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Abstract In this paper, we deal with a cascaded reservoir optimization problem with
uncertainty on inflows in a joint chance constrained programming setting. In partic-
ular, we will consider inflows with a persistency effect, following a causal time se-
ries model with Gaussian innovations. We present an iterative algorithm for solving
similarly structured joint chance constrained programming problems that requires a
Slater point and the computation of gradients. Several alternatives to the joint chance
constraint problem are presented. In particular, we present an individual chance con-
straint problem and a robust model. We illustrate the interest of joint chance con-
strained programming by comparing results obtained on a realistic hydro valley with
those obtained from the alternative models. Despite the fact that the alternative mod-
els often require less hypothesis on the law of the inflows, we show that they yield
conservative and costly solutions. The simpler models, such as the individual chance
constraint one, are shown to yield insufficient robustness and are therefore not useful.
We therefore conclude that Joint Chance Constrained programming appears as an ap-
proach offering a good trade-off between cost and robustness and can be tractable for
complex realistic models.
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1 Introduction

An important optimization problem in energy management, known as the “unit-
commitment Problem”, aims at computing the production schedule that satisfies the
offer-demand constraint at minimal cost. That schedule indicates production levels
for each production unit in a hydro-thermal system. Each unit is subject to many
complex technical constraints. This fact, together with the fact that the offer-demand
constraints are coupling constraints and link all these various and numerous units to-
gether, leads to the conclusion that the unit-commitment problem is often large-scale
and difficult to solve. In order to tackle these large scale problems, the coupling con-
straints are often dualized, using Lagrangian techniques, leading to an effective price
decomposition scheme (Cohen and Zhu 1983; Lemaréchal and Sagastizábal 1994).
Since the global unit-commitment problem is already challenging to solve in a deter-
ministic setting due to its non-convex feasible sets and large scale, uncertainty is often
neglected, even though decisions are taken at least one day in advance. Uncertainty in
unit-commitment problems comes at least from the following sources: customer load,
renewable generation, inflows, unit availability. Integrating uncertainty in global unit-
commitment will be quite challenging for the reasons outlined above. Hence, as a first
necessary step, we will focus on hydro valley optimization. In the Lagrangian dual-
ization setting of a unit-commitment problem, hydro valley optimization can be seen
as a sub-problem. Alternatively, one can interpret this problem as an optimization
against market-prices. Complex dynamic constraints on watershed controls introduce
combinatorial aspects in this sub-problem, making it difficult to solve. The focus of
this paper will therefore be on integrating uncertainty in hydro valley management.

The aforementioned combinatorial aspects result from formulating smoothness re-
quests on watershed. From an engineering perspective it is undesirable to have turbin-
ing output increase and decrease rapidly over short time spans as this induces a strain
on material. Other combinatorial elements can arise when modelling very realistic
efficiency curves. We refer to Diniz and Maceira (2008) for an approach to deal
(i.e., remove) the latter combinatorial elements. In hydro dominated systems, such
as in Brazil, Scandinavia and Canada, the emphasis of accurate modelling lies on
hydro generation and combinatorial optimization is common for cascaded reservoir
management. We refer to Belloni et al. (2003), Finardi and Da Silva (2006), Ponra-
jah et al. (1998), Nilsson and Sjelvgren (1997) for more details on such models. In
thermal dominated systems, such as the French system, the modelling emphasis lies
more on thermal generation. In these large-scale unit-commitment problems, such
additional combinatorial elements are often neglected in order to have an acceptable
computional burden (see Dubost et al. 2005). We will make the same assumption.
Integrating uncertainty and combinatorial elements in a cascaded reservoir model is
quite challenging and will be investigated in future work. A potential entry point for
such an approach would be the decomposition idea investigated in Finardi and Da
Silva (2006).
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Uncertainty in cascaded reservoir management results from uncertainty on inflows
and impacts the physical constraints of the system. Since decisions are taken prior to
the observation of uncertainty, appropriate modelling approaches for integrating un-
certainty have to be considered. The two main approaches are chance constrained
programming and robust optimization. The main focus of this paper is on the former,
for the latter we refer to Ben-Tal et al. (2009). In dynamic decision processes, i.e.,
when decisions in later time periods are allowed to adapt to earlier observed uncer-
tainty, the main approaches are Stochastic Dynamic Programming and SDDP (see
Pereira and Pinto 1991). Often the convenient hypothesis is made that uncertainty
within the transition problem is known. This essentially makes the transition prob-
lem a deterministic problem. The latter choice is especially questionable when the
transition problem covers a time span of a week such as assumed in Philpott et al.
(2011).

Introduced by Charnes and Cooper (1960), probability constraints are quite an
appealing tool for dealing with uncertainty. In particular, when uncertainty arises
in physical constraints, since they also offer a simple interpretation. A classical
introduction to the theory and numerical treatment of chance constraints can be
found in Prékopa (1995). In the same monograph, one can find convexity results,
for uncertainty separated from decisions and for a large class of distributions in-
cluding the multivariate Gaussian one. Since their first introduction, chance con-
straints have become quite common in hydro valley management (Loucks et al. 1981;
Duranyildiz et al. 1999; Edirisinghe et al. 2000; Loiaciga 1988; Morgan et al. 1993;
Zorgati et al. 2009; Zorgati and van Ackooij 2011; van Ackooij et al. 2010), but of-
ten individual chance constraints are used and not joint chance constraints. Though
a very appealing approximation, individual chance constraints unfortunately do not
offer sufficient robustness (see van Ackooij et al. 2010). Hydro reservoir models with
joint chance constraints have been considered, for instance, in Prékopa and Szán-
tai (1978a, b), van Ackooij et al. (2010). In Andrieu et al. (2010) even a dynamic
approach has been developed in this context. However, these models were com-
paratively simple from their structure (no serially linked reservoirs, no delay time
between reservoirs, no realistic water value condition, no time series modelling of
statistical data, small dimension). The main focus of van Ackooij et al. (2010) is
on deriving an efficient gradient formula for joint chance constraints of a specific
form. The latter form arises naturally in hydro reservoir management. The interest
of the formula is then illustrated on a stylized hydro reservoir optimization prob-
lem.

The contributions of this paper to the field of applied chance constrained pro-
gramming are the following. We consider a realistically sized hydro valley from the
industry, wherein water is valued according to a structure arising in practice. Uncer-
tainty is modelled according to a causal time series model integrating a persistency
effect on inflows. This offers a wide range of modelling choices. We compare the
chance constrained programming approach with other typical approaches tempting
to solve the same problem: the well established practice in the industry consisting
of replacing the random vector by its expectation, approximating joint chance con-
straints by individual chance constraints and robust optimization. We show that the
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former two approaches are insufficient since they offer no robustness guarantee and
that the latter one often yields over-conservative solutions. Finally, we derive an ef-
ficient formula for the Hessian of a joint chance constraint that could be exploited
in smooth non-linear optimization algorithms for joint chance constrained program-
ming.

This paper is organized as follows. In Sect. 2, we present our model for hydro
reservoir management, where combinatorial constraints are neglected and random
inflows are introduced. We give a detailed description of a real hydro valley, and
present the main optimization problem. As the uncertainty on inflows is concerned,
many statistical models are based on a deterministic trend (potentially dependent on
explanatory variables) and a causal noise process. Since convexity results exist for
specific classes of randomness and in particular Gaussian ones, it seems tempting
to place ourselves in such a setting. Restricting uncertainty laws to such a setting,
might seem restrictive at first. However, we will show that a large class of models
is available, i.e., the class of causal time series models with Gaussian innovations
(Shumway and Stoffer 2000).

In Sect. 3, we derive algorithms for dealing with our model. One difficulty for
solving joint chance-constraint models is to be able to compute gradients of such con-
straints efficiently. Gradient formulæ for multivariate Gamma, Dirichlet, and Gaus-
sian distributions can be found in Prékopa and Szántai (1978b), Prékopa (1995),
Gouda and Szántai (2010), Szántai (1985), Henrion and Möller (2012), van Ack-
ooij et al. (2010), respectively. Similarly to evaluating the chance constraint, these
formulæ involve computing a probability. We present here an iterative algorithm for
solving, in the convex case, joint chance constrained programming problems that re-
quires a Slater point and the computation of gradients. Several alternatives to the joint
chance constraint problem are then presented. In particular, we present an individual
chance constraint problem and a robust model.

In Sect. 4, we report results obtained when solving these various models on a
realistic instance of a hydro valley management problem. The interest of joint chance
constrained programming is illustrated by comparing results obtained on this hydro
valley with those obtained from the alternative models.

An algorithmic perspective and some auxiliary lemmas are given in Appendix A.
We also provide a modest extension of the theoretical results obtained in van Ackooij
et al. (2010), since it presents an efficient formula for the Hessian of a joint chance
constraint. Finally, conclusions are drawn in Sect. 5.

2 Problem description

In this section we will give a description of the hydro reservoir management problem.
We will consider a discretized time horizon. To this end let τ = {1, . . . , T } denote the
set of (homogeneous) time steps, where T denotes the last time step. Let �t be the
time step size expressed in hours. We will begin by providing problem constraints and
the objective function. We will conclude with a paragraph highlighting the structure
of the problem.
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2.1 Problem constraints

2.1.1 Topology

A hydro valley can be seen as a set of connected reservoirs and associated turbines.
We can therefore represent this with a directed graph. Let N be the set of nodes
and let A (of size |N | × |N |) be the connection matrix, i.e., An,m = 1 whenever
water released from reservoir n will flow into reservoir m. We will assume that D

is the flow duration vector, i.e., Dm is the amount of time (measured in time steps)
it takes for water to flow from upper reservoir m to its unique child. It is assumed
that pumping is (nearly) instantaneous. Let T := {gi , i = 1, . . . ,NT } denote the set
of turbines and P := {pi, i = 1, . . . ,NP } denote the set of pumping stations. We
furthermore introduce the mapping σT : {1, . . . ,NT } → N (σP : {1, . . . ,NP } →N )
attributing to each turbine (pumping station) the reservoir number to which it belongs.
We will also introduce the sets A(n) = {m ∈ N : Am,n = 1} and F(n) = {m ∈ N :
An,m = 1}. The set A(n) is empty for uphill reservoirs and the set F(n) for downhill
reservoirs. To each reservoir n ∈ N and for each time step t ∈ τ we associate its
volume V n(t) in cubic hectometers hm3. The initial volume of each reservoir n ∈N
is denoted by V n(0), lower and upper bounds are V n

min(t) and V n
max(t) respectively.

2.1.2 Controls

We will assume that each turbine (and pumping station) can be controlled for
each time step. To this end we introduce the variables xi(t) for each t ∈ τ and
i = 1, . . . ,NT . In a similar way we introduce the variables yi(t) for the pumping
stations. The units are in cubic meters per hour, i.e., m3/h. Furthermore we assume
that each of these variables are bounded from below by zero and from above by xi

(yi respectively).

2.1.3 Random inflows

We will assume that inflows (in m3/h) in reservoirs are the result of some stochastic
process. Let An(t) denote this stochastic process for reservoir n. Not all reservoirs
will have stochastic inflows, some of them will have deterministic inflows. This can
be explained by the fact that top reservoirs have random inflows due to the melting
of snow in the high mountains, whereas rain can be neglected for lower reservoirs.
Let N r ⊆ N denote the set of reservoirs receiving random inflows. We will assume
that the stochastic inflow process is the sum of a deterministic trend sn

t and a causal
process (Shumway and Stoffer 2000) generated by Gaussian innovations. To this end,
let ζ n(t) be a Gaussian white noise process, where (ζ k1(t), . . . , ζ kl (t)) is a Gaussian
random vector of zero average and variance-covariance matrix Σ(t) ({k1, . . . , kl} =
N r ). We will assume independence between time steps of the ζ vector. Since An(t)

is a causal process, we can write it as follows

An(t) = sn
t +

∞∑

j=0

ψn
j ζ n(t − j) = sn

t +
∞∑

j=t

ψn
j ζ n(t − j) +

t−1∑

j=0

ψn
j ζ n(t − j),

∀n ∈ N r , t ∈ τ
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for some coefficient vector ψn and infinite past before t = 0 (the beginning of the
optimization horizon). We will assume that randomness before (and including) t = 0
is known and as such we can assume w.l.o.g. that the random inflow process can be
written as

An(t) = sn
t +

t−1∑

j=0

ψn
j ζ n(t − j), ∀n ∈N r , t ∈ τ. (1)

For reservoirs n ∈ N \N r , we simply have An(t) = sn
t .

2.1.4 Flow constraints and volume bounds

Each reservoir is subject to flow constraints induced by pumping and turbining. The
following balance constraint applies

V n(t) = V n(t − 1) +
∑

m∈A(n)

∑

i∈σ−1
T [m]

xi(t − Dm)�t −
∑

i∈σ−1
T [n]

xi(t)�t

+
∑

m∈F(n)

∑

i∈σ−1
P [m]

yi(t)�t −
∑

i∈σ−1
P [n]

yi(t)�t + sn
t �t

+
t−1∑

j=0

ψn
j ζ n(t − j)�t, ∀t ∈ τ,n ∈ N . (2)

The above equation is entirely deterministic except for the reservoirs n ∈ N r . In
order to deal with this randomness and reservoir bounds we will therefore add the
following constraints

P
[
V n

min(t) ≤ V n(t) ≤ V n
max(t) ∀t ∈ τ,n ∈ N r

] ≥ p (3)

V n
min(t) ≤ V n(t) ≤ V n

max(t) ∀t ∈ τ,n ∈ N \N r , (4)

where P is a probability measure and p a security level. Constraint (3) is a joint
chance constraint. This means that we wish to satisfy all linear inequalities of the
stochastic system simultaneously with high enough probability. This can be com-
pared to a model with individual chance constraints, which is a model wherein we
wish to satisfy each inequality with high enough probability, but taken separately. We
will see in this paper that the latter model offers insufficient robustness.

2.1.5 Water values

In short term optimization problems (with time horizons ranging from several days
up to a month) water values provide a way to associate a cost with used water. In-
corporating no such cost in a short term optimization problem would inevitably lead
to a maximum use of water on this specific time horizon, whereas water might be
needed in later time periods. Water might be used to reduce the use of costly thermal
generation or as a security to avoid “black-outs” in difficult situations. Water values
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are obtained as the by product of (stochastic) dynamic programming approaches in
mid term (time horizons ranging from 1 to 5 years).

In full generality water values depend on time, a multivariate random vector, the
current water levels in all reservoirs and other quantities that can be considered as
inventories or stocks (such as customer interruption options (see Zorgati and van
Ackooij 2011 for more details), i.e., an inventory globally very similar to the number
of remaining exercise rights in swing options). As the effect of uncertainty is con-
cerned, it is often averaged out on a set of reasonable scenarios in order to integrate
unconditional water values in short term optimization. The stochastic dynamic pro-
gramming algorithms typically deal with uncertainty effects rarely integrated in short
term optimization such as stochastic fuel prices.

The multivariate stock dependency is only known approximately, if at all, since
one quickly hits the curse of dimensionality of dynamic programming. In such cases,
approaches such as approximate dynamic programming (ADP) (de Farias and Van
Roy 2002), approximate dual dynamic programming (ADDP) (Girardeau 2010),
SDDP (Pereira and Pinto 1991; Philpott and Guan 2008) or aggregation approaches
(Turgeon 1980; Torrion and Leveugle 1985) are applied in order to approximately
solve the dynamic programming problem. In the ADP approach, it is commonly as-
sumed that the continuation function of dynamic programming decomposes as a sum
of 1 dimensional functions. Each function depending on a unique stock only. This
then automatically results in single stock dependent water values. Even if water val-
ues would be available as multivariate functions, they would only be known on a
set of grid points. If this is to be incorporated in short term optimization one surely
needs interpolation techniques very similar to those explained in d’Ambrosio et al.
(2010). This interpolation approach leads to the introduction of binary variables in
the optimization problem. Since multivariate effects in water values are only rarely
known and integrating them induces combinatorial aspects, we will focus on single
stock dependent water values in this paper.

As the temporal dependency is concerned it is often daily or intra-daily. Due to
the average effect of climate on unit-commitment, some specific weeks are far more
costly than surrounding weeks. Such weeks have peaking customer load and high
risk of black outs. Such effects get reflected in the water values as well. These effects
are moreover strengthened by averaging out stochastically dependent water values as
explained above.

If we wish to incorporate water values in short term optimization, the latter tem-
poral effect can either be neglected or taken into account. In the first case, we would
value the differential between the end and the initial volume of a reservoir against
water values at that time step. In the second approach we would either value volumes
against water values at each time step or value local volumetric differences. The first
approach would consider indifferently any two storage paths leading to the same end
volume. When the short term time horizon is close to a month and one of the above
difficult weeks is within this time horizon, from an operational view point two paths
leading to the same end volume are not necessarily considered equivalent. It is there-
fore of interest to integrate the temporal dependence in order to reflect this feature.
A second reason for integrating this effect is to provide a model that fits better with
current practice. In practice, in order to control the storage path, a selection of time
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steps τ s ⊆ τ is made where artificially we force V n
min(t) ≈ V n

max(t) for t ∈ τ s . In-
tegrating the temporal dependency of water values in short term optimization is a
natural way to have control over the storage path without risking to have an empty
feasible set.

In this section we present a model for incorporating water values without reflecting
temporal dependencies as the focus of the paper is on Chance Constrained program-
ming for hydro reservoir management. Upon valuing the volume at each time step
against local water values, the presented model allows for a straightforward exten-
sion for incorporating the above discussed temporal effect of water values.

Volume dependent water values Our aim is to set up a model which evaluates the
expected amount of water in the reservoir at the end of the optimization horizon1.
This is necessary in order not to carry out the optimization at the expense of later
periods of time. A possible way to do so is to subdivide the levels of each reservoir
into a finite number of values from bottom to top as follows:

V n
0 , . . . , V n

Kn
∀n ∈N .

Each compartment [V n
i−1,V

n
i ) is assigned a water value Wn

i (in e/m3) such that

Wn
i−1 > Wn

i ≥ 0 ∀n ∈N ∀i = 1, . . . ,Kn. (5)

The value of the expected final water level E(Vn(T)) of reservoir n is then simply the
cumulative value of water in the compartments below:

∑

i≤i∗
Wn

i

(
V n

i − V n
i−1

) + Wn
i∗

(
E

(
Vn(T)

)−V n
i∗

)
, i∗ := max

{
i|E(

Vn(T)
) ≥ V n

i

}
.

Note that this value is an increasing function of the expected final level EV n(T )

despite the fact that water values are strictly decreasing from bottom to top.
Now, in order to avoid combinatorial arguments concerning the index i∗, we in-

troduce auxiliary variables zn
i indicating for each reservoir n the amount of water in

compartment [V n
i−1,V

n
i ). Of course, since all compartments have to be completely

filled up to i∗, one has that

zn
i =

⎧
⎨

⎩

V n
i − V n

i−1 i = 1, . . . , i∗
E(Vn(T))−V n

i∗ i = i∗ + 1
0 i = i∗ + 2 . . . ,Kn

∀n. (6)

Then, the value of the final water level in reservoir n equals

Kn∑

i=1

Wn
i zn

i ∀n. (7)

1In practice, one would evaluate the difference of the final and initial volume. The latter adds a constant
to the objective function and can theoretically be omitted. In practice, it may generate some numerical
difficulties, especially when large volumes are valued and turbining/pumping capacity is small compared
to the volume. In that case, relative changes in valuation induced by the controls are easily considered
negligible. Moreover, the constant can easily be added.
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We claim that the relations (6) for variables zn
i can be replaced by the following

relations in which the crucial index i∗ is absent:

Kn∑

i=1

zn
i = E

(
Vn(T)

)−V n
0 ∀n (8)

0 ≤ zn
i ≤ V n

i − V n
i−1 ∀n∀i = 1, . . . ,Kn. (9)

The argument is as follows: as part of the overall objective function in our problem,
we shall maximize the value of the final water level (7). Given the strictly decreasing
order of water levels in (5) (from bottom to top), it is clear from (8) that the upper
inequality in (9) will be satisfied as an equality as long as possible and that only the
most upper compartment may not be completely filled. This of course is equivalent
with (6) but avoiding the explicit description of that most upper compartment.

Since the initial volume V n(0) is known in advance, one can define variables zn
0,i

in a similar way as zn
i . It then follows that

Kn∑

i=1

Wn
i

(
zn

0,i − zn
i

)
(10)

is the cost of used water for reservoir n ∈N . The valuation induced by
∑Kn

i=1 Wn
i zn

0,i
is in fact a constant and can be omitted.

2.2 Objective function

Often, in reality, each reservoir only has a single turbine. The power output of turbin-
ing x, in cubic meters per second m3/s, is given by a function ρ(x). This function is
strictly increasing and concave, i.e., ρ′(x) ≥ 0 and ρ′′(x) ≤ 0. In our model we have
split this range into several subsections (hence several turbines), each with efficiency
ρi = ρ′(s∗

i )/3600 (MWh/m3) for some s∗
i in each section. We can thus remark that

for any two turbines i1 and i2 belonging to the same reservoir we have ρi1 ≥ ρi2 when-
ever i1 ≤ i2. This approximation comes down to approximating ρ(x) by a piece-wise
linear function.

We assume given a time dependent price signal λ(t) (in e/MWh). The follow-
ing objective function has to be minimized, when integrating the cost of used water
according to (10):

∑

n∈N

Kn∑

i=1

(Wn
i

(
zn

0,i − zn
F,i

) −
∑

t∈τ

λ(t)�t

(
NT∑

i=1

ρi(t)x
i(t) −

NP∑

i=1

1

θi(t)
yi(t)

)
, (11)

where, θi(t) is the efficiency of pumping and the auxiliary variables zn
i satisfy (8),

(9).

2.3 Matrix formulation

In this section we show that (3) can be written as bilateral joint chance constraint.
This means that the model we are interested in is a bilateral joint chance constrained
program with linear objective function and some polyhedral constraints.
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Let us consider (2) and apply it recursively to establish the identity

V n(t) = V n(0) +
t∑

u=1

∑

m∈A(n)

∑

i∈σ−1
T [m]

xi(u − Dm)�t −
t∑

u=1

∑

i∈σ−1
T [n]

xi(u)�t

+
t∑

u=1

∑

m∈F(n)

∑

i∈σ−1
P [m]

yi(u)�t −
t∑

u=1

∑

i∈σ−1
P [n]

yi(u)�t

+
t∑

u=1

sn
u�t +

t∑

u=1

u−1∑

j=0

ψn
j ζ n(u − j)�t, (12)

holding for all t ∈ τ and n ∈ N . In what follows we will denote with Vn ∈ R
T the

vector Vn = (V n(1), . . . , V n(T )). It is of interest to explicitly establish the way in
which Vn depends on the vector ζ n in order to identify the correlation structure of the
global underlying uncertainty vector. One easily observes that Vn depends linearly on
x and y. In order to establish the correlation structure of the vector ζ , we introduce
the matrix mapping C : RT → MT ×T . Here MT ×T stands for the set of T × T real
matrices and C as applied to the sequence ψ := (ψ0, . . . ,ψT −1) ∈R

T is defined as:

C(ψ) =

⎛

⎜⎜⎜⎝

ψ0 0 0 · · · 0
ψ0 + ψ1 ψ0 0 · · · 0

...
. . .

...∑T −1
j=0 ψj · · · · · · ψ0

⎞

⎟⎟⎟⎠ .

It will be convenient to extend the definition of C to a sequence ψ shorter than T by
appending with zero entries.

Following (12) for each n ∈ N we can find a T ×T NT matrix Mn
T and T ×T NP

matrix Mn
P such that

Vn = V0 − �tMn
T x + Mn

Py + �tC(1)sn + �tC
(
ψn

)
ζ n, (13)

where sn is the vector formed from the deterministic trend sn
t of (1). Equations (8),

(9) can be written easily in linear form by extracting the last line from (13) without
the term in ζ n.

3 Models for dealing with uncertainty

In this section we will provide our main model, which is a joint chance constrained
programming problem (JCCP). We will also provide several alternative models.

3.1 Expectation model

In a classic version of cascaded reservoir management in short term optimization,
uncertainty is assumed to be absent or sufficiently characterized by a forecast. This
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amounts to the choice of replacing ζ n in (13) or equivalently (1) by its expectation,
i.e., ζ n(t) = E(ζ n(t)) = 0 ∀t ∈ τ . This substitution in turn impacts equation (3).

When combining (8), (13) and relations (9), (4) we know that we can find some
extended decision vector (also noted x ∈ R

n) containing (x, y, z) and some matrix
A, vector b such that the system Ax ≤ b models all the deterministic constraints
(including bounds on x) found in Sect. 2. One can moreover find a matrix Ar and
vectors ar , br such that equation (3) wherein we have substituted the expectation of
ζ for ζ is reflected by ar + Arx ≤ 0 ≤ Arx + br .

Combined, this gives the following linear program:

min
x∈Rn,x≥0

cTx

s.t. Ax ≤ b

− Arx ≤ br

Arx ≤ −ar .

(14)

This model can be identified with the model considered in a classical deterministic
unit-commitment setting.

3.2 A joint chance constraint model (JCCP)

In contrast to the expectation model wherein the effect of uncertainty is neglected,
incorporating uncertainty fully in equation (3) leads to a joint chance constrained
program. Indeed, by combining (13) with (3), we can see that the problem of Sect. 2
can be cast into the following form, where η ∈ R

m is a Gaussian random vector with
variance-covariance matrix Σ and zero mean (we have explicitly extracted the non-
zero average in (13)):

min
x∈Rn,x≥0

cTx

s.t. Ax ≤ b

p ≤ P
[
ar + Arx ≤ η ≤ br + Arx

]
.

(15)

In fact the feasible set of (15) is convex due to the Gaussian character of η ∈ R
m

and a theorem by Prékopa (1995). This makes the previous optimization problem a
convex one. For convenience we define ϕ : Rn → [0,1] as ϕ(x) = P[ar +Arx ≤ η ≤
br + Arx].

3.2.1 Link with the expectation problem

The chance constrained model can be seen as an extension of the expectation model
since it takes into account the available stochastic information on the distribution of
randomness, whereas model (14) only uses a single parameter. The following Lemma
shows that any feasible solution of (15) is feasible for (14). Physically this can be
explained by the fact that a “robust” control has to work well in the average situation.
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Lemma 1 Assume that p > 0.5 and that η ∈ R
m is a symmetric random variable,

i.e., P[η ∈ A] = P[η ∈ −A] for any measurable set A ⊆ R
m. The feasible set of (15)

is contained in the feasible set of (14). As a consequence the optimal value of (14) is
lower than that of (15).

Proof Assume that x ∈ R
n is not feasible for (14), for instance not ar + Arx ≤ 0,

i.e., there is at least one strictly positive component. By rearranging we may assume
that this is the first one. Now

P
[
ar + Arx ≤ η ≤ br + Arx

] ≤ P
[
ar + Arx ≤ η

]

≤ P
[
eT

1

(
ar + Arx

) ≤ eT
1η

] ≤ P[0 < ξ ] < 0.5,

where ξ is a centered one dimensional Gaussian random variable, and e1 is a standard
unit-vector of Rm. This shows that x can’t be feasible for (15). �

As mentioned the expectation model is a simple linear program. It is therefore
much easier to solve than problem (15). Despite this fact and the fact that it yields
solutions with low optimal values, it will be shown later in this paper that the solutions
are useless since they violate constraints almost surely.

3.2.2 An algorithm for solving JCCP

In order to solve problem (15) we will use the supporting hyperplane method. This
method was originally introduced by Veinott (1967) and adapted to the context
of joint chance constrained programming by Prékopa and Szántai (1978a), Szántai
(1988). This algorithm converges in a finite number of steps as shown in Prékopa and
Szántai (1978a). We repeat the algorithm for completeness.

1. (Initialization) Let x0 be the solution of (14), xs a Slater point for (15). Set A0 = A,
b0 = b and k = 0 and pick some tolerance tol, e.g., tol = 10−2. Let ε > 0 be a
tolerance on the evaluation of ϕ.

2. (Interpolation) Find λ∗ such that x∗
k = (1 − λ∗)xk + λ∗xs and p − ε ≤ ϕ(x∗

k ) ≤ p.
3. (Add Cut) Add constraint −∇ϕ(x∗

k )Tx ≤ −∇ϕ(x∗
k )Tx∗

k to the matrix system
Akx ≤ bk .

4. (Solve LP) Solve

min
x∈Rn,x≥0

cTx

s.t. Akx ≤ bk

to find xk+1.

5. (Stopping Test) If
cT(x∗

k −xk+1)

cTxk+1
< tol then stop, x∗

k is sufficiently optimal, else set
k = k + 1 and go to step 2.

For the previous algorithm to function we require a Slater point, i.e., some xs such
that Axs ≤ b, and ϕ(xs) > p. It can be obtained by solving the “max-p” problem (see
Sect. 3.3). Moreover, we should be able to efficiently evaluate ϕ and ∇ϕ. As shown
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in Corollary 1 below and Theorem 1 of van Ackooij et al. (2010), evaluating the gra-
dient can be analytically reduced to computing function values in smaller dimension.
Finally computing function values such as ϕ(x) can be done by using the code of
Genz (1992). Evaluating ϕ and ∇ϕ requires 2n + 1 calls to Genz’ code.

3.3 Max-P problem

We define the “max-p” problem as the following optimization problem:

max
x∈Rn,x≥0

ϕ(x) := P
[
ar + Arx ≤ η ≤ br + Arx

]

Ax ≤ b.

(16)

Clearly any solution xs of the previous problem with objective function value strictly
bigger than p is a Slater point for problem (15). This “max-p” problem is not only an
auxiliary problem for obtaining Slater points, but can also be interpreted as the prob-
lem of a decision-maker looking for maximum robustness, regardless of the costs. As
a matter of fact if the optimal solution of (16) is strictly below one, then almost surely
satisfying the “random” physical constraints (3) is not possible. The “max-p” prob-
lem therefore also provides us with information on the maximum robustness level p

that is “possible”.

3.4 Individual chance constraint model (ICCP)

We consider a simplification of the joint chance constrained model (15) by trans-
forming each stochastic inequality into individual chance constraints of type P[d1 +
〈a1, x〉 ≤ χ] ≥ p and P[χ ≤ 〈a2, x〉 + d2] ≥ p for well chosen vectors a1, a2 ∈ R

n,
scalars d1, d2 and a standard Gaussian random variable χ ∈ R. An exact formulation
is:

min
x∈Rn,x≥0

cTx

s.t. Ax ≤ b

P
[
eT
i

(
ar + Arx

) ≤ ηi

] ≥ p ∀i = 1, . . . ,m

P
[
ηi ≤ eT

i

(
br + Arx

)] ≥ p ∀i = 1, . . . ,m,

(17)

where ei ∈R
m is the i-th standard unit vector.

As a matter of fact, model (17) can be reduced to a simple linear program since
the inverse of Fηi (z) = P[ηi ≤ z] can be evaluated easily. It also offers improved
robustness with respect to the expectation model (14) that offered none. However it
can’t guarantee a probability level of p for the whole stochastic inequality system
and therefore offers far less robustness than the joint model (15) (van Ackooij et al.
2010). This will become apparent in the numerical experience.
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3.5 A robust model

We would like to identify an uncertainty set Ep ⊆ R
m for our random inflow process

η ∈ R
m in such a way that the probability of η falling in this set is approximately p.

We will then enforce the constraints of problem (15) to hold for all η in this set rather
than in probability. We will use a specific ellipsoidal form for the uncertainty set and
show that the thus obtained robust optimization problem then boils down to a linear
program, once two conic quadratic problems have been solved.

In order to determine Ep , let LLT = Σ be the Cholesky decomposition of Σ . Let
y ∈ R

m be defined as y = L−1η and assume that we dispose of a statistical estimate
of E(y4

i ) (in the Gaussian case these are known exactly) for i = 1, . . . ,m. Whenever
the law of η is unknown, we can use the variance covariance matrix Σ obtained
from statistic estimates. By construction, y is uncorrelated, we will make the (wrong)
approximation that this is the same as independence. Now by the Lindeberg-Feller
Central Limit Theorem (Prokhorov and Statulevičius 2000) we obtain that yTy is
approximately normally distributed with mean m and standard deviation σC , i.e.,

yTy ≈ N (m,σC), with σC =
√∑m

i=1 E(y4
i )−m.

We now define Ep = {z ∈ R
m : zTΣ−1z ≤ m + Φ−1(p)σC}. It follows in the case

that η follows a multivariate Gaussian law that P[η ∈ Ep] = p. This will be true
approximately when η follows another multivariate law.

We therefore consider the following robust version of problem (15):

min
x∈Rn,x≥0

cTx

s.t. Ax ≤ b

ar + Arx ≤ infEp

br + Arx ≥ supEp,

(18)

where infEp ∈ R
m denotes the vector whose components are the coordinate-wise

minima of Ep (supEp ∈ R
m is defined similarly). Both infEp and supEp are solutions

of a conic quadratic optimization problem. Indeed model (18) is equivalent with

min
x∈Rn,x≥0

cTx

s.t. Ax ≤ b

ar + Arx ≤ ξ ≤ br + Arx ∀ξ ∈ Ep.

Since model (18) basically looks at the smallest rectangle containing Ep and re-
quires satisfaction of constraints for all elements in the rectangle, one could also
look at alternative ways to obtain such a rectangle. Basically, we are looking for
some η and η such that P[η ≤ η ≤ η] ≈ p. These would then give better bounds
than infEp and supEp as above, since in general P[infEp ≤ η ≤ supEp] > p. In the
Gaussian case considered here we can exactly evaluate the probabilistic contents of
such rectangles and hence fine-tune the rectangle. Clearly any feasible solution of
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problem (15) will also provide such vectors. This last way of obtaining those vec-
tors offers no computational advantage to (18) other than prematurely ending the
algorithm that solves (15). An alternative would be to take some q < p, such that
P[infEq ≤ η ≤ supEq ] ≈ p. This is computationally not intensive, but requires eval-
uations of probabilistic contents. In order to investigate the impact of the choice of
this rectangle we have made some runs with model (18) wherein the rectangle was
made to fit perfectly. In practice, we have obtained η and η by taking some ad-hoc
convex combinations between the Slater point and the solution of (14). These results
will be referred to as Robust-Calibrated (Robust-Calib) or (18)-Calib.

4 Numerical example

In this section we consider a numerical example from the industry. The instance size
is moderate but realistic. The nominal inflows, i.e., sn

t in (1), are considered constant
through time. Finally, the water values are not assumed to depend on the volume, and
thereby correspond to the V0 level. It was shown in Sect. 2.1.5 that adding the volume
dependency induces no substantial difficulties. The focus of this numerical example
is the impact of uncertainty. We will consider 24 time steps of 2 hours each. Figures
1 and 2 show further data of our example. This implies the following dimensions
for our problem: the Gaussian vector dimension m is 48, the decision vector has 700
elements and the polyhedral constraints are defined by about 1000 linear inequalities.

As uncertainty is concerned we will assume that reservoirs 1 (“Vouglans”) and 2
(“Saut Mortier”) have random inflows. The standard deviations of the innovations ζ

of the inflow process An in (1) are taken to be equal to 20 % of the nominal inflow
values (0.3 m3/s for reservoir 2). We will consider two instances, one wherein inflows
on both reservoirs follow an AR(1) process with coefficient 0.9. A second instance
is one wherein we assume that inflows on reservoir 2 follow an AR(3) process with

Fig. 1 The price signal
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Fig. 2 The hydro valley

coefficients (0.9,0.7,−0.7). In this instance inflows on reservoir 1 still follow an
AR(1) process. The required probability level p in (15) is taken to be 0.8.

Solving the problems introduced in Sect. 3, we obtain the results as given in Ta-
ble 1, Figs. 3 and 4. We have set a tolerance of 10−2 for the supporting hyperplane
algorithm for joint chance constrained programming. It should be stated that the true
optimal solution of problem (15) for instance 2 gives a cost, only 0.6 % away from the
deterministic cost. Indeed the price of chance-constrained robustness is cheap here.

Table 1 shows optimal costs and number of violations. In order to compute the
latter information, we have made an a posteriori check of empirical probabilities by
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Table 1 Comparison of costs and number of violations

Inst. Item/Problem Det
(14)

JCCP
(15)

ICCP
(17)

Robust (Ep)
(18)-1

Robust (Calib)
(18)-Calib

MaxP
(16)

1 nbViolation 100 20 29 0 1 0

1 Cost (e) −1.0478e5 −1.0395e5 −1.0443e5 −1.0355e5 −1.0099e5 −9.9176e4

2 nbViolation 100 20 35 4 21 2

2 Cost (e) −1.0478e5 −1.0340e5 −1.0422e5 −1.0282e5 −1.0251e5 −9.9176e4

generating 100 scenarios and counting the number of violations. The volume tra-
jectories resulting from these scenarios are shown in Fig. 3. Clearly we observe the
advantage of using joint chance constrained programming. The additional cost with
respect to the deterministic solution is only small, but robustness can be fine tuned.
A full robust solution turns out quite costly. Finally individual chance constrained
programming can not be used to mimic joint chance constraints as we have no con-
trol over the number of violations over a period of time.

When comparing the turbined volumes in Fig. 4, one can observe that they are
quite similar for most solutions (except for max-p which does not see the cost vector
and is hence only incited to turbine if this allows us to improve robustness) and most
reservoirs, except for “Saut Mortier”. This reservoir has tight volume bounds and
is most heavily impacted by the stochastic inflows. The solution (15) turbines a bit
less in the beginning to avoid violations in time steps 8–10, a bit more during time
steps 12–15 to avoid violations there and stops earlier to avoid violations for the last
time steps. Solution (17) offers an intermediate solution. The solution (18) heavily
increases turbining during steps 10–15 and drastically reduces during steps 15–20 for
additional robustness. Indeed, even though the uncertainty Ep is very well calibrated,
the solution is over-robust. Unfortunately for larger values of p (in fact p > 0.85)
this will lead to an empty feasible set of problem (18), whereas solutions of (15) can
be found. It also shows the difficulty of getting the robust rectangle well calibrated
for problem (18)-Calib. Indeed, even though the rectangle is calibrated to give exactly
the same probabilistic contents in both instances, one gives over-robust results (3.6 %
away from deterministic solution), whereas the other gives more reasonable results
as the number of violations is concerned, but still at a large cost (2.2 % away from
deterministic solution).

5 Conclusions

In this paper, we have set up a joint chance constrained programming approach for
dealing with uncertainty on inflows in hydro valley optimization. We have derived a
detailed model for a real hydro valley, but one wherein combinatorial constraints are
neglected. In order to have a more realistic description of inflows, we have consid-
ered a causal time series setting with Gaussian innovations. The latter choice allows
us to preserve convexity of the optimization problem and have a more realistic model
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on inflows. In order to solve this JCCP problem we have used a supporting hyper-
plane method that requires a Slater point and gradients. The probability functions
and gradients can be efficiently computed using Genz’ code.

In order to highlight the interest of joint chance constraint programming, we have
also investigated alternative models. Indeed, we have considered a model based on
individual chance constraints and a robust model. The obtained results have been
compared on a realistic hydro valley. Hence, despite the fact that the alternative mod-
els often require less hypothesis on the law of the inflows, they provide conservative
and costly solutions. The simpler models, such as the individual chance constraint
one, are shown to yield insufficient robustness. The robust model induces an im-
portant extra cost, despite the well calibrated “uncertainty set” and moreover often
leads to empty feasible sets. Joint Chance Constrained programming appears as an
approach offering a good trade-off between cost and robustness and can be tractable
for complex realistic models. In addition, we have shown that in principle we can
handle a real size valley.

Future perspectives consist in working on model realism and on the algorithm
for solving the chance constraint problem. Indeed, from a modeling perspective, we
could integrate the combinatorial constraints on the decision variables, potentially
without many difficulties. From an algorithmic perspective, instead of using a sup-
porting hyperplane idea, one could use a bundle method to hopefully improve com-
putation times and stability. A second point that needs investigations is an improved
use of Genz’ code. We could combine the use of Genz’ code with Prekopa’s linear
programming estimation method of probability measures in order to either increase
the size of the model or improve the speed.

Acknowledgements The second author would like to thank the DFG Research Center MATHEON
“Mathematics for Key Technologies” in Berlin for supporting his work.

Appendix A: Algorithmic perspectives/Second order methods

If one is interested in applying second order solution methods to increase the effi-
ciency of the solution process, one has to work out second derivatives of the proba-
bility function ϕ on the basis of the gradients obtained in Theorem 1 of van Ackooij
et al. (2010). This is done in the following lemma.

Lemma 2 Let ξ be an n-dimensional Gaussian random vector with mean μ and
variance-covariance matrix Σ . We define the mapping Fξ (a, b) = P[a ≤ ξ ≤ b] for
any rectangle, i.e., a ≤ b. Let Di

n denote the n-th order identity matrix from which
the ith row has been deleted. For each y ∈ R

n, 1 ≤ i ≤ n and z ∈ R we define
yci,n(z,Σi) = Di

n(y + Σ−1
i,i (z − yi)Σi) ∈ R

n−1, where Σi is the ith column of Σ . We

will occasionally abbreviate this with yci
1(z). We also define

yc
i,j
2 (z,w) = (

yci,n(z,Σi)
)cj,n−1(w,Σ

cn(i)
j )

,
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where we have defined Σcn(i) = Di
n(Σ − Σ−1

i,i ΣiΣ
T
i )(Di

n)
T. We define ξci

1(z) as the

Gaussian random variable with mean μci
1(z) and covariance matrix Σcn(i). In a sim-

ilar way, we define ξc
i,j
2 (z,w) as the Gaussian random variable with mean μc

i,j
2 (z,w)

and covariance matrix Σc
i,j
2 := D

j

n−1(Σ
cn(i) − (Σ

cn(i)
j,j )−1Σ

cn(i)
j (Σ

cn(i)
j )T)(D

j

n−1)
T,

where Σ
cn(i)
j denotes the j -th column of Σcn(i). The following holds, for j = ĵ if

ĵ < i and j = ĵ − 1 if ĵ > i:

∂2

∂a
ĵ
∂ai

Fξ (a, b)

= f
μ

ci1(ai )

j ,Σ
cn(i)
j,j

(aj )fμi,Σi,i
(ai)F

ξ
c
i,j
2 (ai ,aj )

(
D

j

n−1D
i
na,D

j

n−1D
i
nb

) ∀ĵ �= i

∂2

∂b
ĵ
∂ai

Fξ (a, b)

=
⎧
⎨

⎩
−f

μ
ci1(ai )

j ,Σ
cn(i)
j,j

(bj )fμi,Σi,i
(ai)F

ξ
c
i,j
2 (ai ,bj )

(D
j

n−1D
i
na,D

j

n−1D
i
nb) ∀ĵ �= i

0 ĵ = i

∂2

∂b
ĵ
∂bi

Fξ (a, b)

= f
μ

ci1(bi )

j ,Σ
cn(i)
j,j

(bj )fμi,Σi,i
(bi)F

ξ
c
i,j
2 (bi ,bj )

(
D

j

n−1D
i
na,D

j

n−1D
i
nb

) ∀ĵ �= i,

where fμ,σ (x) is the Gaussian density with mean μ and variance σ . Moreover, when-
ever j = i and z is a or b we have:

∂

∂zi

(bi − ai)
∂2

∂z2
i

Fξ (a, b)

= −zi − μi

Σi,i

fμi,Σi,i
(zi)F

ξ
ci1(zi )

(
Di

na,Di
nb

)

− fμi,Σi,i
(zi)

(
Di

nΣ
−1
i,i Σi

)T(∇ãF
ξ̃

ci1(zi )
(ã, b̃) + ∇

b̃
F

ξ̃
ci1(zi )

(ã, b̃)
)
,

where ã = Di
na − μci

1(zi ), ξ̃ ci
1(zi ) = ξci

1(zi ) − μci
1(zi ) and b̃ is defined similarly.

Proof The formula for the cross derivatives follow from a straight-forward second
application of Theorem 1 in van Ackooij et al. (2010). The diagonal terms are more
subtle to derive and require the following reformulation:

F
ξ

ci1(zi )

(
Di

na,Di
nb

) = P
(
Di

na ≤ ξci
1(zi ) ≤ Di

nb
)

= P
(
Di

na − μci
1(zi ) ≤ ξci

1(zi ) − μci
1(zi ) ≤ Di

nb − μci
1(zi )

)

= F
ξ̃

ci1(zi )
(ã, b̃).
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In particular one obtains for ã(zi) = ã

ã = Di
na − μci

1(zi ) = Di
na − Di

n

(
μ + Σ−1

i,i (zi − μi)Σi

)

= Di
n

(
a − μ + Σ−1

i,i μiΣi

) − Di
nΣ

−1
i,i ziΣi,

which together with the following identity

∂

∂zi

F
ξ̃

ci1(zi )

(
ã(zi), b̃(zi)

) = ∇ãF
ξ̃

ci1(zi )
(ã, b̃)Dzi

ã(zi) + ∇
b̃
F

ξ̃
ci1(zi )

(ã, b̃))Dzi
b̃(zi),

an application of the chain-rule and the already established formula for 1st derivatives
gives the proposition. �

The following corollary deals with gradients and Hessians of our probability func-
tion ϕ : x ∈ R

n �→ P[a + Ax ≤ ξ ≤ Bx + b] ∈ [0,1]. These follow easily from
Lemma 2 and Theorem 1 of van Ackooij et al. (2010) upon noting that ϕ(x) =
Fξ (Ax,Bx) with Fξ as introduced in Lemma 2.

Corollary 1 Let ξ be a Gaussian Random variable of dimension n. Let x, A,B ,a,b
be vectors and matrices of appropriate dimension. Now consider the mapping ϕ : x ∈
R

n �→ P[a + Ax ≤ ξ ≤ Bx + b] ∈ [0,1]. We have:

∇ϕ = ∇aFξ (a, b)TA + ∇bFξ (a, b)TB

∇2ϕ = AT∇2
aaFξ (a, b)A + AT∇2

abFξ (a, b)B + BT∇2
baFξ (a, b)A + BT∇2

bbFξ (a, b)B.
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