooij and Henrion 2014, p. 2). In our examples
the probability is approximately p ≈ 0.70 and we used a sample size of N = 1000.
For Monte Carlo sampling it is known that the theoretical variance for computing
the probabilty p with sample size N is N−1(p − p2). Hence, in the examples the
theoretical variance of generic Monte Carlo is approximately 2.1 × 10−4, which is
certainly higher than observed for the spheric-radial decomposition.

8 Optimization problems with probabilistic constraints

In this paper we have focused on computing the probability of the set M of technically
feasible exit load vectors as defined in (20) via the set M̃ characterized in Theorem
1. While a mere computation of such probabilities is already of much importance, for
instance in the verification of booked capacities (see Introduction), it forms the basis as
well for more demanding problems in which these probabilities depend on parameters
to be optimized according to some cost function. Such parameters occur in Theorem
1 as lower and upper pressure bounds pmin, pmax or as coefficients Φ. Though we
were keeping these parameters fixed in our analysis, one could also understand them
as decision variables. For instance, in a design phase for a network of given topology,
one might be interested in installing material-dependent upper pressure bounds which
are cost-minimal on the one hand and which still guarantee that exit loads are feasible
at a specified probability level. Formalizing this idea, the set of feasible exit loads
colud be denoted now by M(pmax ) in order to emphasize the dependence of M on the
upper pressure bounds. One then would solve an optimization problem of the type

min
{

cT pmax | P(ξ ∈ M(pmax )) ≥ p
}

.

Here, c denotes a cost vector associated with the material needed to guarantee the
desired upper pressure bounds in the nodes of the network. As before, ξ refers to
the random vector of exit loads and p ∈ [0, 1] is a specified probability level to
satisfy these loads (e.g., p = 0.95). The inequality defining the constraint for the
decision vector pmax in this optimization problem is called a probabilistic constraint
(see, e.g., Prékopa 1995; Shapiro et al. 2009). For the numerical solution of such
optimization problems with probabilistic constraints it is crucial not only efficiently
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to determine the probabilities associated with some fixed decision vector but also
their gradients. Interestingly, the spheric-radial decomposition approach applied in
this paper admits the computation of this gradient in the same sampling framework
used for the probabilities themselves. More precisely, the time-consuming Step 2.
of Algorithm 3 yielding a representation of the sets Mi as a union of finitely many
disjoint intervals has to be carried out only once per sample and can be exploited
then not only for updating the probabilities but even their partial derivatives (with
respect to the decision vector) at the same time. In this way, the computation of partial
derivatives almost comes for free. This effect which is based on a gradient formula
presented in Ackooij and Henrion (2014) enhances the significance of the spheric-
radial decomposition approach.

We emphasize that the methodology presented here does not restrict to a single tree
or a single cycle but is easily formulated for more general networks as long as cycles
are node-disjoint, and then possibly several separated trees attached to the cycles.

Acknowledgments The authors thank the Deutsche Forschungsgemeinschaft for their support within
Projects B04, B05 in the Sonderforschungsbereich/Transregio 154 Mathematical Modelling, Simulation
and Optimization using the Example of Gas Networks. Moreover, we wish to express our gratitude to Open
Grid Europe (OGE) for stimulating discussion and providing network data.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, New Jersey
Bertsimas D, Tsitsiklis JN (1997) Introduction to linear optimzation. Athena Scientific, Belmont
Brauchart JS, Saff EB, Sloan IH, Womersley RS (2014) QMC designs: optimal order Quasi Monte Carlo

integration schemes on the sphere. Math Comput 83:2821–2851
Deák I (2000) Subroutines for Computing normal probabilities of sets—computer experiences. Ann Oper

Res 100:103–122
Dick J, Pillichshammer F (2010) Digital nets and sequences: discrepancy theory and Quasi-Monte Carlo

integration. Cambridge University Press, Cambridge
Dvijotham K, Vuffray M, Misra S, Chertkov M (2015) Natural gas flow solutions with guarantees: a

monotone operator theory approach. Cornell University Library. arXiv:1506.06075v1
FügenschuhA,Geissler B, Gollmer R,HaynC,HenrionR,Hiller B, Humpola J, Koch T, LehmannT,Martin

A, Mirkov R, Römisch W, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J,
Stangl C, SteinbachM,Willert B (2014) Mathematical optimization for challenging network planning
problems in unbundled liberalized gas markets. Energy Syst 5:449–473

Genz A, Bretz F (2009) Computation of multivariatenormal and t probabilities (Lecture notes in statistics),
vol 195. Springer, Heidelberg

Kirchhoff G (1847) Über die Auflösung der Gleichungen, auf welcheman bei der Untersuchung der linearen
Verteilung galvanischer Ströme geführt wird. Ann Phys Chem 12:497–508

Koch T, Hiller B, Pfetsch M, Schewe L (eds) (2015) Evaluating gas network capacities. MOS-SIAM Series
on optimization, vol 21

Misra S, Vuffray M, Chertkov M (2015) Maximum throughput problem in dissipative flow networks with
application to natural gas systems. Cornell University Library. arXiv:1504.02370v1

Osiadacz A (1987) Simulation and analysis of gas networks. Gulf Publishing Company, Houston
Pfetsch M, Fügenschuh A, Geissler B, Geissler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann T,

Martin A, Morsi A, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl
C, Steinbach M, Vigerske S, Willert B (2015) Validation of nominations in gas network optimization:
models, methods, and solutions. Optim Methods and Softw 30:15–53

Prékopa A (1995) Stochastic programming. Kluwer, Dordrecht
Ríos-Mercado RZ, Boras-Sánchez C (2015) Optimization problems in natural gas transportation systems:

a state-of-the-art review. Appl Energy 147:536–555

123

http://arxiv.org/abs/1506.06075v1
http://arxiv.org/abs/1504.02370v1


On the quantification of nomination feasibility in… 457

Ríos-Mercado RZ, Wu S, Boyd EA, Scott LR (2000) Model relaxations for the fuel cost minimization of
steady-state gas pipeline networks. Math Comput Model 31:197–220
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