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Abstract
Bilevel optimization is an increasingly important tool to model hierarchical decision making.
However, the ability of modeling such settings makes bilevel problems hard to solve in theory
and practice. In this paper, we add on the general difficulty of this class of problems by further
incorporating convex black-box constraints in the lower level. For this setup, we develop a
cutting-plane algorithm that computes approximate bilevel-feasible points. We apply this
method to a bilevel model of the European gas market in which we use a joint chance
constraint to model uncertain loads. Since the chance constraint is not available in closed
form, this fits into the black-box setting studied before. For the applied model, we use further
problem-specific insights to derive bounds on the objective value of the bilevel problem. By
doing so, we are able to show that we solve the application problem to approximate global
optimality. In our numerical case study we are thus able to evaluate the welfare sensitivity in
dependence of the achieved safety level of uncertain load coverage.

Keywords Bilevel optimization · Black-box constraints · Chance constraints · Cutting
planes · European gas market

Mathematics Subject Classification 90C90 · 90C46 · 90B15

B Martin Schmidt
martin.schmidt@uni-trier.de

Thomas Kleinert
thomas.kleinert@fau.de

1 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin,
Germany

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Discrete Optimization, Cauerstr. 11, 91058
Erlangen, Germany

3 Energie Campus Nürnberg, Fürther Str. 250, 90429 Nuremberg, Germany

4 Department of Mathematics, Trier University, Universitätsring 15, 54296 Trier, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-022-01161-z&domain=pdf
http://orcid.org/0000-0001-6208-5677


652 Journal of Global Optimization (2022) 84:651–685

1 Introduction

Bilevel optimization has becomemore and more important during the last years and decades.
The reason is that this class of problems enables the modeler to describe hierarchical decision
processes, which is often of great importance in practical applications. On the other hand, this
ability alsomakes bilevel problems hard to solve—both in theory and practice. For instance, it
is well known that even the easiest class of bilevel problems, i.e., models with linear lower and
upper level, are stronglyNP-hard [1] and even checking the local optimality of a given point is
NP-hard [2].Nevertheless, starting in the 1980’s, researchers developed increasingly powerful
algorithms to tackle different challenging classes of bilevel problems; see, e.g., [3–5] for an
overview of the field. The most recent trend is to consider more and more challenging bilevel
models by also incorporating (mixed-)integer aspects [6–10], continuous nonconvexities [11,
12], or uncertaintymodeling [13–17]. The resulting bilevel models usually are harder to solve
if these complicating aspects appear in the lower level of the bilevel problem. For instance,
a convex lower-level problem (that also satisfies a reasonable constraint qualification) can
be replaced by its necessary and sufficient optimality conditions, leading to an equivalent
single-level reformulation of the bilevel problem. This is of course not possible anymore if
the lower-level problem does not possess compact optimality certificates as it is the case for
mixed-integer or other nonconvex problems.

Onemain field of application for bilevel optimization are energy markets, where one often
is faced with a hierarchical structure of decision making; see, e.g., the recent survey [18] of
bilevel optimization applied in the energy sector. In this paper, we consider a simplified
version of the European entry-exit gas market [19, 20], which can be modeled as a bilevel
problem. The main goal of this market design is to decouple the trade and transport of
natural gas. This is also reflected in the bilevel structure since the transport-related aspects
are incorporated in the upper level, in which the transmission system operator (TSO) acts,
while anticipating themarket outcome that is determined in the lower-level problem.We refer
to [21] for the derivation of this bilevel model and to [22, 23] for some further studies that
tackle this bilevel model of the European gas market. All papers mentioned so far, however,
make the assumption that all data of the model is deterministic. Obviously, this is not the
case in practice. In particular, the future energy consumption is not known and it is rather
standard to tackle such aspects using techniques from stochastic optimization.

Stochastic bilevel problems or, more generally, stochastic mathematical programs with
equilibrium constraints (SMPECs), have been introduced in [24] and further investigated
theoretically, e.g., in [25]. They have found numerous applications in specific electricity
market models; see, e.g., [26]. In these models, the typical chronology of first- and second-
stage decisions x, y accompanied by the observation of the randomparameter ξ is x � ξ � y.
In this case, x is a here-and-now decision (before randomness is revealed) and y is a wait-
and-see decision (reacting on randomness). This implies, in particular, that y can be chosen
(as a function of x and ξ ) such that the lower-level constraints are satisfied almost surely
with respect to randomness for any x . However, in the gas market model we are considering
in this paper, the chronology is x � y � ξ , which means that both first- and second-
stage decisions are of type here-and-now. In this case, the satisfaction of random lower-level
constraints cannot be guaranteed almost surely in general, but only with a certain probability.
This leads in a natural way to the use of probabilistic or chance constraints. The research on
this topic is rather young. Exemplarily, we refer to the theoretical paper [27] devoted to a
chance-constrained bilevel model in the chronology x � ξ � y we mentioned above and
refer to the two papers [28, 29] dealing with the numerical solution of chance constraints as
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parts of bilevel problems. These latter articles make simplifying assumptions by restricting
randomness to discrete measures or imposing individual rather than joint chance constraints;
see also our critical discussion in the case study of Sect. 3.4. The main contribution of this
paper is the consideration of joint chance constraints with continuous multivariate random
distribution on the lower level of a bilevel problem.

We thus extend the deterministic setting to incorporate uncertain loads in the lower, i.e.,
themarket, level of the bilevel problem. In the literature, gas buying firms are usuallymodeled
using inverse market demand functions to model price elasticity. While this is a reasonable
model in the deterministic setting, the bought quantities do not solely follow an economic
rationale but also need to cover mostly random fluctuations in the day-ahead. This is not
covered in the models in the literature and we capture this aspect by introducing a respective
chance constraint in the lower level of the bilevel problem. On the other hand, we make
simplifying assumptions such as considering a linear gas flow model as well as that we
only consider passive networks to keep the model practically tractable and the presentation
streamlined.

This extension of the model adds a significant mathematical challenge to the overall
bilevel problem. Although the chance constraint is convex—and, thus, first-order optimality
conditions are usable in general—it is not given in a closed form. Instead, only function and
gradient evaluations are available and we have to design methods that can cope with such
black-box functions. To the best of our knowledge, this problem class has not been considered
so far in the literature.

In this setup, our contribution is the following. First, we study bilevel problems with
a convex upper and lower level that contain a black-box constraint in the lower level in
Sect. 2. Since a closed form of the latter is not available, one has to resort to iterative
approaches that subsequently approximate the lower-level’s feasible set, which is possible
by outer approximations since function evaluations and first-order information is available.
Thus, the lower-level’s feasible set can only be approximated up to a certain prescribed
tolerance. We discuss in detail that this makes it challenging (if possible at all) to ensure
global optimality of the bilevel problem. Nevertheless we can show that, if our algorithm
terminates, it terminates with a point that is approximate feasible for the lower level. Second,
we present a chance-constrained extension of a simplified bilevel model of the European
entry-exit gas market and also discuss the economic interpretation of the added chance
constraint; cf. Sect. 3. For this application, we can further derive provably lower bounds by
adjusting our method, which allows us to assess the quality of the obtained solutions. It turns
out that we are always very close to a globally optimal solution of the chance-constrained
bilevel problem. Third and finally, we present numerical results for the chance-constrained
bilevel problem of the European gas market on an academic instance and discuss the effect
of uncertainty on the results.

2 Bilevel problems with convex lower-level black-box constraints

2.1 Problem formulation

We consider convex bilevel problems of the form

min
x,y

F(x, y) (1a)

s.t. G(x, y) ≤ 0, (1b)
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x ∈ R
nx , y ∈ R

ny , (1c)

y ∈ S(x), (1d)

in which the solution set of the convex lower-level problem is given by

S(x) = argmin
y

{
f (x, y) : g(x, y) ≤ 0, b(y) ≤ 0, y ∈ R

ny
}
. (2a)

The variable vector x denotes the nx upper-level (or leader) decisions and y denotes the ny
lower-level (or follower) decisions. We assume that F : R

nx ×R
ny → R, G : R

nx ×R
ny →

R
mu , f : R

nx × R
ny → R, g : R

nx × R
ny → R

m� , and b : R
ny → R are convex and

differentiable functions. Further, we suppose that b(y) ≤ 0 is a black-box constraint for
which we make the following assumptions.

Assumption 1 The black-box function b is convex and for all (x, y)∈{(x, y) : G(x, y) ≤ 0,
g(x, y) ≤ 0},
(1) we can evaluate the function b(y),
(2) we can evaluate the gradient ∇b(y), and
(3) the gradient is bounded, i.e., ‖∇b(y)‖ ≤ K for a fixed K ∈ R.

Overall, the upper-level problem (1a–1c) is a convex minimization problem and for fixed
upper-level variables x = x̄ , the lower level is a convex minimization problem as well. In
the case that the follower problem (2) has multiple solutions, i.e., S(x) is not a singleton,
Problem (1) models the so-called optimistic bilevel solution, which realizes the lower-level
solution y ∈ S(x) that minimizes the upper-level objective function F .

In the following, we denote the shared constraint set by

� := {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0, b(y) ≤ 0},
its projection onto the decision space of the leader by

�u := {x : ∃y with (x, y) ∈ �},
and the feasible set of the lower-level problem for a fixed leader decision x = x̄ by

��(x̄) := {y : g(x̄, y) ≤ 0, b(y) ≤ 0}.
Further, we denote the optimal value function of the lower-level problem by

ϕ(x) = min
y

{ f (x, y) : g(x, y), b(y) ≤ 0, y ∈ R
ny }.

Using the latter, we rewrite Problem (1) as the equivalent single-level problem

min
x,y

F(x, y) (3a)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, (3b)

b(y) ≤ 0, (3c)

f (x, y) ≤ ϕ(x), (3d)

x ∈ R
nx , y ∈ R

ny . (3e)
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2.2 Obstacles and pitfalls

Besides being a bilevel problem, the main challenge of Problem (1), and also of Problem (3),
is the black-box constraint b(y) ≤ 0 in the lower-level problem. Typical methods for solving
bilevel problems with convex lower levels replace the lower level with its necessary and
sufficient optimality conditions in algebraic form. This is, however, not possible if the lower
level contains a black-box function—i.e., a function for which an explicit expression is not
available—since without such an expression, optimality conditions are also not available in
closed form. Since later on, ourmethod needs to employ global optimization solvers and since
general-purpose global optimization software usually requires all constraints to be given in
algebraic form (e.g., to derive suitable over- and underestimators), the considered back-box
setting adds to the hardness of the bilevel problem at hand. As a remedy, we need to resort
to iterative approaches, e.g., cutting-plane techniques [30] or outer approximation [31, 32],
and the best we can expect is to fulfill the black-box constraint up to an a priori specified
tolerance. In order to specify the quality of such solutions, we make use of the concepts of
δ-feasibility and ε-δ-optimality known from global optimization; see, e.g., [33]. The same
concept is also used in a bilevel-specific context in, e.g., [11], where the authors require this
notion since they consider a nonconvex optimization problem in the lower level. In this paper,
we use the following definition.

Definition 1 For δ = (δG , δg, δb, δ f ) ∈ R
mu+m�+2
≥0 , a point (x̄, ȳ) ∈ R

nx × R
ny is called δ-

feasible for Problem (1), ifG(x̄, ȳ) ≤ δG , g(x̄, ȳ) ≤ δg , b(y) ≤ δb, and f (x, y) ≤ ϕ(x)+δ f

hold.Moreover, for ε ≥ 0, a point (x∗, y∗) ∈ R
nx ×R

ny is called ε-δ-optimal for Problem (1),
if it is δ-feasible and if F(x∗, y∗) ≤ F∗ + ε holds, with F∗ denoting the optimal objective
function value of Problem (1).

We highlight that a δ-feasible point (x̄, ȳ) of Problem (1) is, in particular, δ f -(δg, δb)-optimal
for the lower-level problem (2) with fixed x = x̄ . The point is (δg, δb)-feasible because
g(x̄, ȳ) ≤ δg as well as b(y) ≤ δb hold and the objective function value is bounded by
f (x, y) ≤ ϕ(x) + δ f . If the functions f and g do not lead to further difficulties, we can
choose δ f = δg = 0. If we can, in addition, also optimize exactly over F and G, then the
best we can hope for in our bilevel setting is to obtain a 0-δ-optimal solution of Problem (1)
with δ = (0, 0, δb, 0).

In practice, however, this turns out to be not so easy. We already mentioned that we can
only expect to fulfill the black-box constraint up to a tolerance. Let us consider the following
relaxation of the lower level for a given upper-level decision x = x̄ :

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, b(y) ≤ δb. (4)

We denote the optimal value function of this problem by
¯
ϕ(x). Since Problem (4) is a

relaxation of the original lower-level problem (2),
¯
ϕ(x) ≤ ϕ(x) holds for all feasible x ∈ �u.

Virtually all solution techniques for bilevel problems with a convex lower-level problem
exploit the single-level reformulation (3) or similar variants that express the optimal value
function ϕ more explicitly, e.g., by using the optimality conditions of the convex lower-level
problem. If we replace the lower-level problem with its relaxation (4) and derive a single-
level reformulation in analogy to Problem (3), then we need to (i) relax Constraint (3c) and
(ii) replace Constraint (3d) by f (x, y) ≤

¯
ϕ(x). If

¯
ϕ(x) < ϕ(x) holds for any x ∈ �u,

then such a “first-relax-then-reformulate” approach yields a single-level reformulation that
is not a relaxation of the single-level reformulation (3). Thus, it is also not a relaxation of the
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original bilevel problem (1). Consequently, it is not clear whether and how ε-δ-optimality
can be guaranteed.

This observation is closely related to the missing independence of irrelevant con-
straints (IIC) property that is known from single-level optimization. In [34], it is shown
that adding an inequality to the lower-level problem that is valid for the bilevel optimal
solution may result in a better bilevel solution that is not feasible without the added valid
inequality. We demonstrate this effect using a simple linear bilevel problem.

Example 1 The linear bilevel problem

min
x,y∈R x s.t. y ≥ 1

2
x + 1, x ≥ 0, y ∈ argmin

ȳ∈R
{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 0} ,

possesses the optimal solution (2, 2) with objective function value 2. The inequality y ≥ 1
is valid but inactive for the optimal solution (2, 2). Adding this constraint to the lower level
yields the problem

min
x,y∈R x s.t. y ≥ 1

2
x + 1, x ≥ 0, y ∈ argmin

ȳ∈R
{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 1},

with optimal solution (0, 1) and objective value 0.

For our application, Example 1 particularly suggests that stopping a cutting-plane approach
once the black-box constraint is fulfilled up to a δb-tolerance may not yield a globally optimal
solution. According to [34], a cutting-plane approach is only applicable, if the solution of the
so-called high-point relaxation—the relaxation of the bilevel problem that disregards lower-
level optimality—is also a solution of the original bilevel problem. This however means that
we do not have a “real” bilevel problem in the first place. In [35], it is shown that a globally
optimal solution of a bilevel problem remains locally optimal when adding valid inequalities
to the lower level in case of inner semicontinuity of the solution set mapping S(x). Thus,
under this restrictive assumption, a cutting-plane approach may at least yield locally optimal
bilevel solutions.

In any case, determining an ε-optimality certificate, i.e., finding an ε such that F(x, y) ≤
F∗ + ε holds for (x, y) derived by a cutting-plane algorithm is, in our opinion, an extremely
challenging and up to now open task. Thus, the best we can hope for when applying a cutting-
plane approach is to arrive at a δ-feasible point with δ = (0, 0, δb, 0). In other words, the
best we can hope for is an approximate heuristic for the bilevel problem with lower-level
black-box constraints.

2.3 A“first-relax-then-reformulate”-approach to compute ı-feasible points

In this section, we formalize a cutting-plane approach that proceeds in a “first-relax-
then-reformulate” way. We will show that this approach can compute δ-feasible points of
Problem (1). After that, we briefly discuss why an intuitive extension, a “first-reformulate-
then-relax” approach, fails.

Since the black-box constraint b(y) ≤ 0 is convex, we can construct a sequence of linear
outer approximations (Er , er )r∈N of the black-box constraint b(y) ≤ 0 with the property

{y ∈ R
ny : b(y) ≤ 0} ⊆ {y ∈ R

ny : Er+1y ≤ er+1} ⊆ {y ∈ R
ny : Er y ≤ er }. (5)

Such descriptions can be obtained, e.g., by a classic cutting-plane approach [30] that exploits
the fact that the first-order Taylor approximation of b is a global underestimator of b.
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Algorithm 1 “First-Relax-Then-Reformulate”.

1: Choose δb > 0, set r = 0, s = 0, χ = ∞, E0 = [0 . . . 0] ∈ R
1×ny , e0 = 0 ∈ R.

2: while χ > δb or s > 0 do
3: Construct Er+1 and er+1 such that (5) is fulfilled.
4: if Problem (7) is feasible then
5: Solve Problem (7) to obtain (xr+1, yr+1) and set s = 0.
6: else if Problem (8) is feasible then
7: Solve Problem (8) to obtain (xr+1, yr+1, s).
8: else
9: Return “Problem (1) is infeasible.”
10: end if
11: Set r ← r + 1 and χ = b(yr ).
12: end while
13: Return (x̄, ȳ) = (xr , yr ).

We note that for a given upper-level solution x̄ ∈ �u and r ∈ N, the adapted lower-level
problem

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, Er y ≤ er , (6)

is a convex relaxation of the original lower-level problem (2). If we denote the optimal value
function of Problem (6) by

¯
ϕr (x), then the following lemma follows directly from (5).

Proposition 1 For every r ∈ N and every upper-level decision x ∈ �u, it holds

¯
ϕr (x) ≤

¯
ϕr+1(x) ≤ ϕ(x).

We now follow a “first-relax-then-reformulate” approach by replacing the original lower-
level problem (2) with its relaxation (6). This yields the following modified variant of the
single-level reformulation (3):

min
x,y

F(x, y) (7a)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, (7b)

Er y ≤ er , (7c)

f (x, y) ≤
¯
ϕr (x) (7d)

x ∈ R
nx , y ∈ R

ny . (7e)

For the practical tractability of Problem (7), we need the following assumption.

Assumption 2 For every upper-level decision x̄ ∈ �u and every r ∈ N, Slater’s constraint
qualification holds for the relaxed lower-level problem (6).

With Assumption 2, we can solve Problem (7) to global optimality, e.g., by replacing the
optimal-value-function constraint (7d), which models the optimality of the relaxed lower
level (6), and the lower-level primal feasibility with the necessary and sufficient KKT
conditions of Problem (6). Note that such an explicit expression is not available for the
Constraint (3d), because it would require explicit knowledge on the black-box function b.

Following the discussion of the last section, we re-iterate that, although we relax the
black-box constraint, we do not obtain a relaxation of Problem (3) due to the tightened
constraint (7d); see Proposition 1. Still, we can exploit Problem (7) to compute a δ-feasible
point of Problem (1) as summarized in Algorithm 1. After the initialization (Step 1), we enter
a while-loop in which we first check, among others, for approximate feasibility w.r.t. the
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chance constraint. Inside the loop, we first update the linear outer approximation in Step 3.
This can be achieved, e.g., by using the first-order Taylor approximation of the black-box
function at the last iterate, which is possible due to Assumption 1. Then, we solve Problem (7)
to obtain a point (xr+1, yr+1). In case Problem (7) is infeasible, we resort to the following
feasibility problem:

min
x,y,s

s (8a)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, (8b)

Er y ≤ er , (8c)

f (x, y) ≤
¯
ϕr (x) + s, (8d)

x ∈ R
nx , y ∈ R

ny . (8e)

We argued before that Problem (7) is not a relaxation of the single-level reformulation (3),
because the optimality condition of the lower level is tightened. We thus relax the optimality
of the lower level to compute a new iterate (xr+1, yr+1, s). Since Problem (7) is infeasible,
s > 0 must hold.

Note also that Problem (8) must be feasible if Problem (3) is feasible. Consequently, if
Problem (8) is infeasible, we can state that Problem (1) is infeasible. Otherwise, if Problem (7)
or Problem (8) is feasible, we update χ and r .

Finally, note that Algorithm 1 only terminates if Problem (7) is feasible. This is ensured
by the check on s in Step 2.

Theorem 1 If Algorithm 1 terminates, (x̄, ȳ) is (0, 0, δb, 0)-feasible for Problem (1).

Proof The point (x̄, ȳ) fulfills the constraints G(x̄, ȳ) ≤ 0 and g(x̄, ȳ) ≤ 0. Further, we
have b(ȳ) ≤ δb. Finally, ȳ is an optimal solution for the relaxed lower-level problem (6) for
fixed x̄ , i.e., f (x̄, ȳ) ≤

¯
ϕr (x̄). Due to Lemma 1, we thus know that f (x̄, ȳ) ≤ ϕ(x̄) holds.

In summary, (x̄, ȳ) is a (0, 0, δb, 0)-feasible point of Problem (1). �
Note that we have to solve Problem (7) and (8) exactly and to global optimality to get a
(0, 0, δb, 0)-feasible point as stated in the last theorem. While suitable convexity or even
linearity assumptions on F , G, g, and f might render this feasible also for larger instances,
this clearly underpins the hardness of the original problem addressed in this paper and, of
course, puts a significant computational burden when it comes to real-world and large-scale
instances. We also point out that Theorem 1 makes no statement regarding the convergence
of Algorithm 1. In fact, convergence cannot be guaranteed. Consider, for example, the case
in which Problem (7) is infeasible and for the solution (xr+1, yr+1, s) of the feasibility
problem (8) the black-box constraint is fulfilled, i.e., it holds b(yr+1) ≤ 0. Then, updating
the linear outer approximation using the respective first-order Taylor approximation of b at
yr+1 does not exclude the point (xr+1, yr+1). In the new iteration, the algorithm then delivers
either the same solution (xr+1, yr+1, s) again—or we are lucky and the missing IIC property
helps to find a new iterate: Adding the first-order Taylor approximation may change ϕ̄r (x)
such that either Problem (7)might become feasible or the solution of Problem (8) differs from
the previous iteration. In any way, Algorithm 1 may not terminate if such a lucky situation
does not appear. However, we demonstrate in Sect. 3 that it works very well in practice.

We also note that Algorithm 1 requires to solve a bilevel problem in every iteration. In
order to reduce the computational burden, we can initialize the algorithm with a tight initial
linear outer approximation E0y ≤ e0, obtained, e.g., by an initial cut sampling phase.

Before we conclude this section, we briefly discuss a “first-reformulate-then-relax”
approach. We already highlighted in the last section that there is not much hope to derive
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algorithms that yield more than a δ-feasible point of Problem (1). We also discussed that for
the “first-relax-then-reformulate” approach, the main problem is that Problem (7) is not a
relaxation of Problem (1). However, Problem (8) might lead to the intuition that relaxing the
optimality of the follower problem appropriately resolves this issue. Consequently, we may
apply a “first-reformulate-then-relax” approach as follows.

Remark 1 We may first reformulate Problems (1–3) and then relax the black-box con-
straint (3c) and the optimality of the lower level (3d). We recap that the latter is necessary,
because we cannot describe ϕ(x) explicitly. We therefore need to find functions ϕ̄r with

ϕ(x) ≤ ϕ̄r+1(x) ≤ ϕ̄r (x)

such that the problem

min
x,y

F(x, y) (9a)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, (9b)

Er y ≤ er , (9c)

f (x, y) ≤ ϕ̄r (x) (9d)

x ∈ R
nx , y ∈ R

ny (9e)

is a relaxation of Problem (1) for every r ∈ N. Thiswould allow to compute 0-δ-optimal points
of Problem (1). It is, however, not clear how to derive suitable functions ϕ̄r . One strategy
might be to use a sequence (Hr , hr )r∈N of linear inner approximations of the lower-level
problem such that

{y ∈ R
ny : Hr y ≤ hr } ⊆ {y ∈ R

ny : Hr+1y ≤ hr+1} ⊆ {y ∈ R
ny : b(y) ≤ 0}

holds. By replacing the black-box constraint with the linear inner description, we would
obtain the tightened lower-level problem

ϕ̄r (x) := min
y

{
f (x, y) : g(x, y) ≤ 0, Hr y ≤ hr

}
. (10)

In order to use Problem (9) algorithmically, we need an explicit description of ϕ̄r (x). There-
fore, we may use the KKT conditions or strong duality of Problem (10) and reformulate
Problem (9) accordingly. This, in turn, requires Problem (10) to be feasible for every upper-
level decision x ∈ �u, which could be fulfilled, e.g., for a sufficiently tight linear inner
description (Hr , hr ) of b(y) ≤ 0 throughout its entire domain. This is not practicable from a
computational point of view because such a linearization over the entire domain, in general,
requires a significant amount of inequalities such that the resulting problem is very large.
In addition, if such a sufficiently tight linear description over the entire domain would be
available, we could directly use it to replace the lower level by its KKT conditions.

Remark 2 Let us finally comment on some possible extensions of the setting considered in
this section.

(1) We can easily add integer variables to the upper level of the original bilevel problem.
The main rationale of the presented algorithm stays the same. The only difference is that
a mixed-integer problem instead of continuous one needs to be solved in every iteration
of the algorithm.

(2) The same applies to more general, andmaybe nonconvex, functions F andG in the upper
level. The main rationale of the algorithm does not change if nonconvex functions are
part of the upper level but the problem to be solved in each iteration of Algorithm 1 is
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harder. Moreover, one would have to consider an additional ε-δ notion for the global
optimization task of the upper level as well.

(3) Finally, we presented the models and the algorithm in this section for a scalar black-box
function b in the lower level. However, besides technical adaptions, nothing changes if
b is an entire vector of black-box functions.

2.4 An academic example

In this section, we test Algorithm 1 on an academic instance. Since we are not aware of any
bilevel test instances with black-box constraints, we use the following problem:

min
x∈[0,8],y∈[0,8] (x − 3)2 + (y − 2)2 s.t. y ∈ argmin

y∈[0,8]
{(y − 5)2 : (x, y) ∈ P}, (11)

with

P = {(x, y) ∈ R
2 : − 2x + y − 1 ≤ 0, x − 2y + 2 ≤ 0, x + 2y − 14 ≤ 0}. (12)

This example is taken from [36] and is contained in BASBLib, a library of bilevel test problems;
see [37]. Problem (11) has a convex-quadratic objective function. In addition, the lower-level
problem

min
y∈[0,8] (y − 5)2 s.t. (x, y) ∈ P (13)

is a convex-quadratic minimization problem over linear constraints. Note that we could
replace the lower level by its necessary and sufficient KKT conditions and solve the resulting
nonconvex single-level problem to global optimality by using the well-known mixed-integer
linearization of the KKT complementarity conditions using big-M values. However, in order
to apply Algorithm 1, we equivalently rewrite the lower-level problem (13) to

min
y∈[0,8],t≥0

t s.t. b(y, t) = (y − 5)2 − t ≤ 0, (x, y) ∈ P. (14)

In this formulation, the “black-box function” b(y, t) fulfills Assumption 1. Overall, we apply
Algorithm 1 to the following problem:

min
x∈[0,8],y∈[0,8] (x − 3)2 + (y − 2)2

s.t. y ∈ argmin
y∈[0,8],t≥0

{t : b(y, t) ≤ 0, (x, y) ∈ P}. (15)

We first initialize δb = 10−6, E0 = [0, 0], as well as e0 = 0 and enter the while-loop. In
order to obtain E1 and e1, i.e., a tightening of the description of the black-box constraint, we
solve the auxiliary problem

min
x∈[0,8],y∈[0,8],t≥0

(x − 3)2 + (y − 2)2 s.t. (x, y) ∈ P, (16)

which is a relaxation of Problem (15). We obtain the solution x̄ = 2.8, ȳ = 2.4, and t̄ = 0,
with corresponding objective value 0.2. Note that there is a strong ambiguity on the value
of t̄ in this situation, which is due to the fact that we moved the objective function of the
lower-level problem into its constraint set. However, t̄ = 0 is a reasonable choice because we
minimize t in the reformulated lower-level problem (14). Thus, we proceed with this value to
illustrate the further behavior of our algorithm. In order to construct E1 and e1, we compute
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the first-order Taylor approximation at the point (ȳ, t̄).With the gradient∇yb(y, t) = 2y−10,
∇t b(y, t) = −1, we obtain the inequality

0 ≥ b(ȳ, t̄) + (2 ȳ − 10)(y − ȳ) − (t − t̄) = 19.24 − 5.2y − t, (17)

which translates to E1 = [−5.2,−1] and e1 = −19.24. We then solve the single-level
problem (7) by describing

¯
ϕ1(x) with the linearized KKT conditions of the relaxed lower-

level problem; see also the explanations after Assumption 2. We therefore use a big-M value
of 106 in our computations. We obtain the solution x̄ = 1, ȳ = 3, t̄ = 3.64 with objective
function value 5 and χ = 0.36.

Since the violation of the black-box constraint χ exceeds the tolerance δb, we construct
E2 = [−4,−1] and e2 − 16 by computing another gradient cut at (x̄, ȳ, t̄). Updating and
solving Problem (7) yields x∗ = 1, y∗ = 3, s∗ = 4 with corresponding objective value 5
and black-box constraint violation χ = 0. According to Theorem 1, we found a (0, 0, δb, 0)-
feasible point for Problem (15). Indeed, the point (x∗, y∗) is a global optimum of the original
problem Problem (11); see [37].

3 A European gasmarket model with chance constraints

In this section, we use the algorithmic approach developed in the previous section to solve
a simplified model of the European entry-exit gas market with uncertain load modeling. We
therefore take the model from [21] and extend it by a chance constraint to model uncertain
loads. This results in a bilevel problem with a black-box constraint in the lower level; see
Sect. 3.2. Afterward, we tailor the proposed solution approach to the specific setting of the
considered gas market model and give some more details on the handling of the chance
constraint, which is a black-box constraint as discussed in the previous section. Finally, we
provide somealgorithmic insights anddiscuss the obtained results fromanapplied perspective
in Sect. 3.4.

In a nutshell, the European entry-exit gas market is organized as follows:

(1) The transmission system operator (TSO) announces so-called technical capacities and
booking price floors for every entry and exit node of the network to maximize the overall
welfare.

(2) Gas selling and buying firms located at entry and exit nodes, respectively, afterward sign
capacity-right contracts (called bookings), which are limited by the technical capacities.
The prices of these bookings are determined by the booking price floors set by the TSO
plus a scarcity-based markup price.

(3) The gas selling and buying firms then nominate entry and exit quantities on a day-ahead
market. These nominations need to be balanced and are bounded above by the bookings.
No other technical or physical restrictions are considered in this level.

(4) The realized nominations are cost-optimally transported through the network by the TSO.

This setting is adequately captured by the four-level model developed in [21]. A peculiarity
of the European gas market is the so-called robustness constraint. It requires that the TSO
announces only those technical capacities that guarantee that every possibly occurring bal-
anced nomination (i.e., entry and exit quantities match) that is restricted by the given set of
bookings can indeed be transported through the network. This means, every such nomination
needs to be physically and technically feasible. This leads to unnecessarily restrictive tech-
nical capacities, which themselves result in welfare losses (cf., e.g., [23]) on the one hand
and in mathematically extremely challenging models (cf. [22, 38–40]) on the other hand.
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From a mathematical point of view, the robustness constraint can be seen as an adjustable
robust constraint; see, e.g., [41, 42]. As shown in [23], an economically and algorithmically
more reasonable approach is to require that only the actually realized nominations need to
be transportable through the network. This is the setup we consider in what follows and we
will come back to this aspect in the next section as well.

All papers published so far that tackle this four-level setup consider the deterministic case,
i.e., exit nominations are purely driven by economic mechanisms that are modeled using
inverse market demand functions to capture price elasticity. In what follows, we analyze the
effects of uncertain demand. Before we do so in Sect. 3.2, we first recap the deterministic
model from the literature in the next section.

3.1 A deterministic bilevel model

In Section 3 of [21] it is shown that the special structure of the four-level gas market model
can be exploited to equivalently re-state it as a bilevel problem. In particular, the original
second- and third-level problem, which model the profit- or surplus-maximizing bookings
and nominations of the gas selling and buying firms, can be merged into a single level; see
Theorem 5 in [21]. Moreover, the original fourth-level problem (i.e., the transportation level)
can be merged into the original first level, in which the technical capacities and booking price
floors are determined; see Theorem 7 in [21]. Before we state the resulting bilevel problem,
we introduce some notation that is in line with [21, 23]. The gas network is modeled as a
directed and connected graphG = (V , A)with nodes V and arcs A. The node set is split into
the set of entry nodes V+ ⊆ V at which gas is supplied, the set of exit nodes V− ⊆ V at which
gas is discharged, and the set of inner nodes V0 ⊆ V without gas supply or withdrawal. Thus,
V = V+∪V−∪V0 holds. Themodel allows formultiple gas selling or gas buying firms i ∈ Pu

for u ∈ V+ or u ∈ V−, respectively. We denote the set of entry players by P+ := ∪u∈V+Pu

and the set of exit players by P− := ∪u∈V−Pu . We consider multiple time periods t ∈ T
with |T | < ∞ of gas trading and transport and model the rational behavior of gas buying
firms i ∈ P− based on linear inverse market demand functions Pi,t (q) = ai,t − bi,t q with
ai,t > 0, bi,t > 0; see [43] for the economic background.1 Further, we characterize gas
selling firms using pairwise distinct variable costs of production cvari > 0, i ∈ P+. When
abstracting from the above mentioned robustness constraint, the bilevel reformulation of the
four-level model from [21] is given by

max
qTC,¯π

book,π,q
ϕu(qnom, q) =

∑

t∈T

⎛

⎝
∑

i∈P−

∫ qnomi,t

0
Pi,t (s) ds −

∑

i∈P+
cvari qnomi,t

⎞

⎠

−
∑

t∈T

∑

a∈A

ctrans(qa,t )

(18a)

s.t. 0 ≤ qTCu , 0 ≤ ¯π
book
u for all u ∈ V+ ∪ V−, (18b)

∑

u∈V+∪V−

∑

i∈Pu
¯π
book
u qbooki =

∑

t∈T

∑

a∈A

ctrans(qa,t ), (18c)

(π, q) ∈ F(qnom), (18d)

(qbook, qnom) ∈ argmax(19), (18e)

1 Thus, we can replace the integrals that appear in the objective function (18a), and also later on in other
objective functions, using the explicit quadratic expression for the integral.

123



Journal of Global Optimization (2022) 84:651–685 663

where the lower level reads

max
qbook,qnom

∑

t∈T

⎛

⎝
∑

i∈P−

∫ qnomi,t

0
Pi,t (s) ds −

∑

i∈P+
cvari qnomi,t

⎞

⎠

−
∑

u∈V+∪V−

∑

i∈Pu
¯π
book
u qbooki (19a)

s.t.
∑

i∈Pu

qbooki ≤ qTCu for all u ∈ V+ ∪ V−, (19b)

0 ≤ qnomi,t ≤ qbooki for all i ∈ P− ∪ P+, t ∈ T , (19c)
∑

i∈P−
qnomi,t −

∑

i∈P+
qnomi,t = 0 for all t ∈ T . (19d)

In the upper level (18), the TSO specifies technical capacities qTCu and booking price
floors ¯π

book
u for every entry and exit node u ∈ V+∪V−. The TSOuses the booking price floors

to cover the transportation costs; see the bilinear constraint (18c). This constraint involves the
bookings qbook, which are, together with the nominations qnom, outcome of the lower-level
problem; see Constraint (18e). The actual nominations are transported in a cost-optimal way
through the network. To be more specific, the squared nodal pressures π and mass flows q
on the arcs resulting from the nomination need to fulfill the technical network limitations
denoted by F(qnom) such that the transportation costs ctrans are minimized. The generic
notation in Constraint (18d) allows to use various transportation models. In this paper, we
use the modeling and notation that is used in [23]. For an arc a = (u, v), qa,t > 0 denotes
the mass flow in the direction of the arc, i.e., from u to v, and qa,t < 0 denotes flow in the
opposite direction. The mass flow has to satisfy given bounds of the pipes:

−∞ ≤ q−
a ≤ qa,t ≤ q+

a ≤ ∞ for all a ∈ A, t ∈ T .

In addition, we model mass balance at every node of the network using the constraints
∑

a∈δoutu

qa,t −
∑

a∈δinu

qa,t =
∑

i∈Pu

qnomi,t for all u ∈ V+, t ∈ T ,

∑

a∈δoutu

qa,t −
∑

a∈δinu

qa,t = −
∑

i∈Pu

qnomi,t for all u ∈ V−, t ∈ T ,

∑

a∈δoutu

qa,t −
∑

a∈δinu

qa,t = 0 for all u ∈ V0, t ∈ T ,

where δoutu and δinu represent outgoing and incoming edges at node u, respectively. Moreover,
the pressure loss law

πu,t − πv,t = 
a(qa,t ) for all a = (u, v) ∈ A, t ∈ T , (20)

couples the mass flows qa,t on each arc with the squared pressures πu,t , πv,t at the incident
nodes. The squared pressures are bounded by the squared pressure bounds

0 < π−
u ≤ πu,t ≤ π+

u ≤ ∞ for all u ∈ V , t ∈ T .

The function 
a in (20) denotes the pressure loss function for arc a ∈ A. In this paper, we
make the following assumption, which is also used in [23].

Assumption 3 The pressure loss function 
a is linear for all a ∈ A.
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We discuss this simplification of the physics model at the end of this subsection.
The transportation costs ctrans generally arise from compensating pressure losses via

controllable elements. However, in this paper, we only consider passive networks without
controllable elements such as compressors or control valves. We also discuss the simplifica-
tion of considering passive networks at the end of this subsection in more detail. To mimic
transportation costs in our passive network model, we penalize squared pressure losses on
all arcs of the network, i.e.,

ctrans(qa,t ) = ctranst

∣∣πu,t − πv,t
∣∣ , (21)

where ctranst > 0 is a given parameter and a = (u, v) ∈ A, t ∈ T . Note that the squared
pressures πu,t , πv,t are coupled to the mass flow qa,t via Constraint (20).

In the lower-level problem (19), gas buyers and sellers choose their booking and nom-
ination quantities to maximize their individual profit, i.e., each player solves individual
maximization problems. It is shown in [21] that under the assumption of perfect competition,
this is equivalent to the welfare maximizing problem (19), which consists of the merged sec-
ond and third level of the original four-level model. We briefly shed some more light on the
derivation of Problem (19). In the second level of the original four-level model, each player i
chooses the bookings qbooki to maximize the anticipated outcome that is realized after trade
in the third level. Under the assumption of perfect competition, the individual second-level
problems can be equivalently reformulated as the aggregated second-level problem

max
qbook

(19a) s.t. (19b) and qbooki ≥ 0 for all i ∈ P+ ∪ P−, (22)

in which the bookings of the players are bounded by the technical capacities that are set by
the TSO in the upper level; see Constraint (19b). The nominations qnomi,t that appear in the
objective function (19a) result from the solution of the third level, where the actual interaction
of gas buyers and sellers takes place.

In this third level, all players choose nominations restricted by their bookings (determined
in the second level) to maximize their individual profit or surplus with respect to equilibrium
market prices πnom

t . Under the assumption of perfect competition, all players act as price tak-
ers and, consequently, every gas seller i ∈ P+ maximizes the profit in every time period t ∈T
as follows:

max
qnomi,t

(πnom
t − cvari )qnomi,t s.t. 0 ≤ qnomi,t ≤ qbooki . (23)

Similarly, every gas buyer i ∈ P− maximizes its surplus in every time period t ∈ T :

max
qnomi,t

∫ qnomi

0
Pi,t (s) ds − πnom

t qnomi,t s.t. 0 ≤ qnomi,t ≤ qbooki . (24)

The endogenously resulting equilibrium market price πnom
t ensures that the shared market-

clearing condition (19d) is satisfied in every time period t ∈ T . It is shown in [21] that the
nomination level can be modeled as a mixed nonlinear complementarity problem (MNCP)
by stacking the first-order optimality conditions of all Problems (23) and (24) and by further
adding the market-clearing constraint (19d). The market price πnom

t is then exactly the dual
variable of the market-clearing condition (19d). In Theorem 3 of [21] it is shown that the
resulting MNCP can be recast as an equivalent welfare maximization problem. Further, in
Theorem 5 of [21], it is shown that when integrating this problem into the second-level
problem (22), one obtains Problem (19).
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Overall, the upper-level objective maximizes total welfare (18a), which consists of exit
player utilities minus the costs of the entry players and the transportation costs of the TSO.
Since the inverse demand functions Pi,t are linear, the exit player utilities are concave-
quadratic. In addition, the nonsmooth absolute values that appear in the transportation costs
can be linearized with additional binary and continuous variables and constraints, exactly
like it is done in Section 4 in [23]. After this linearization, we maximize a concave-quadratic
objective function over linear and bilinear constraints in the upper level. For fixed upper-level
decisions, the lower level is a continuous and concave-quadratic maximization problem.

Remark 3 We extend this setting by integrating uncertain loads into the lower level (19) in
the next section. However, this means adding a further complicating aspect to an already
challenging model. In this light, we also want to discuss the simplifications that we made
in the modeling of the deterministic model. First, we simplified the transportation model
by imposing Assumption 3, i.e., by assuming a linear pressure loss function. Using various
other transportation models, e.g., the Weymouth equation [44, 45] is possible but results in
additional nonlinear constraints, leading to further nonconvexities in the upper level. Second,
we abstract from controllable elements such as compressors and instead use the proxy (21)
to account for transportation costs that are mostly driven by these controllable elements.
Allowing for active instead of passive networks requires additional integer variables in the
upper level. Thus, we would obtain a nonconvex mixed-integer nonlinear problem in the
upper level. Third and finally, we also simplified the market mechanism by abstracting from
the robustness constraint. This constraint states that every balanced nomination that fulfills
the technical capacities must be guaranteed to be transportable by the TSO. In [23], a char-
acterization of feasible bookings from [38] is used to obtain a tractable reformulation of the
robustness constraint. This characterization is only valid for passive networks with linear
transportation models. It is further reported that adding the robustness constraint results in a
significant computational burden.

Overall, we abstract from all these aspects because the primary focus of this paper is on
the handling of black-box constraints in the lower level; see also the next section in which we
extend the deterministic lower level by chance constraints. As discussed in Sect. 2.2, a setting
with black-box constraints in a bilevel lower-level problem is very challenging. Dropping
any of the mentioned simplifications further complicates this already demanding setting even
more.

3.2 A probabilistic extension

We now extend the deterministic setting of the last section to capture demand uncertain-
ties. In reality, exit players i ∈ P− nominate quantities qnomi,t without exactly knowing
the actual load ξi,t that they need to cover, say one day ahead. We assume that the load
vector ξ = (ξi,t )i∈P−,t∈T has a log-concave cumulative distribution function. Thanks to
Prékopa’s theorem [46, Theorem 4.2.1.], this is in particular true if the distribution has a
log-concave density. It is well-known that many prominent multivariate distributions do have
a log-concave distribution, e.g., (for any choice of parameters) Gaussian distributions and
the uniform distribution on convex and compact sets, as well as (for a restricted range of
parameters) Dirichlet, Gamma, Wishart, and log-normal distributions. In the following, we
will assume that ξ obeys a multivariate Gaussian distribution, i.e., ξ ∼ N (m, �). We fur-
ther assume that the TSO is interested in a fail-safe network and imposes a fee μ on the
exit players i ∈ P− to ensure that the realized loads are covered up to a specified safety
level p ∈ [0, 1]. We model this by the following joint (over all times and exit players)

123



666 Journal of Global Optimization (2022) 84:651–685

probabilistic constraint

P

(
ξi,t ≤ qnomi,t for all i ∈ P−, t ∈ T

) ≥ p, (25)

which we add to the lower-level problem (19). The left-hand side of (25) is nothing but the
cumulative distribution function of ξ evaluated at the vector qnom− of nominations at all exits
and times. The mentioned log-concavity of this Gaussian distribution function implies that
the log-transformed probabilistic load coverage constraint

h(qnom− ) := log p − logP

(
ξi,t ≤ qnomi,t for all i ∈ P−, t ∈ T

) ≤ 0 (26)

is convex. Consequently, adding Constraint (26) to the lower-level problem (19) yields the
extended lower-level problem

max
qbook,qnom

(19a) s.t. (19b)–(19d), (26), (27)

which is still convex.
In summary, we obtain the following probabilistic bilevel problem

max ϕu(qnom, q) s.t. (18b)–(18d), (qbook, qnom) ∈ argmax(27). (28)

Remark 4 Let us finally discuss in detail the economic interpretation of the probabilistic
lower-level problem (27). We argued above that Constraint (25) models a situation, in which
the TSO forces the exit players to fulfill a given safety level with respect to the actual loads ξ

by imposing a sufficiently large fee μ. Thus, the maximization problem (24), which each gas
buyer i ∈ P− solves in the third level, changes to

max
qnomi,t

∫ qnomi

0
Pi,t (s) ds − πnom

t qnomi,t − μh(qnom− ) s.t. 0 ≤ qnomi,t ≤ qbooki . (29)

One can think of the fee μ as the “price of the stochasticity”. Similarly to the deterministic
case, we can again use the first-order optimality conditions to model the nomination level as
an MNCP. In addition to the shared market-clearing condition (19d), we also need to add the
further “clearing condition”

0 ≤ μ ⊥ −h(qnom− ) ≥ 0 (30)

to the MNCP, which couples the fee μ with the log-transformed chance constraint (26). The
dual variable of the latter then corresponds to the fee μ. As in the deterministic case, we
can recast the resulting MNCP as an equivalent maximization problem (given that the latter
satisfies Slater’s constraint qualification).When integrating this problem into the second-level
problem, we obtain Problem (27).

3.3 A tailored solution approach

The probabilistic bilevelmodel (28) is a problem inwhich the lower level is convex. However,
we do not have a closed-form expression of the log-transformed chance constraint (26),
which is part of the lower-level constraint set. In order to circumvent this difficulty, we tailor
the solution approach for bilevel problems with black-box constrained lower levels from
Sect. 2.3 to the specific setting of Problem (28). We therefore first give some more details on
the log-transformed chance constraint (26).
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The probability function h in (26) plays the role of the black-box constraint function b
in (2). We are going to check next the satisfaction of Assumption 1 for h. By (26), we have
that

h(qnom− ) = log p − log
(qnom− ), (31)

where 
 is a multivariate Gaussian distribution function. The basic requirement in Assump-
tion 1 that h is convex, has already been verified above using the log-concavity of 
.
Proceeding with the three items of Assumption 1, the first two items claim the possibil-
ity to evaluate h along with its gradient at any given argument y. By (31), this amounts to
evaluate 
 and ∇
 at any given nomination vector qnom− . As a multivariate Gaussian distri-
bution function,
 is given as a multivariate integral. Therefore, one has no access to a closed
formula but is constrained to sufficiently precise approximations. An efficient way to get
fairly precise values of 
 has been described and implemented by Genz [47].2 Moreover, it
is well-known (see, e.g., [48, Lemma 1]) that the partial derivatives of 
 can be represented
as

∂


∂ui
(u) = 1√

2π�i i
exp

[
− 1

2�i i
(ui − mi )

2
]

· 
̃(ũ), (32)

where mi , �i i are the corresponding components of the parameters m, � of the given Gaus-
sian distribution and 
̃ is another Gaussian distribution function evaluated in one dimension
less. Here, the parameters of 
̃ can be explicitly derived from the parametersm, � of
 and,
similarly, the argument ũ is an explicit function of the original argument u. Hence, one and
the same code (as the one by Genz) may serve to provide values and gradients of the cumula-
tive distribution function at any argument. This provides items (1) and (2) of Assumption 1.
Another possibility to do so, and which we are using here, is the application of the spheric-
radial decomposition of Gaussian random vectors, which applies not just to probabilities of
random inequality systems with random left-hand side as in (25) but to arbitrary structures,
preferably convex in the random vector. Values and gradients of the probability function
can be determined simultaneously by evaluating certain spherical integrals. This approach
has been intensively analyzed theoretically (see, e.g., [49, 50]) and successfully applied in
practice [51].

It remains to justify item (3) of Assumption 1. By (26), we have that

h(qnom− ) = log p − log
(qnom− ),

where 
 is a multivariate Gaussian distribution function. As such it is continuously differ-
entiable and strictly positive, implying that

∇h(qnom− ) = 1


(qnom− )
∇
(qnom− ). (33)

SinceAssumption 1 refers in particular to all x, y satisfying the general constraint g(x, y)≤0,
this implies in the concrete problem (28) the constraint qnom− ≥ 0; see (19c). From the fact
that distribution functions are non-decreasing with respect to the partial order of the space
they are defined on, we infer that


(qnom− ) ≥ 
(0) > 0 for all qnom− ≥ 0.

Combining this with (32) and (33), one arrives at the desired boundedness property

‖∇h(qnom− )‖∞ ≤ 1


(0) · �min for all qnom− ≥ 0,

2 Codes are available at http://www.math.wsu.edu/faculty/genz/homepage.
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where �min := mini �i i and where we used that 
̃ as a distribution function satisfies the
relation 
̃ ≤ 1.

Overall, the probabilistic bilevel problem (28) matches the setting of the general bilevel
problem (1), the Assumptions 1 and 2, as well as its extensions as discussed in Remark 2 such
that we obtain δ-feasible points by applying Algorithm 1. The main steps in every iteration
of Algorithm 1 are

(1) to derive a tighter linear outer approximation (Er , er ) and
(2) to solve Problem (7) to global optimality.

In our setting, we can achieve the former by a classic cutting-plane approach [30]. In itera-
tion r , we use the point qr− = (qnom− )r , which is part of the solution provided by Algorithm 1
in iteration r − 1, as the linearization point. By exploiting that for convex functions, the
first-order Taylor approximation is a global underestimator, we derive the cut

h(qr−) + ∇qnom− (qr−)�(qnom− − qr−) ≤ 0. (34)

Thus, in iteration r , we construct Er+1 by adding the row ∇qnom− (qr−)�qnom− to Er and

construct er+1 by adding the entry ∇qnom− (qr−)�qr− − h(qr−) to er . Consequently, we obtain
the relaxation

max
qbook,qnom

∑

t∈T

⎛

⎝
∑

i∈P−

∫ qnomi,t

0
Pi,t (s) ds −

∑

i∈P+
cvari qnomi,t

⎞

⎠

−
∑

u∈V+∪V−

∑

i∈Pu
¯π
book
u qbooki (35a)

s.t.
∑

i∈Pu

qbooki ≤ qTCu , u ∈ V+ ∪ V−, [πbook
u ] (35b)

0 ≤ qnomi,t ≤ qbooki , i ∈ P+ ∪ P−, t ∈ T , [γ ±
i,t ] (35c)

∑

i∈P−
qnomi,t −

∑

i∈P+
qnomi,t = 0, t ∈ T , [πnom

t ] (35d)

h(q j
−) + ∇qnom− h(q j

−)�(qnom− − q j
−) ≤ 0, j = 1, . . . , r , [μ j ] (35e)

of the lower-level problem (27) by replacing Constraint (26) with the Constraints in (35e).
As already discussed for the general bilevel problem (1), if Assumption 2 holds, then

Task (2) from above can be achieved by replacing lower-level optimality, i.e., Constraint (7d),
with the KKT conditions of the relaxed lower-level problem (6). In this way, we obtain
an algorithmically tractable reformulation of Problem (7). For our application, the KKT
conditions of the relaxed lower-level problem (35) consist of primal feasibility (35b–35e),
the stationarity conditions

∑

t∈T
γ +
i,t = ¯π

book
u + πbook

u , i ∈ Pu, u ∈ V+ ∪ V−, (36a)

πnom
t − γ −

i,t + γ +
i,t +

r∑

j=1

∇qnomi,t
h(q j

−)μ j = ai,t + bi,t q
nom
i,t , i ∈ P−, t ∈ T , (36b)

πnom
t + γ −

i,t − γ +
i,t = cvari , i ∈ P+, t ∈ T , (36c)
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the complementarity conditions

πbook
u

⎛

⎝qTCu −
∑

i∈Pu

qbooki

⎞

⎠ = 0, u ∈ V+ ∪ V−, (37a)

γ −
i,t q

nom
i,t = 0, i ∈ P+ ∪ P−, t ∈ T , (37b)

γ +
i,t

(
qbooki − qnomi,t

) = 0, i ∈ P+ ∪ P−, t ∈ T , (37c)

μ j

(
∇qnom− h(q j

−)�(q j
− − qnom− ) − h(q j

−)
)

= 0, j = 1, . . . , r , (37d)

and the nonnegativity conditions

πbook
u ≥ 0, u ∈ V+ ∪ V−, (38a)

γ −
i,t , γ

+
i,t ≥ 0, i ∈ P+ ∪ P−, t ∈ T , (38b)

μ j ≥ 0, j = 1, . . . , r . (38c)

Altogether, in every iteration of Algorithm 1 applied to Problem (28), we have to solve the
problem

max ϕu(qnom, q) s.t. (18b)−(18d), (35b)−(35e), (36)−(38). (39)

This problem contains several difficulties. First, although the primal constraints (35b–35e)
of the relaxed lower-level problem are linear, the KKT complementarity constraints (36) are
nonconvex. Fortunately, they can be expressed as a set of mixed-integer linear constraints
by introducing additional binary variables and sufficiently large big-M values; see [52]. For
a linear constraint a�x ≤ b and its dual variable λ ≥ 0, the complementarity condition
λ(b − a�x) = 0 can be linearized as follows:

b − a�x ≤ Mpu, λ ≤ Md(1 − u), u ∈ {0, 1}. (40)

This linearization is only correct, if the values Mp and Md are large enough. On the other
hand, too large values are also not desirable because the may cause numerical instabilities.
In practice, these values are often derived heuristically, which may result in suboptimal
solutions; see [53]. In fact, finding correct big-Ms may in general be as hard as solving the
original bilevel problem [54]. Sometimes, however, problem-specific knowledge can be used
to obtain correct big-M values; see, e.g., [22, 55, 56]. For the deterministic model that we
discussed in Sect. 3.1, valid big-M values are derived from economic relationships in [23].
In the probabilistic setting, economic relationships are disturbed. Still, we can derive valid
big-Ms in a similar way as it is done in [23] by exploiting technical limits of the network. For
the only Lagrangian multiplier that does not appear in the deterministic setting, we derive a
valid upper bound in Appendix B.

In addition, we are facing the bilinear upper-level constraint (18c). Hence, after having
obtained the reformulation (40) of the complementarity conditions (37), we need to solve
a mixed-integer maximization problem with a concave-quadratic objective function over
linear and bilinear constraints in every iteration of Algorithm 1. Such problems can be
solved by modern global solvers such as Gurobi, which tackle bilinear constraints by spatial
branching [57]. We highlight that by design of spatial branching, a solution of Problem (39)
fulfills Constraint (18c) only up to a pre-specified solver tolerance δG > 0. Consequently,
the solution we obtain from Algorithm 1 is a (δG , 0, δb, 0)-feasible point of Problem (28);
see also Remark 2.
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Finally, we show how we can exploit structural properties of the specific model at hand
to extend Algorithm 1. The extended variant is capable of computing a tight upper bound on
the optimal objective function value of Problem (28) such that we get an ex-post guarantee
regarding the optimality gap of the δ-feasible solution obtained by Algorithm 1. To this end,
we compare the KKT conditions (36–38) of the relaxed lower-level problem (35) with the
KKT conditions of the original probabilistic lower level (27). The latter are given by primal
feasibility (19b–19d) and (26), KKT stationarity (36a), (36c), and

πnom
t − γ −

i,t + γ +
i,t + ∇qnomi,t

h(qnom− )μ = ai,t + bi,t q
nom
i,t , i ∈ P−, t ∈ T , (41)

KKT complementarity (37a–37c) and (30), as well as KKT nonnegativity conditions (38).
We notice two differences when comparing the two sets of KKT conditions. First, instead
of the single complementarity condition (30), we obtain the set of complementarity con-
ditions (37d). Second, we note that in the stationarity condition (36b) we approximate the
product ∇qnomi,t

h(qnom− )μ that appears in (41) by the sum
∑r

j=1 ∇qnomi,t
h(q j

−)μ j . As a con-
sequence, the single-level problem (39) that we solve in every iteration r of Algorithm 1
(applied to Problem (28)) is neither a relaxation of Problem (28) nor is Problem (39) in
iteration r a relaxation of Problem (39) in iteration r + 1. This is in line with the previous
discussions in Sects. 2.2 and 2.3. However, by omitting the Constraints (36b), (37d), and
(38c) from Problem (39), we obtain the desired relaxation.

Lemma 1 For every r ∈ N, the problem

max ϕu(qnom, q)

s.t. Upper-level feasibility: (18b)–(18d),

Relaxed lower-level feasibility: (35b)–(35e),

Parts of relaxed lower-level stationarity: (36a), (36c),

Parts of relaxed lower-level complementarity: (37a)–(37c),

Parts of relaxed lower-level nonnegativity: (38a), (38b)

(42)

is a relaxation of the probabilistic bilevel problem (28). In addition, Problem (42) in
iteration r is a relaxation of Problem (42) in iteration r + 1.

The lemma follows directly from the construction of the problems.We note that Problem (42)
relates to relaxing the optimal response of the exit players i ∈ P−. For general bilevel
problems, relaxing the optimality of the lower-level problem may result in weak bounds
on the optimal objective value of the bilevel problem. In our application, however, we
observe that the objective functions (18a) and (19a) of the two levels are rather aligned.
In fact, the only difference is that in the upper level, we account for the transportation costs∑

t∈T
∑

a∈A c
trans(qa,t ) of the TSO and in the lower level, we account for the booking costs∑

u∈V+∪V−
∑

i∈Pu ¯π
book
u qbooki of the players. These terms are forced to be equal by the

upper-level constraint (18c). Thus, our working hypothesis is that relaxing the optimality
of exit players as it is done in Problem (42) still yields a good approximation of the opti-
mal response of the exit players. We thus expect that the bounds obtained by Problem (42)
are rather tight. We solve Problem (42) iteratively as described in Algorithm 2. Essentially,
this directly applies Kelley’s cutting-plane approach [30] to the single level problem (42).
Since the hypothesis is that the obtained bound is tight, we also expect that the cuts obtained
in Algorithm 2 are useful for the original problem.

In practice, we thus proceed as follows. We invoke Algorithm 2 until it converges. We
store the bound ϕ̄u and initialize (E0, e0) in Algorithm 1 with all inequalities (35e) that
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Algorithm 2 Bounding of Problem (28).
1: Choose δb > 0 and set r = 0, χ = ∞.
2: while χ > δb do
3: Solve Problem (42).
4: if Problem (42) is infeasible then
5: Return “Problem (28) is infeasible”.
6: end if
7: Extract qr+1− and the optimal objective value ϕ̄u from the solution.

8: Set χ = h(qr+1− ) and r ← r + 1.
9: end while
10: Return ϕ̄u.

we generated in Algorithm 2. This corresponds to extending Problem (42) to Problem (39),
which we solve in every iteration of Algorithm 1. If Algorithm 1 then terminates with a
δ-feasible point of Problem (28), we compute the gap

|ϕ̄u − ϕu(q̄nom, q̄)|
|ϕu(q̄nom, q̄)| ,

which gives an ex-post optimality certificate.We analyze the quality of this gap inmore detail
in the next section.

3.4 Numerical study

In this section, we illustrate the proposed approach using the example of a specific instance
of the probabilistic gas market model introduced in Sect. 3.2. We first give details on this
instance, before we evaluate the approach from a computational point of view. Finally, we
interpret the results that we obtain for various probability levels of the chance constraint.

3.5 Physical and economic setup

For our analysis, we consider a network with eleven nodes as shown in Fig. 1.
Three of the nodes are entries atwhich gas is injected to the network, three others are exits at

which gas is withdrawn from the network, and the remaining nodes are so-called inner nodes.

Fig. 1 Gas network considered in the numerical study with variable costs cvari (in EUR/(1000Nm3/h)) of

entries, slopes bi (in EUR/(1000Nm
3/h)2) of exits, and length La (in km) of pipes
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The nodes are connected by eleven arcs and the network contains one cycle. The length La

of each pipe is specified in Fig. 1. In addition, we assume an equal diameter Da = 0.5m,
roughness ka = 0.1mm, and capacities q±

a = ±266kg s−1 for all pipes a ∈ A. With respect
to the flow model, we follow [23]. This means, we consider stationary gas flow, i.e., we
abstract from temporal dependencies and only consider horizontal pipes. In this setting, we
can use the pressure loss function


(qa) = λac2La

(0.25π)2D5
a

|qa | qa, (43)

see, e.g., [45], in which the constant c = 340ms−1 denotes the speed of sound in natural gas.
The friction coefficient λa can be approximated by the formula of Nikuradse; see [45]:

λa =
(
2 log10

(
Da

ka

)
+ 1.138

)−2

.

Equation (43) is a suitable simplification of gas flow physics but is still nonlinear. In order to
arrive at a linear approximation, see Assumption 3 and Remark 3, we replace |qa | by a mean
flow qmean

a = 100 kg s−1. Again, exactly as done in [23], we set ctranst = 1.
For all inner nodes u, we have lower and upper pressure bounds of 15 bar and 140 bar.

At all entries we have a lower pressure bound of 20bar. Further, at Entry 1 and Entry 2 we
have an upper pressure bound of 80bar, and at Entry 3 we have 160bar. At Exit 1, Exit 2,
and Exit 3, we have lower pressure bounds of 20bar, 10bar, and 5bar, and all upper pressure
bounds are set to 120bar. We note that the pressure bounds are rather large such that the
network is not very restrictive. The reason behind this choice is that we want to analyze the
effect of uncertain loads. To this end, we analyze various choices of p ∈ [0, 1] in the chance
constraint (25). Hedging against the uncertainty increases nominated quantities, especially
for p close to 1. Assuming large pressure bounds prevents technical infeasibilities that may
otherwise result from large nominations.

In our example, we consider one player at each of the entry and exit nodes and |T |=12
time steps, which refer to the months of a year. We thus set the initial willingness to pay,
which corresponds to the intercepts ai,t , higher in winter months than in summer months.
For a fixed time step t̄ , fluctuations of the intercepts ai,t̄ across the players i ∈ P− are rather
small. We specify the exact choices for ai,t in Table 2 in the appendix. In contrast to the
intercepts, we assume that the price elasticity, i.e., the slopes bi,t of the exit players, are
constant over time, and specify bi = bi,t in Fig. 1. Exit 2 has a rather elastic demand, while
the demand of Exit 3 is the least elastic. For the gas sellers, we set the variable costs to be
constant over time as specified in Fig. 1. Entries 1 and 2 have similar variable costs, while
Entry 3 has a significantly lower variable cost.

The vector ξ of loads at the exits is random and we assume that it follows a multivariate
Gaussian distribution ξ ∼ N (m, �)with mean vectorm and covariance matrix�. In reality,
also other types of distributions (e.g., log-normal, uniform, discrete) and mixtures thereof
may be relevant [58, Chapter 13]. When specifying the parameters of this distribution, we do
not rely on statistical data analysis of a concrete real-life network. We rather follow the idea
that themean vector of loads represents the equilibrium exit nominations for the deterministic
bilevel model from Sect. 3.1, thus modeling an elastic demand, which changes only slowly
over time. Hence, our mean load is—among other parameters—a consequence of the inverse
demand functions Pi,t as specified in Table 2. For real-world problems, one would rather
solve an inverse problem and calibrate the inverse demand functions in a way to derive a
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specific mean vector as a solution of the deterministic bilevel problem. We specify our actual
choices of m and � in the appendix.

The load vector ξ itself can be understood as a random inelastic deviation from its mean,
which is more relevant on the shorter time scale of a day-ahead market. This scattering
around the mean is defined by the covariance matrix. In order to fix the covariance matrix, it
is sufficient to define standard deviations of the single time- and node-components as well as
correlations between these components. Orientation for both features can be obtained from
general gas load data as analyzed in [58]. As a consequence, we built up our covariance
matrix in a fairly heuristic way (zero correlation between exits at different times, common
positive value of correlation between exits at fixed time, common relative standard deviation
between exits, but constant over time). Clearly, the dimension of the random vector (or its
multivariate distribution) is the same as that of the vector of exit nominations, namely 36
(3 exits combined with 12 time steps). All data required to reproduce our experiments are
publicly available; see [59].

3.6 Computational analysis

In this section we briefly evaluate the tailored solution approach presented in Sect. 3.3
from a computational perspective. We implemented the approach in Python 3.7 and used
Gurobi 9.1.1 to solve all involved optimization problems. All computations have been carried
out on a compute cluster; see [60] for details on the installed hardware.

In order to have a benchmark, we first consider the deterministic model from Sect. 3.1,
which can be solved by global solvers out-of-the-box after a classic single-level reformu-
lation, e.g., using the KKT conditions of the lower level, has been applied. This model has
930 variables, thereof 282 binaries, and 1260 constraints. It is solved in 1.17 s and can thus
be considered easy.

We now turn to the probabilistic model for various probability levels p of the chance
constraint (25). The model sizes increase slightly compared to the deterministic model,
because we obtain a new complementarity condition in every iteration of the algorithm.
Since we linearize the complementarity conditions, we particularly obtain an additional
binary variable in every iteration.

For our computations, we set δb = 10−3, i.e., we terminate Algorithm 1 and 2 if
h(qnom− ) ≤ 10−3 holds. Preliminary results showed that it is very important to equip Algo-
rithm 2with initial cuts. The reason is that without an initial cut, we obtain a solution from the

bounding problem (42), for which it is very likely that P
(
ξi,t ≤ qnomi,t for all i ∈ P−, t ∈ T

)

is close to zero. Consequently, we would linearize the chance constraints at the tails of the
Gaussian distribution, where the gradient of the chance constraint is almost zero. For the
log-transformed chance constraint (26), this results in partial derivatives going to infinity
such that we cannot construct the cuts (34). The situation can be resolved by adding initial
valid inequalities that bound the nominations appropriately from below. A straightforward
way to achieve this is to exploit the p-quantile Qp of the standard Gaussian distribution as
follows:

qnomi,t ≥ mi,t + Qp
√

�(i,t),(i,t) for all i ∈ P−, t ∈ T . (44)

These “quantile cuts” correspond to individual p-level constraints on load coverage for all
exit players and for all time steps separately, i.e.,

P

(
ξi,t ≤ qnomi,t

) ≥ p for all i ∈ P−, t ∈ T , (45)
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Table 1 Iterations, runtimes (in s), and optimality gaps (in %) for various choices of the probability level p

p Bisection Bounding δ-Feasibility Total

Runtime #Iter. Runtime #Iter. Runtime #Iter. Runtime Gap

0.60 12.13 32 36.80 10 28.97 42 77.9 0.001

0.65 14.15 28 32.00 16 40.71 44 86.86 0.001

0.70 11.13 26 29.70 13 39.70 39 80.53 0.001

0.75 9.04 25 28.55 6 14.19 31 51.78 0.002

0.80 7.98 25 29.06 4 6.26 29 43.3 0.005

0.85 11.08 21 24.01 3 7.41 24 42.5 0.006

0.90 11.05 23 26.34 8 27.52 31 64.91 0.017

0.95 5.96 24 27.99 6 14.14 30 48.09 0.010

0.96 7.56 22 24.56 3 4.17 25 36.29 0.011

0.97 6.94 21 23.96 4 9.20 25 40.10 0.015

0.98 4.63 25 93.68 9 106.31 34 204.62 0.032

0.99 6.96 26 29.76 10 1250.65 36 1287.37 0.187

which are clearly valid for the original chance constraint. Another approach is to add a single
first-order cut (34) at a point q̃nom− with

p − δp ≤ P

(
ξi,t ≤ q̃nom− for all i ∈ P−, t ∈ T

) ≤ p

for a given δp > 0. We can find such a point, e.g., via bisection. The latter approach turned
out to be very effective in our computations such that we apply it by default.

In Table 1, we present the numbers of iterations and runtimes in total and separated for
the three phases of our tailored algorithm, i.e., bisection to find an initial cut, the bounding
procedure Algorithm 2, and the feasibility procedure Algorithm 1.

We observe several aspects in Table 1. First, in general, the larger fraction of the total
iterations and runtimes is spent in the bounding procedure, while mostly only a few iterations
are needed afterward to compute a δ-feasible point. However, the bounding problems are
rather cheap such that we cannot say that the bounding phase requires more runtime than
the feasibility phase. Second, we cannot observe a relationship between the p-level and the
total runtime, i.e., in general a larger p-level does not result in longer runtimes. The longer
runtimes for p = 0.98 and p = 0.99 are caused by a single iteration of Algorithm 1 that
takes much more time than every other iteration. However, we do not see any explanation of
these “outlier iterations” in terms of larger values of p. Third, we spent a significant amount
of the runtime to find an initial cut via bisection. We already discussed that initial cuts are
crucial for the applicability of the approach. However, the quantile cuts (44) can be added for
free such that it appears to be a reasonable option to add these cuts. We shed some more light
on this by discussing the evolution of the p-level over the iterations of our approach for both
cases, i.e., using quantile cuts or running an initial bisection. By p-level, we mean the value
of the original chance constraint (25) when it is evaluated at the solution of the respective
iteration. Figure 2 demonstrates this comparison exemplary for the instance p = 0.90.

We see that we start with a much higher p-level when we equip our approach with the
bisection phase. This results in a faster convergence to the desired p-level. Ultimately, this
reduction in iterations overcompensates the expensive bisection. This justifies to use the
bisection instead of the quantile cuts.
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Fig. 2 Evolution of the p-level and the ex-post computed gap over the iterations for the probabilistic model
with p = 0.9

Another conclusion from Fig. 2 can be drawn with respect to the usefulness of the cuts
generated in the bounding phase. The vertical lines in Fig. 2 mark the end of the bounding
phase. While it takes several iterations in the bounding phase to finally arrive at the desired
p-level, we remain close to this p-level when entering the feasibility phase. This behavior
can be observed for all tested instances and means that the cuts generated in the bounding
phase are very useful in Algorithm 1, most likely because they linearize the log-transformed
chance constraint around the δ-feasible point to which we converge.

We now turn back to Table 1 and discuss themost important observation. Except p = 0.99,
for which we terminate with a gap of 0.187%, we always terminate with a negligibly small
gap that allows to consider the computed solutions to be approximate optimal. Thus, the
computational results allow to use our tailored approach from Sect. 3.3 in a case study to
analyze and interpret the effects of uncertain loads on economic quantities like nominations
and total welfare.

3.7 Case study

In the following, we discuss the outcomes of our computations for different constraints on
load coverage. The first instance is defined as the solution of the nominal problemwithout any
load coverage constraint.As noted before, this solution corresponds tomean exit nominations.
The second instance imposes individual 90%-constraints on load coverage for all exit players
and for all time steps as it is done in Constraint (44), respectively (45). As discussed, the
advantage of this quantile-approach relies on the fact that it is as easy to obtain as the nominal
solution, where the lower bound is just zero. The drawback is that these solutions—while
yielding robust load coverage for each exit player and in each time step separately, may be
far from guaranteeing robust load coverage for all exit players and times simultaneously.
This observation—which will be supported by our results below—is not surprising because
only a very restricted part of the underlying multivariate distribution is taken into account,
i.e., no covariances between load components are considered. Our main interest is about
the third instance, namely the joint (over all times and exits) probabilistic load coverage,
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which results in the probabilistic constraint (25). In contrast to the quantile-based solution,
robust load coverage can be achieved. As seen in the last section, the robust solution of the
chance-constrained problem comes at the cost of an additional computational burden. In the
following we evaluate the impact of different probability levels p ∈ [0, 1] as detailed in
Table 1.

Figure 3 shows the time-dependent profiles of nominations at the three exits for the mean
vector, the 0.9-quantile constraint and the probabilistic constraints with safety levels from
the indicated range. It can be observed how much nominations have to be increased in order
to satisfy the desired safety. It can be seen that, while the mean profiles are just scaled/shifted
versions of each other, which actually is a consequence of keeping the slopes of the inverse
demand functions Pi,t in our model time-invariant, the other nomination profiles change their
shape over time and exits.

Figure 4 provides a plot of total welfare (18a) and of the fee μ for uniform load coverage
occurring in (29) (also interpreted as the “price of stochasticity”) as a function of the chosen
probability level. We reiterate that in our iterative solution approach, μ is approximated by
a series of μ j . However, we can compute the “real” fee μ ex-post via the KKT stationarity
condition (41) of the original probabilistic lower-level problem (27). It can be seen that
the loss of welfare is moderate when increasing the safety towards 0.9, whereas it severely
decreases when driving safety further towards 1. A similar pattern is observed for the price
of uniform load coverage. These diagrams suggest that in the given example, 90% safety
of load coverage would represent a reasonable compromise between the TSO’s interest in
nominations covering the random load on the one hand and the welfare losses induced by
this safety of load coverage.

The probabilistic effect of exit nominations is illustrated in Fig. 5: The black thick curves
correspond to nominations according to mean (top), 0.9-quantile solution (middle), and
probabilistic constraint for p = 0.9 (bottom). In order to visualize load coverage by these
nomination profiles, we simulated ten scenarios for load profiles according to the given mul-
tivariate Gaussian distribution. Note that each scenario is related to all exits and all times.
Hence, for instance the three thin blue curves in the lower diagrams correspond to one sce-
nario. Nominating according to the mean load not surprisingly yields that at each exit and
each time the load of approximately one half of the scenarios is covered by the nomination.
On the other hand, each of the ten scenarios is not covered by the nomination at some exit at
some time (such scenarios not uniformly covered by the nomination are colored in the dia-
grams). This means that the TSO has to expect almost surely uncovered load in the network
over the considered time horizon. In contrast, the quantile-based exit nomination guarantees
at each exit and each time separately a load coverage for all but one (on average) scenarios,
which corresponds well to the chosen 90%-quantile. However, uniform load coverage is as
poor as for the mean-based nomination: none of the ten scenarios is uniformly covered for
all exits and times (i.e., all curves are colored). Things change when imposing a joint chance
constraint: here, nine out of ten scenarios are uniformly covered by the corresponding nom-
ination profile. Only one scenario (colored in blue) remains unsatisfied at Exits 1 and 3 at
time 2. We note that the numbers of violating scenarios is random itself. Thus, repeating the
analysis with a new sample of load scenarios might result in slightly different numbers. How-
ever, on average, it will reflect the true probabilities of violation. For instance, in a sample of
100 load scenarios (which we do not illustrate here for reasons of visibility), we found 100,
89, and 12 violating scenarios for the mean, the quantile, and the joint probabilistic solution,
respectively.

Finally, the nomination counterparts of entries are plotted in Fig. 6 for six different safety
instances.

123



Journal of Global Optimization (2022) 84:651–685 677

mean

0.9 quantile

p 0.60

p 0.95
p 0.99

2 4 6 8 10 12
Time

50

100

150

200

250

300

350

Nominations
Nominations at Exit 1

mean

0.9 quantile

p 0.60

p 0.95
p 0.99

2 4 6 8 10 12
Time

100

200

300

400
Nominations

Nominations at Exit 2

mean

0.9 quantile

p 0.60
p 0.95
p 0.99

2 4 6 8 10 12
Time

50

100

150

200

250

Nominations
Nominations at Exit 3

Fig. 3 Time-dependent profiles of nominations at the three exits for themean vector, the 0.9-quantile constraint
and the probabilistic constraints with varying safety levels
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Fig. 5 Nomination profiles of Exit 1 (left), Exit 2 (middle) and Exit 3 (right) for mean (top), 0.9-quantile-
solution (middle), and probabilistic constraint (p = 0.9) (bottom) along with ten simulated load scenarios
(colored: violating; gray: feasible)

The arrangement in these diagrams is different from that of the exits in Fig. 3: Here, we
opposed the three entries within each diagram. Three major observations can be made.

(1) The sum of entry nominations increases with increasing safety required.
(2) Entries 2 and 3 exhibit an almost constant time profile in all instances.
(3) Both entries change their role from inactive to strongly active when increasing the safety

level.

The first observation is not surprising since exit nominations increase as well and both
entry and exit nominations have to be balanced. The second observation is due to technical
limitations in combination with economic reasons. The maximum throughput of the network
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Fig. 6 Profiles of entry nominations for selected safety requirements

is limited mainly by pressure bounds. The technical capacities are set to ensure that the
pressure bounds are fulfilled. Entry 2 and 3 have lower variable costs compared to Entry 1
such that it economically makes sense to use as much gas as possible from these two entries.
Since total demand in most cases exceeds the technical capacities at Entries 2 and 3, we
observe an almost constant profile.

Finally, we turn to observation 3, which is the least intuitive. For low safety levels, the
cheapest entry, Entry 3, is supplying a lot of gas. With higher safety levels, Entry 3 is
substituted by the significantly more expensive Entry 2, until Entry 3 is driven out of the
market entirely. One possible explanation for this behavior might be as follows. Whenever
Entry 3 supplies large amounts of gas, the pressure loss over Pipe 2 results in a low pressure at
Node 1; see Fig. 1. When the nominations increase, more gas has to be transported from left
to right—in particular, more gas than Entry 3 is able to deliver due to technical limitations.
Thus, Entry 2, the second cheapest producer, needs to step in to supply Exit 2 and 3. However,
the low pressure at Node 1 forces Entry 2 to “send” gas over Pipe 11 (and thus over Pipe 3 and
Pipe 5 toNode 4) to satisfy all pressure loss constraints. This results in very high transportation
costs compared to “sending” gas directly via Pipe 7 to Node 4. Consequently, with higher
overall nominations, it becomes more attractive for the TSO to shut down Entry 3 entirely,
because its cheaper production is overcompensated by higher overall transportation costs.
This underlines also the complicated interplay of physics and economics.

4 Conclusion

Weconsidered bilevel optimization problemswith convex lower levels that involve black-box
constraints, i.e., constraint functions for which no closed form is available. To tackle such
problems, we developed a cutting-plane algorithm that can compute approximate bilevel-
feasible points. Afterward, we applied this method to a bilevel model of the European gas
market in which wemodel uncertain gas loads via a joint chance constraint in the lower level.
Since such a constraint cannot be stated in closed form, this setting fits the setup of a bilevel
problem with a lower-level black-box constraint. Using further problem-specific techniques
we can also show that the computed approximate feasible points are indeed approximate
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optimal as well, which allowed to analyze the sensitivity of welfare outcomes in dependence
of the achieved safety level for load coverage.

The considered setting is a rather new sub-field in bilevel optimization. Thus,many aspects
can be elaborated on further in the future. Let us sketch two of them. First, it might be
interesting to study a bilevel setting in which the lower-level black-box also depends on
the leader’s decision. In the context of chance constraints, this can be seen as a variant of
decision-dependent uncertainty in the lower-level problem. Second, we are sure that other
algorithmic approaches to bilevel problems with black-box constraints are possible and every
algorithmic improvement will be beneficial for tackling relevant problems from practice.
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Appendix

Appendix A: data

In Table 2 we specify the intercepts ai,t and slopes bi of the exit players.
We also specify the mean vector m of the multivariate Gaussian distribution of the load

vector ξ . For better readability, we denote the vector in parts mi = (mi,t )t∈T for all i ∈ P−:

m1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

225.11
205.86
196.86
158.86
126.86
127.86
137.86
130.86
99.86
175.86
177.86
200.86

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, m2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

264.08
246.83
236.83
190.83
151.83
153.83
165.83
157.83
119.83
210.83
212.83
240.83

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, m3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

178.65
164.88
157.88
126.88
101.88
102.88
109.88
104.88
79.88
140.88
141.88
160.88

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Table 2 Intercepts ai,t (in
EUR/(1000Nm3/H)) and
slopes bi (in
EUR/(1000Nm3/h)2) of the exit
players

Exit 1 Exit 2 Exit 3

ai,1 4040.60 4039.80 4039.80

ai,2 3692.00 3681.00 3687.90

ai,3 3542.60 3543.00 3543.00

ai,4 2911.80 2908.20 2901.30

ai,5 2380.60 2370.00 2383.80

ai,6 2397.20 2397.60 2404.50

ai,7 2563.20 2563.20 2549.40

ai,8 2447.00 2452.80 2445.90

ai,9 1932.40 1928.40 1928.40

ai,10 3194.00 3184.20 3191.10

ai,11 3227.20 3211.80 3211.80

ai,12 3609.00 3598.20 3605.10

bi − 16.60 − 13.80 − 20.70

Finally, we denote the covariance matrix � of the loads ξ . For better readability, we only
denote the |T |-many |P−| × |P−| nonzero blocks �t :

�1 =
⎡

⎣
1455.73 796.24 797.54
796.24 1209.78 727.06
797.54 727.06 1213.74

⎤

⎦ , �2 =
⎡

⎣
542.31 530.88 344.84
530.88 1443.57 562.62
344.84 562.62 609.11

⎤

⎦ ,

�3 =
⎡

⎣
1579.69 1130.54 505.62
1130.54 2247.48 603.09
505.62 603.09 449.54

⎤

⎦ , �4 =
⎡

⎣
1124.77 768.18 591.80
768.18 1457.33 673.63
591.80 673.63 864.93

⎤

⎦ ,

�5 =
⎡

⎣
1480.80 1069.88 526.31
1069.88 2147.19 633.76
526.31 633.76 519.61

⎤

⎦ , �6 =
⎡

⎣
1429.86 991.65 471.21
991.65 1910.37 544.66
471.21 544.66 431.35

⎤

⎦ ,

�7 =
⎡

⎣
634.58 598.06 529.14
598.06 1565.69 831.16
529.14 831.16 1225.62

⎤

⎦ , �8 =
⎡

⎣
910.52 757.94 395.81
757.94 1752.57 549.14
395.81 549.14 477.95

⎤

⎦ ,

�9 =
⎡

⎣
1554.29 784.02 636.37
784.02 1098.56 535.00
636.37 535.00 723.74

⎤

⎦ , �10 =
⎡

⎣
1463.03 1146.00 803.26
1146.00 2493.50 1048.66
803.26 1048.66 1225.05

⎤

⎦ ,

�11 =
⎡

⎣
1213.19 628.39 429.07
628.39 904.13 370.41
429.07 370.41 421.52

⎤

⎦ , �12 =
⎡

⎣
801.40 825.66 380.58
825.66 2362.90 653.50
380.58 653.50 502.05

⎤

⎦ .

Appendix B: big-M

In this section,we derive an upper bound on theLagrangianmultipliersμ j as used in Sect. 3.2.
To this end, we consider the stationarity condition (36b), i.e.,

πnom
t − γ −

i,t + γ +
i,t +

r∑

j=1

∇qnomi,t
h(q j

−)μ j = ai,t + bi,t q
nom
i,t , i ∈ P−, t ∈ T .
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First, we assume qnomi,t > 0 for all i ∈ P− and t ∈ T , which is justified in the probabilistic
setting: According to (44), we can bound the nominations of the exit players from below.
With this, we obtain

πnom
t + γ +

i,t +
r∑

j=1

∇qnomi,t
h(q j

−)μ j = ai,t + bi,t q
nom
i,t , i ∈ P−, t ∈ T .

From now on, we consider an arbitrary but fixed index j . Since the multivariate Gaussian
distribution function 
 is strictly positive, it follows from (32) that ∇qnomi,t

h(q j
−) < 0 holds

for all i ∈ P−, t ∈ T , and j = 1, . . . , r , we can solve for μ j and obtain

μ j =
ai,t + bi,t qnomi,t − πnom

t − γ +
i,t − ∑

k∈{1,...,r}\{ j} ∇qnomi,t
h(qk−)μk

∇qnomi,t
h(q j

−)
, i ∈ P−, t ∈ T .

Note that all ∇qnomi,t
h(q j

−) for all i ∈ P−, t ∈ T , and j = 1, . . . , r are given (and negative)
constants. Hence, to obtain a valid upper bound on μ j we first have to properly bound the
other terms in the numerator. Since we divided by a negative number, a valid upper bound
for μ j can be obtained by taking the smallest possible numerator. Due to bi,t < 0, a lower
bound for

ai,t + bi,t q
nom
i,t

is given by

L1 = ai,t + bi,t q̄
nom
i,t ,

where q̄nomi,t is an upper bound for qnomi,t . Taking the network constraints into account, we can
set

q̄nomi,t =
∑

a∈δinu

q+
a −

∑

a∈δoutu

q−
a ,

where u ∈ V is the node in the network at which player i ∈ P− is located.
Let us now further assume that the overall booking price is bounded above, i.e.,

¯π
book
u + πbook

u ≤ L2

for some L2 > 0 and all i ∈ Pu , u ∈ V+ ∪ V−. Thus, with γ +
i,t ≥ 0 and (36a), we can also

bound all γ +
i,t from above by L2. By using (36c), we then see that

L3 = max
i∈P+

{cvari } + L2

is a valid upper bound for the resulting market equilibrium price πnom
t .

The last term,

−
∑

k∈{1,...,r}\{ j}
∇qnomi,t

h(qk−)μk,

in the numerator gets as small as possible for μk = 0 for all k ∈ {1, . . . , r} \ { j} since
∇qnomi,t

h(qk−) < 0.
Taking this all together, we see that

μ j ≤ L j with L j = L1 − L2 − L3

∇qnomi,t
h(q j

−)
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holds. Note that we can, in principle, do this derivation for every i ∈ P− and t ∈ T to get
the tightest possible upper bound L j .
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