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Abstract. Polyhedral discrepancies are relevant for the quantitative stabil-
ity of mixed-integer two-stage and chance constrained stochastic programs.
We study the problem of optimal scenario reduction for a discrete probabil-
ity distribution with respect to certain polyhedral discrepancies and develop
algorithms for determining the optimally reduced distribution approximately.
Encouraging numerical experience for optimal scenario reduction is provided.

1. Introduction. Two-stage (linear) stochastic programs arise if, for given real-
izations ξ of a random vector and first-stage decisions x, possible violations of a
constraint Tx = h(ξ) are compensated by a second-stage decision y(ξ), being non-
negative, satisfying Wy(ξ) = h(ξ) − Tx with a (fixed) recourse matrix W , and
inducing costs 〈q(ξ), y(ξ)〉. Then the idea is to minimize the sum of the expected
recourse cost E(〈q(ξ), y(ξ)〉) and of the first-stage cost 〈c, x〉 with x varying in a
constraint set X . If some of the components of the second-stage decision y(ξ) are
integer variables, one arrives at two-stage stochastic programs with mixed-integer
linear recourse. Such optimization models may be rewritten in the form

v(P) := min

{

〈c, x〉 +

∫

Ξ

Φ
(

q(ξ), h(ξ) − Tx
)

P(dξ) : x ∈ X

}

, (1)

where Φ is a mapping from Rm1+m2 × Rd to the extended reals given by

Φ(u, t) := min
{

〈u1, y1〉 + 〈u2, y2〉 : Wy1 + W̄y2 = t, y1 ∈ R
m1
+ , y2 ∈ Z

m2
+

}

. (2)

Thereby, c ∈ Rm, X is a closed subset of Rm, Ξ is a (convex) polyhedral subset
of Rs, P is a Borel probability measure on Ξ, W and W̄ are (d, m1)- and (d, m2)-
matrices, respectively, T is a (d, m)-matrix, and q(ξ) ∈ Rm1+m2 and h(ξ) ∈ Rd

depend affinely on ξ ∈ Rs.
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The standard approach for solving mixed-integer two-stage stochastic programs
of the form (1) consists in approximating the original probability distribution P by
a discrete probability measure with N atoms ξi and probabilities pi, i = 1, . . . , N .
The resulting stochastic program is equivalent to the mixed-integer program

min
{

〈c, x〉 +

N
∑

i=1

pi

(

〈q1(ξ
i), y1i〉 + 〈q2(ξ

i), y2i〉
)

: x ∈ X, y1i ∈ R
m1
+ , y2i ∈ Z

m2
+ ,

Wy1i + W̄y2i = h(ξi) − Tx, i = 1, . . . , N
}

, (3)

where the number of integer variables y2i increases with N . Since for applied
stochastic optimization models (see, e.g., [18, 19]) often the dimension m2 of each y2i

gets large, the mixed-integer program (3) might become huge even for small numbers
N of scenarios and practically unsolvable for large N . Thus, in applications, it
might be desirable or even inevitable to reduce the number of scenarios such that
reasonable solution times for (3) are achieved.

Previous work [3, 7, 8] on scenario reduction for two-stage stochastic programs
without integrality requirements suggests to base the reduction process on suitable
distances of probability distributions. Roughly speaking, such a probability metric
D is suitable if the optimal value v(P) and the solution set of the underlying sto-
chastic program behave continuously in P in terms of the distance D, i.e., whenever
P is approximated by some measure Q the estimate

|v(P) − v(Q)| ≤ L · D(P, Q)

holds for some constant L ≥ 0. If such a continuity condition holds true, it seems
reasonable to approximate P by a probability measure Q in terms of D, i.e., to
determine a measure Q such that D(P, Q) is small.

As argued in [23], (semi-)metrics with ζ-structure (cf. [21, 28]) of the form

DF (P, Q) := sup
f∈F

∣

∣

∣

∣

∫

Ξ

f(ξ)P(dξ) −

∫

Ξ

f(ξ)Q(dξ)

∣

∣

∣

∣

, (4)

with F denoting a certain class of Borel measurable functions from Ξ to R, are
suitable probability distances for many stochastic programs. By extending the
results in [26, 23] it is shown in [24] that the class

Fr,B(Ξ) := {f1B : f ∈ Fr(Ξ), B ∈ B}

and the corresponding distance with ζ-structure

ζr,B(P, Q) := DFr,B
(P, Q) (5)

between probability measures P and Q in Pr(R
s) is suitable for the mixed-integer

program (1) with r = 2 and B being a certain class of (convex) polyhedra in Ξ with
a uniformly bounded number of faces. Here, 1B denotes the characteristic function
of the set B, the class Fr(Ξ) consists of all continuous functions f : Ξ → R that
fulfill the estimates

|f(ξ)| ≤ max{1, ‖ξ‖r} and |f(ξ) − f(ξ̃)| ≤ max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖

for all ξ, ξ̃ ∈ Ξ, and Pr(Ξ) is the set of all Borel probability measures on Ξ having
finite absolute moments of order r ≥ 1. However, as pointed out in the Appendix,
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it seems to be difficult to employ the metrics ζr,B for scenario reduction directly.
An alternative to ζr,B is the so-called B-discrepancy (cf. [15])

αB(P, Q) := sup
B∈B

|P(B) − Q(B)| (6)

of probability measures P and Q on Ξ for a given system B of Borel subsets of Ξ.
Indeed, let us consider the estimate

ζr,B(P, Q) ≤ CαB(P, Q)
1

s+1 , (7)

which holds for all probability measures P and Q on Ξ with supports contained in
the ball B(0, R) and which may be derived as [26, Corollary 3.2]. Combining (7)
with the stability result of [24] we obtain that, under certain conditions,

|v(P) − v(Q)| ≤ LCαB(P, Q)
1

s+1 , (8)

holds for some constants L and C. Observe that the constant C = C(R) only
depends on the problem (1) and the radius R. Since we are interested in measuring
the distance of two discrete probability measures P and Q with Q’s support being
a subset of the support of P, both supports are contained in some ball around zero
and, thus, the estimate (7) indeed applies.

As shown in [26, Proposition 3.1] (see also [24, Proposition 1]), the class B of
polyhedra has to contain all sets of the form

{ξ ∈ Ξ : h(ξ) ∈ Tx + B} = {ξ ∈ Ξ : ξ ∈ h−1(Tx + B)} , (9)

where h is an affine mapping from Rs to Rd, x ∈ X , and B is a polyhedron each
of whose facets, i.e., (d − 1)-dimensional faces, is parallel to a facet of the cone
posW := {Wy1 : y1 ∈ R

m1
+ } or of the unit cube [0, 1]d.

In this paper, we consider the particular instance of the sets (9) with d = s and
h(ξ) = ξ which corresponds to the situation of mixed-integer two-stage stochastic
programs with random right-hand side. The corresponding class B of polyhedra in
Ξ is denoted by Bpoly(W) and the polyhedral discrepancy by αBpoly(W)

. If every facet

of posW parallels a facet of the unit cube, αBpoly(W)
coincides with the rectangular

discrepancy αBrect that is defined by (6) and the set Brect of all rectangles in Rs.
The latter discrepancy becomes suitable in case of pure integer recourse, i.e.,

Φ(u, t) := min{〈u, y〉 : W̄y = t, y ∈ Z
m2
+ } .

Thus, when studying the polyhedral discrepancy for arbitrary matrices W in the
following, the rectangular case has not to be considered separately.

The following simple example illustrates the stability results of [24] and [26] and
highlights the relevance of αBpoly(W)

.

Example 1. Let Ξ := [0, 1]2, X := {0} ∈ R2, and P be some probability measure
on Ξ. We consider the following mixed-integer two-stage stochastic program:

v(P) := inf
x∈X

∫

[0,1]2
Φ(ξ − x) P(dξ) =

∫

[0,1]2
Φ(ξ) P(dξ), (10)

Φ(ξ) := inf
{

y1(ξ) + 2y2(ξ) : y1(ξ) + y2(ξ) ≥ ξ1, y2(ξ) ≤ ξ2, y1 ∈ Z+, y2 ∈ R+

}

.

Φ(ξ) is equal to 1 if ξ1 > min{0.5, ξ2} and equal to 2ξ1 otherwise. A plot of ξ 7→ Φ(ξ)
is presented in Figure 1.
Assuming that P follows a uniform distribution on the line segment {(z, z) : z ∈

(0.1, 0.4)}, we define for ε ∈ (0, 0.1) the shifted measure Pε via Pε(A) := P
(

A+
(

ε
−ε

))

for every Borel set A ⊂ Ξ. It follows that v(Pε) − v(P) = 0.5 for every ε ∈ (0, 0.1).
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Figure 1. Cost function ξ 7→ Φ(ξ) from Example 1.

On the other hand, with ε ց 0 the measures Pε converge to P in the weak sense, as
well as with respect to the rectangular discrepancy αBrect .
Writing problem (10) in the standard form (2), the non-integer part of y is assigned
to the recourse matrix

W =

(

1 −1 0
1 0 1

)

.

With regard to the aforementioned continuity of v(·) w.r.t. αBpoly(W)
, it is not sur-

prising that αBpoly(W)
(P, Pε) = 1 for every ε > 0.

Note that it has been shown in [17], that, under certain conditions, αBpoly(W)
can be

estimated against αBrect . However, in our case P is not absolutely continuous w.r.t.
the Lebesgue measure on Ξ ⊂ R2, and, hence, the result in [17] does not apply.

It is worth mentioning that polyhedral discrepancies also become suitable for
chance constrained stochastic programs of the form

min
{

〈c, x〉 : x ∈ X, P(Tx ≥ h(ξ)) ≥ p
}

, (11)

where p ∈ [0, 1] and c, X , T and h(·) are defined as above. This model can be
considered as a multivariate generalization of Value-at-Risk optimization (see, e.g.,
[13]). The chance constraint may be rewritten as

P
(

Tx ≥ h(ξ)
)

= P
(

{ ξ ∈ Rs : h(ξ) ∈ (−∞, Tx] }
)

= P
(

h−1(−∞, Tx]
)

,

and, hence, under certain regularity conditions (see, e.g., [23, Section 3.3]), optimal
values and solution sets of (11) behave continuous with respect to the discrepancy
αB if B contains all polyhedra of the form h−1(−∞, Tx] for x ∈ X .

The present paper is organized as follows. In Section 2 we state the problem of
optimal scenario reduction with respect to a discrepancy distance αB and decompose
it into a combinatorial and a linear optimization problem. Extending our earlier
work in [9], we discuss in Section 3 how the coefficients of the linear program may
be computed in case of the polyhedral discrepancy αBpoly(W)

. Algorithms for deter-

mining the optimally reduced probability distribution (with respect to αBpoly(W)
)

are developed in Sections 4 and 5. In Section 6 we provide and discuss numerical
results.

2. Scenario reduction. We consider a probability measure P with finite support
{ξ1, . . . , ξN} and set pi := P(

{

ξi
}

) > 0 for i = 1, . . . , N . Denoting by δξ the
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Dirac-measure placing mass one at the point ξ, the measure P has the form

P =
∑N

i=1
piδξi . (12)

The problem of optimal scenario reduction consists of determining a discrete proba-
bility measure Q on Rs supported by a subset of {ξ1, . . . , ξN} and deviating from P

as little as possible with respect to some distance, in this case a certain discrepancy
αB. It can be written as

minimize αB(P, Q) = αB(
∑N

i=1
piδξi ,

∑n

j=1
qjδηj ) (13)

subject to {η1, . . . , ηn} ⊂ {ξ1, . . . , ξN}, qj ≥ 0 (j = 1, . . . , n),
∑n

j=1
qj = 1

The variables to be optimally adjusted here are the support η = {η1, . . . , ηn} and
the probability weights q = (q1, . . . , qn) of the reduced measure Q, altogether they
define Q via

Q =
∑n

j=1
qjδηj . (14)

The optimization problem (13) may be decomposed into an outer problem for de-
termining supp Q = η and an inner problem for choosing the probabilities qj . To
this end, we denote by αB(P, (η, q)) the B-discrepancy between P and Q, and by Sn

the standard simplex in Rn:

αB(P, (η, q)) := αB(
∑N

i=1
piδξi ,

∑n

j=1
qjδηj )

Sn := {q ∈ Rn : qj ≥ 0, j = 1, . . . , n,
∑n

j=1
qj = 1}.

Using this notation, the scenario reduction problem (13) can be written as

inf
η

{

inf
q∈Sn

αB(P, (η, q)) : η ⊂ {ξ1, . . . , ξN}, #η = n
}

, (15)

with the inner problem

inf
{

αB(P, (η, q)) : q ∈ Sn

}

(16)

for the fixed support η. The combinatorial optimization problem (15) is addressed
in Section 5. In the remaining part of this section, we introduce some notation
and recall [9, Section 3.1] to show how the inner problem (16) can be formulated
as a linear optimization problem and how the dimensionality of the latter can be
reduced.

When addressing the inner problem (16) for given η we may assume for the sake
of notational simplicity, that η = {ξ1, . . . , ξn}. Then, (16) is of the form:

minimize αB( P, ({ξ1, . . . , ξn}, q) ) subject to q ∈ Sn. (17)

The finiteness of P’s support allows to define for B ∈ B the critical index set I(B)
through the relation

I(B) := {i ∈ {1, . . . , N} : ξi ∈ B}

and to write

|P(B) − Q(B)| =

∣

∣

∣

∣

∣

∣

∑

i∈I(B)

pi −
∑

j∈I(B)∩{1,...,n}

qj

∣

∣

∣

∣

∣

∣

. (18)

Furthermore, we define the system of critical index sets of a system of Borel sets B
as

IB := {I(B) : B ∈ B}.
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Thus, the B-discrepancy between P and Q can be reformulated as follows:

αB(P, Q) = max
I∈IB

∣

∣

∣

∣

∣

∣

∑

i∈I

pi −
∑

j∈I∩{1,...,n}

qj

∣

∣

∣

∣

∣

∣

. (19)

This allows to solve (17) by means of the following linear optimization problem:

minimize t subject to q ∈ Sn, (20)

−
∑

j∈I∩{1,...,n} qj ≤ t −
∑

i∈I pi
∑

j∈I∩{1,...,n} qj ≤ t +
∑

i∈I pi

}

I ∈ IB.

The number of inequalities may be too large to solve (20) numerically, but whenever
two critical index sets share the same intersection with the set {1, . . . , n}, only the
right-hand sides of the related inequalities differ. Thus, it is possible to pass to the
minimum of all right-hand sides corresponding to the same left-hand side. To this
end, we introduce the following reduced system of critical index sets

I∗
B := {I(B) ∩ {1, . . . , n} : B ∈ B}.

Thereby, every member J ∈ I∗
B of the reduced system is associated with a familiy

ϕ(J) ⊂ IB of critical index sets, all of which share the same intersection with
{1, . . . , n}:

ϕ(J) := {I ∈ IB : J = I ∩ {1, . . . , n}} (J ∈ I∗
B). (21)

Finally, we consider the quantities

γJ := max
I∈ϕ(J)

∑

i∈I

pi and γJ := min
I∈ϕ(J)

∑

i∈I

pi (J ∈ I∗
B), (22)

to write problem (20) as

minimize t subject to q ∈ Sn, (23)

−
∑

j∈J qj ≤ t − γJ

∑

j∈J qj ≤ t + γJ

}

J ∈ I∗
B.

Since |IB| ≤ 2N and |I∗
B| ≤ 2n, passing from (20) to (23) indeed drastically reduces

the maximum number of inequalities and can make problem (16) tractable for nu-
merical solutions. However, while the linear program (23) can be solved efficiently
by available optimization software, at least for moderate values of n, it turns out
that the determination of the coefficients I∗

B, γJ , γJ is more intricate.

3. Determining the coefficients. In our earlier work [9, Section 3.2], it is de-
scribed how the coefficients I∗

B, γJ , γJ can be determined computationally in case of
the cell discrepancy (where B = {ξ + Rs

− : ξ ∈ Rs}). In this section, this approach
is extended to the more general polyhedral discrepancies.

Given the recourse matrix W , we consider k pairwise linearly independent vectors
m1, . . . , mk in Rs such that every facet of posW and of the unit cube [0, 1]s is normal
relative to mi for one i ∈ {1, . . . , k}. Let us denote by M the (k× s)−matrix whose
rows are given by m1, . . . , mk, respectively. Then, due to its special form, every
polyhedron B in Bpoly(W) can be written as

B =
{

x ∈ Rs : aB ≤ Mx ≤ āB
}

(24)

for suitable k−dimensional vectors aB and āB with aB
i ≤ āB

i ∈ R ∪ {+∞,−∞}
for i = 1, . . . , k. Since B is determined by the vectors aB and āB, we will use the
notation

[

aB, āB
]

for B in the following.
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Analogous to the concept of supporting cells in [9], we will show that it suffices
to consider the following supporting polyhedra. Loosely speaking, a polyhedron B ∈
Bpoly(W) is called supporting if each of its facets contains an element of

{

ξ1, . . . , ξn
}

in a way that B can not be enlarged without changing the intersection of B’s interior
with

{

ξ1, . . . , ξn
}

, cf. Figure 2. This is formalized by the following definitions. We
introduce the sets

Rj :=
{〈

mj , ξi
〉

, i = 1, . . . , n
}

∪ {∞,−∞} , j = 1, . . . , k, and

R := Πk
j=1Rj . (25)

Then, every polyhedron B = [aB, āB] ∈ Bpoly(W) with

aB , āB ∈ R (26)

admits a further representation by two vectors i := (i1, . . . , ik), ī := (̄i1, . . . , īk) with
ij , īj ∈ {1, . . . , n,±∞},

aB
j =

〈

mj , ξij

〉

and āB
j = 〈mj , ξ īj 〉,

where we set for notational convenience
〈

mj , ξ±∞
〉

:= ±∞, respectively. Note
that condition (26) means that every facet of the polyhedron B is contained in a
hyperplane in Rs that also contains an element of

{

ξ1, . . . , ξn
}

.

Definition 3.1. A polyhedron B ∈ Bpoly(W) with (26) is called supporting, if it
admits a representation i, ī, such that for every j, l ∈ {1, . . . , k} , j 6= l, the following
relations hold:

〈mj , ξi
j 〉 < 〈mj , ξi

l〉 < 〈mj , ξ īj 〉 whenever il 6= ±∞, and

〈mj , ξij 〉 < 〈mj , ξ īl〉 < 〈mj , ξ īj 〉 whenever īl 6= ±∞. (27)

The set of all supporting polyhedra is defined by

P := {B ⊂ Rs : B is a supporting polyhedron}.

Figure 2. Non supporting polyhedron (left) and supporting poly-
hedron (right). The dots represent the remaining scenarios
ξ1, . . . , ξn.

The following proposition parallels [9, Prop. 3.1] and shows that every critical
index set J corresponds to a maximal supporting polyhedron B whose interior does
not contain any ξi with i ∈ {1, . . . , n} \ J .
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Proposition 1. For any J ∈ I∗
Bpoly(W )

there exists a supporting polyhedron B such

that γJ = P(int B) and

∪j∈J {ξj} = {ξ1, . . . , ξn} ∩ int B. (28)

Proof. We consider an arbitrary J ∈ I∗
Bpoly(W )

. ¿From the definition of ϕ(J) in (21)

it follows that for any I ∈ ϕ(J) there exists some C ∈ Bpoly(W ) such that I = I(C)
and J = I(C) ∩ {1, . . . , n}. By definition of I(C) we have

∑

i∈I

pi =
∑

i∈I(C)

pi = P(C),

and, hence,

γJ = max
I∈ϕ(J)

∑

i∈I

pi = max
{

P(C) : C ∈ Bpoly(W ), J = I(C) ∩ {1, . . . , n}
}

= max
{

P(C) : C ∈ Bpoly(W ), C ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}

}

(29)

= max
{

P([a, ā]) : a, ā ∈ (R ∪ {±∞})k, [a, ā] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}

}

.

Let
[

a(0), ā(0)
]

be a polyhedron attaining the maximum, i.e., γJ = P(
[

a(0), ā(0)
]

)

and
[

a(0), ā(0)
]

∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}. In addition, due to finiteness of the set

{

ξ1, . . . , ξN
}

, we can assume that these identities are also valid for int
[

a(0), ā(0)
]

,
i.e.,

γJ = P

(

int
[

a(0), ā(0)
])

and int
[

a(0), ā(0)
]

∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}. (30)

In the following, we will enlarge
[

a(0), ā(0)
]

by succesively shifting its facets until
it becomes supporting. To this end, we put

a(t) := (a
(0)
1 − t, a

(0)
2 , . . . , a

(0)
k ) , t ≥ 0,

and consider the polyhedral enlargement
[

a(t), ā(0)
]

of the polyhedron
[

a(0), ā(0)
]

.
We set

τ := sup
{

t ≥ 0 : int
[

a(t), ā(0)
]

∩
{

ξ1, . . . , ξn
}

= int
[

a(0), ā(0)
]

∩
{

ξ1, . . . , ξn
}

}

.

In particular, τ = ∞ holds if a
(0)
1 = −∞ and whenever τ = ∞ we define i1 := −∞.

If τ < ∞ there exists i1 ∈ {1, . . . , n} \ J such that 〈m1, ξi1〉 = a
(0)
1 − τ and

a
(0)
j < 〈mj , ξi1〉 < ā

(0)
j for j 6= 1.

Indeed, this is true since one can find a ξi1 with i1 ∈ {1, . . . , n} \ J that lies in the
interior of

[

a(τ + ε), ā(0)
]

for ε > 0.

We put a(1) := a(τ) and consider now, in the second step, the enlarged polyhe-
dron

[

a(1), ā(0)
]

, still fulfilling the second identity of (30). Hence, since
[

a(0), ā(0)
]

was maximizing,
[

a(1), ā(0)
]

fulfils the first identity of (30), too.

We repeat the above construction for the coordinate ā(0) by defining

ā(t) := (ā
(0)
1 + t, ā

(0)
2 , . . . , ā

(0)
k ) , t ≥ 0,

τ := sup
{

t ≥ 0 : int
[

a(1), ā(t)
]

∩
{

ξ1, . . . , ξn
}

= int
[

a(1), ā(0)
]

∩
{

ξ1, . . . , ξn
}

}

,

ā(1) := ā(τ).

Again, if τ < ∞, there exists ī1 ∈ {1, . . . , n} such that 〈m1, ξ ī1〉 = ā
(0)
1 + τ and

a
(0)
j < 〈mj , ξ ī1 〉 < ā

(0)
j for j 6= 1. Otherwise, we put ī1 = ∞.
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Continuing the construction in this way for the coordinates 2, . . . , k, we arrive at
the polyhedron B :=

[

a(k), ā(k)
]

with (26) and (28) as well as the indices il, īl for

l = 1, . . . , k with a
(k)
j = a

(j)
j = 〈mj , ξi

j 〉, ā
(k)
j = ā

(j)
j = 〈mj , ξ īj 〉. Furthermore, one

obtains the estimates

a
(l−1)
j < 〈mj , ξil〉 < a

(l−1)
j for j 6= l whenever il 6= ±∞, and

a
(l−1)
j < 〈mj , ξ īl〉 < a

(l−1)
j for j 6= l whenever īl 6= ±∞.

These inequalities remain valid for the final vectors a(k), ā(k), due to a
(l−1)
j ≥ a

(k)
j

and ā
(l−1)
j ≤ ā

(k)
j for j = 1, . . . , k. Thus, (27) holds and B is supporting. Since

both identities of (30) remain valid during the construction of B, it follows that B
possesses the asserted properties.

Corollary 1. The following identities hold:

I∗
Bpoly(W )

= {J ⊆ {1, . . . , n} : ∃B ∈ P such that (28) holds true},

γJ = max{P(int B) : B ∈ P , (28) holds true} ∀J ∈ I∗
Bpoly(W )

.

Proof. The inclusion ’⊆’ in the first identity and the inequality ’≤’ in the second
identity follow directly from Proposition 1. For the reverse direction of the first
identity, let B =

[

aB, āB
]

∈ P be given such that (28) holds true for some J ⊆

{1, . . . , n}. Due to finiteness of
{

ξ1, . . . , ξn
}

there exists an ε > 0 such that

{ξ1, . . . , ξn} ∩
[

aB + ε̄, āB − ε̄
]

= {ξ1, . . . , ξn} ∩ int
[

aB, āB
]

= ∪j∈J{ξ
j}, (31)

where each entry of the vector ε̄ ∈ Rk is equal to ε. Since
[

aB + ε̄, āB − ε̄
]

∈
Bpoly(W ), we observe

I
([

aB + ε̄, āB − ε̄
])

= {i ∈ {1, . . . , N} : ξi ∈
[

aB + ε̄, āB − ε̄
]

}

= J ∪ {i ∈ {n + 1, . . . , N} : ξi ∈
[

aB + ε̄, āB − ε̄
]

}.

Therefore,

I
([

aB + ε̄, āB − ε̄
])

∩ {1, . . . , n} = J ∩ {1, . . . , n} = J, (32)

which provides J ∈ I∗
Bpoly(W )

via the definition of I∗
Bpoly(W )

. Consequently, also the

inclusion ’⊇’ in the first identity holds true. To verify the relation ’≥’ in the second
identity, let J ∈ I∗

Bpoly(W )
and B =

[

aB, āB
]

∈ P be arbitrary, such that (28) holds

true. We choose an ε > 0 with

{ξ1, . . . , ξN} ∩
[

aB + ε̄, āB − ε̄
]

= {ξ1, . . . , ξN} ∩ int
[

aB, āB
]

(33)

and conclude (32). Therefore, I
([

aB + ε̄, āB − ε̄
])

∈ ϕ(J) (see (21)) and

γJ ≥
∑

i∈I([aB+ε̄,āB−ε̄])

pi =
∑

ξi∈[aB+ε̄,āB−ε̄]

P({ξi})

= P
([

aB + ε̄, āB − ε̄
])

= P(int
[

aB, āB
]

),

where the last identity follows from (33). This proves the inequality ’≥’ in the
second identity, since

[

aB , āB
]

∈ P was chosen arbitrarily such that (28) holds
true.

From Corollary 1 it follows that the set I∗
Bpoly(W )

and the upper coefficients

γJ for J ∈ I∗
Bpoly(W )

can be determined, whenever one knows the system of P of
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supporting polyhedra. The following proposition shows how the lower coefficients
γJ for J ∈ I∗

Bpoly(W )
may be computed.

Proposition 2. For all J ∈ I∗
Bpoly(W )

, one has γJ =
∑

i∈I pi, where I is given by

I :=
{

i ∈ {1, . . . , N} : min
j∈J

〈ml, ξj〉 ≤ 〈ml, ξi〉 ≤ max
j∈J

〈ml, ξj〉 , l = 1, . . . , k
}

.

Proof. We consider an arbitrary J ∈ I∗
Bpoly(W )

. Completely analogous to (29) in the

proof of Proposition 1, it follows that

γJ = min
{

P([a, ā]) : [a, ā] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}

}

. (34)

We define a∗, ā∗ ∈ Rk by

a∗
l := min

j∈J
〈ml, ξj〉 for l = 1, . . . , k, and

ā∗
l := max

j∈J
〈ml, ξj〉 for l = 1, . . . , k,

to obtain ξj ∈ [a∗, ā∗] for all j ∈ J and, therefore, ∪j∈J{ξ
j} ⊆ [a∗, ā∗]∩{ξ1, . . . , ξn}.

If this inclusion is strict, there is some i ∈ {1, . . . , n}\J such that ξi ∈ [a∗, ā∗].
From J ∈ I∗

Bpoly(W )
it follows the existence of some B ∈ Bpoly(W ) with J = I(B) ∩

{1, . . . , n}. Thus, we obtain ξj ∈ B for all j ∈ J , which entails that [a∗, ā∗] ⊆ B, by
construction of [a∗, ā∗]. We derive that ξi ∈ B and, hence, i ∈ I(B). On the other
hand, i ∈ {1, . . . , n}\J , which is a contradiction. It follows that

∪j∈J{ξ
j} = [a∗, ā∗] ∩ {ξ1, . . . , ξn}

and, thus, γJ ≤ P([a∗, ā∗]). On the other hand, consider arbitrary a and ā with
[a, ā]∩{ξ1, . . . , ξn} = ∪j∈J{ξ

j}. Then, ξj ∈ [a, ā] for all j ∈ J , and by construction
of [a∗, ā∗] it follows that [a∗, ā∗] ⊆ [a, ā]. Consequently, P([a∗, ā∗]) ≤ P([a, ā])
holds. Passing to the minimum over all such a, ā and applying identity (34) provides
P([a∗, ā∗]) ≤ γJ . Finally, the assertion follows from

γJ = P ([a∗, ā∗]) =
∑

ξi∈[a∗,ā∗]

pi =
∑

i∈I

pi.

With Corollary 1 and Proposition 2 at hand, we propose in the next section an
algorithm to calculate the coefficients of (23) and to solve the inner problem (16).

4. Optimal redistribution algorithm. For using numerically the concept of sup-
porting polyhedra, one has to determine the set R defined by (25). Thus, given the
matrix W , one has to identify a normal vector for each facet of the convex cone
posW . This transformation of a vertices-based representation of posW to one based
on halfspaces is a well-studied problem for which efficient algorithms are available,
e.g. the implementation lrs ([1]) of [2]’s reverse search algorithm, and the impleme-
nation cdd+ ([4]) of [14]’s double description method.

Corollary 1 and Proposition 2 show that the coefficients of the linear inner prob-
lem (16), i.e., I∗

Bpoly(W )
and γJ , γJ for J ∈ I∗

Bpoly(W )
, can be determined by iterating

through the set P of supporting polyhedra. With regard to the huge number of
potential supporting polyhedra, we propose for this iteration a recursive approach.
More precisely, the supporting polyhedra [a, ā] = [(aj)

k
j=1, (āj)

k
j=1] are constructed

recursively for j = 1, . . . , k, while ensuring at every step j that condition (27) is
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still fulfilled when the j − th coordinate is added. This is done within FUNCTION
Iterate of the following algorithm.

Algorithm 1. Optimal redistribution.

Step [0]: Put I∗
Bpoly(W )

= {∅}, and γJ = 0 for all J ⊆ {1, . . . , n}.

Set J = {1, . . . , n} and Ī = {1, . . . , N}.

Step [1]: Call Iterate(0, 0, 0, J, Ī).

Step [2]: With the additional data I∗
Bpoly(W )

and γJ , γJ for all J ∈ I∗
Bpoly(W )

solve the linear optimization problem (23).

FUNCTION Iterate(l, (ij)
l
j=1, (̄ij)

l
j=1, J, Ī) :

IF l = k THEN

call UpdateData((ij)
l
j=1, (̄ij)

l
j=1, J, Ī) and RETURN.

Set l = l + 1.

FOR il = 1, . . . , n + 1 and īl = 1, . . . , n + 1 :

IF (27) does not hold for every j ∈ {1, . . . , l − 1}, i = l,

and for every i ∈ {1, . . . , l − 1}, j = l, THEN CONTINUE<FOR>.

Set

al =

{

〈ml, ξil〉 if il ∈ {1, . . . , n} ,

−∞ if il = n + 1,

āl =

{

〈ml, ξ īl〉 if īl ∈ {1, . . . , n} ,

+∞ if īl = n + 1.

Update Ī = Ī ∩ {i ∈ {1, . . . , N} : al < 〈ml, ξi〉 < āl)}.

IF Ī = ∅ THEN CONTINUE<FOR>.

Update J = J ∩ Ī.

Call Iterate(l, (ij)
l
j=1, (̄ij)

l
j=1, J, Ī).

END(FOR).

RETURN.

FUNCTION UpdateData((ij)
k
j=1, (̄ij)

k
j=1, J, Ī) :

IF J /∈ I∗
Bpoly(W )

THEN

Update I∗
Bpoly(W )

= I∗
Bpoly(W )

∪ {J}.

Set γJ =
∑

i∈I

pi with

I = {i ∈ Ī : min
j∈J

〈ml, ξj〉 ≤ 〈ml, ξi〉 ≤ max
j∈J

〈ml, ξj〉 , l = 1, . . . , k}.

END(IF).

Update γJ = max{γJ ,
∑

i∈Ī

pi}.

RETURN.

Remark 1. When using Algorithm 1 repeatedly with varying support, e.g., within
one of the algorithms mentioned in the next section, it would be desirable to decrease
the numerical complexity by using some of the data I∗

Bpoly(W )
and γJ , γJ computed

for another support. While this is possible for γJ and γJ within Algorithm 4.1. of
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[9], it is unfeasible inside our Algorithm 1, since γJ and γJ are already determined
by the set Ī, that is calculated simultaneously with the construction of J .

5. Finding an optimal support. In this section, we address the outer prob-
lem (15) of choosing an optimal support. This combinatorial represents a specific
k-median problem and is hence NP -complete [6]. Nevertheless, when not consider-
ing a discrepancy but probability metrics dFc

with ζ-structure defined by (4) and
c(ω, ω̃) = ‖ω − ω̃‖, (15) can be formulated as a mixed-integer linear program that
can be solved numerically for moderate values of N and n by available optimization
software.

Furthermore, heuristical approaches have been developed for probability metrics
with ζ-structure, cf., e.g., [7]. We shortly recall their forward and backward algo-
rithms that have been shown to be fast and to provide often nearly optimal solutions.
They determine index subsets J [n] and J [N−n], respectively, of {1, . . . , N}. These
sets of cardinality n represent the support of the reduced measure Q. Adapted to
our framework of discrepancy distances, the algorithms read as follows.

Algorithm 2. Forward selection.

Step [0]: J [0] := ∅ .

Step [i]: li ∈ argminl 6∈J [i−1] inf
q∈Si

αB(P, ({ξl1 , . . . , ξli−1 , ξl}, q)),

J [i] := J [i−1] ∪ {li}.

Step [n+1]: Minimize αB({P, (ξl1 , . . . , ξln}, q)) subject to q ∈ Sn.

Algorithm 3. Backward reduction.

Step [0]: J [0] := {1, . . . , N}.

Step [i]: ui ∈ argminu∈J [i−1] inf
q∈SN−i

αB(P, ({ξj |j ∈ J [i−1] \ {u}}, q)),

J [i] := J [i−1] \ {ui} .

Step [N-n+1]: Minimize αB({P, (ξj : j ∈ J [N−n]}, q)) subject to q ∈ Sn.

0 5 10 15 20
n

0.2

0.4

0.6

0.8

1

Figure 3. Rectangular discrepancies of Forward selection (solid
line), Backward reduction (dashed line) and complete enumeration
(dots), depending on the number n of remaining scenarios.
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Dealing with discrepancy distances, we meet different problems in solving the
combinatorial problem (15). On the one hand, discrepancies do not allow, to the
best of our understanding, a reformulation of (15) as a mixed-integer linear pro-
gram that would be accessible by available solvers. On the other hand, the above-
mentioned heuristics do not produce nearly optimal results anymore, cf. Figure 5.
This is a consequence of the fact, that the maximum in (6) is attained in many dif-
ferent regions, and, thus, the removal or adding of a single point to the support is
often a unfavorable precondition for further reduction or expansion. Furthermore,
the backward reduction algorithm becomes significantly slower with increasing N ,
since Algorithm 1 has to determine the optimal redistribution for large values of n,
cf. Table 1.

Finally, even for moderate scenario numbers a complete enumeration is very
expensive the solution of the inner problem (16) requires higher computational
efforts and is not a simple nearest-neighbour projection as in the case of dFc

with
c(ω, ω̃) = ‖ω − ω̃‖. Running times of complete enumeration can be found in Table
4.

Since sometimes one may be interested in knowing the achievable minimal dis-
crepancy, we suggest the following approach to solve (15) for moderate values of
N and to reduce the time needed by complete enumeration. However, the com-
plexity of (15) quickly increases with the dimension of the problem and real-world
stochastic optimization problem are of higher dimension, in general. Consequently,
practitioners mostly have to abandon an optimal approximation and the following
approach is rather of academic interest. For an approach that may be numerically
more tractable for larger problems, we refer to Example 2, where we adopted a
Quasi-Monte Carlo method to tackle the outer problem (15).

The following approach is applicable for both the cell discrepancy studied in [9]
and the polyhedral discrepancy. Starting point is the computation of an upper
bound ᾱn for the achievable minimal discrepancy by using heuristics, e.g. the
forward selection algorithm. Since the optimal discrepancy achievable by m points
decreases with increasing m, an optimal tuple of n < m elements may not be
contained in any m-tuple with a discrepancy exceeding ᾱn. Hence, we can pass
through choices u of m ∈ {n + 1, . . . , N − 1} out of N points to determine some u
with a discrepancy exceeding ᾱn. Afterwards, to determine the optimal n-tuple, it
suffices to evaluate all n-tuples being no subset of any of these u. As soon as we
find an n-tuple whose discrepancy falls below the upper bound ᾱn, we can update
ᾱn and defer the enumeration of n−tuples to repeat the iteration of m−tuples for
m ∈ {n + 1, . . . , N − 1} to exclude further m- and n-tuples.

Since m-tuples can be seen as admissible solutions to a relaxation of (15), this
procedure is close to a branch and bound approach with iterated breadth-first search
(Step [2]) and depth-first search (Step [3]). However, a standard branch and bound
approach does not perform well since the solution of the redistribution problem
along the branch and bound tree is too expensive. We propose the following

Algorithm 4. Branch and bound.

Step [1]: Determine an upper bound ᾱn on the minimal discrepancy achievable by
a measure supported by n points. Set U = ∅.

Step [2]: Iterate through some m-tuples w with m ∈ {n + 1, . . . , N − 1}: If w 6⊂ u
for all u ∈ U : calculate optimal redistribution given the support w and the
resulting discrepancy. If the latter exceeds ᾱn: Add w to U .
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Step [3]: Iterate through all (remaining) n-tuples w. If w 6⊂ u for all u ∈ U :
calculate optimal redistribution on w and the resulting discrepancy. If the
latter falls below ᾱn, update ᾱn and go to Step [2].

The choice of the tested m-tuples within Step [2] is crucial for the performance
of the algorithm. In the remaining part of this section we address this question and
suggest a heuristic for this breadth-first search.

The following considerations should be taken into account. On the one hand,
the number of n−tuples excluded by an m-tuple with a discrepancy exceeding ᾱn

increases with increasing m. On the other hand, with decreasing m, it becomes
more likely to find such m-tuples. However, the evaluation of all m-tuples becomes
quickly too time-consuming when m approaches N/2.

Thus, we suggest the following approach for Step [2]. Once having determined
the set U from the evaluation of some N − 1, . . . , i + 1-tuples, we can calculate
the number of remaining n- and i-tuples, respectively. This is shown by Lemma
5.1 below. The time needed for the evaluation of a single n- or i-tuple, i.e., the
costs of the inner problem (16), can be (roughly) estimated to be proportional to
the number of potential supporting polyhedra or cells, i.e., in the case of the cell
discrepancy

(

n+s
s

)

or
(

i+s
s

)

, respectively. We denote the time needed for evaluation

of all remaining n- and i-tuples by τU
n and τU

i . If

τU
i ≤ τU

n , (35)

we invest a certain part λ ∈ (0, 1) of the time τU
n in the evaluation of some i-tuples,

i.e., we evaluate a fraction κ of all remaining i-tuples such that

κ · τU
i = λ · τU

n .

This evaluation entails a set Uκ ⊃ U . We decide to evaluate all remaining i-tuples
if and only if

min

{

1

κ
(τU

n − τUκ

n ), τU
n

}

≥ τU
i . (36)

The right-hand side represents the costs of testing all remaining i-tuples, the left-
hand side can be interpreted as an extrapolation of the benefit of such a test. Using
(35) and the definition of κ, (36) can be written as

τUκ

n ≤ (1 − λ)τU
n . (37)

To this end, we have to calculate the number of remaining n- and i-tuples, given
a set U of excluding supersets. This can be done by the following formula that is
based on the inclusion-exclusion principle and can be easily proven by induction
over m.

Lemma 5.1. Consider m finite sets u1, . . . , um and n ∈ N, n < #ui, i = 1, . . . , m.
The number of sets of cardinality n being no subset of any ui, i ∈ {1, . . . , m}, is
given by

(

N

n

)

−

m
∑

k=1

(−1)k+1
∑

I⊂{1,...,m}

#I=k

1{|∩i∈Iui|≥n} ·

(

|∩i∈Iui|

n

)

. (38)
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Remark 2. Since the evaluation of (38) requires the determination of 2m − 1
intersections, one could think about using an estimation of (38) that is cheaper to
evaluate. Indeed, given an even m < m, (38) can be bounded from below and above
by taking the first sum only over k ≤ m and k ≤ m + 1, respectively. However,
these so-called Bonferroni inequalities, cf., eg., [5], do not entail a useful estimate of
(38) since the sums are strongly fluctuating in m. Furthermore, such estimates do
not lead to a significant speed-up, in general, because the condition 1{|∩i∈Iui|≥n}

allows to abort the computation in many cases, anyway.
On the other hand, numerical experiences with substituting the term 1{|∩i∈Iui|≥n}

by 1{|∩i∈Iui|≥n+j} were encouraging for small values of j. However, we do not pur-
sue this approach further on and evaluate (38) only if m is smaller than a certain
threshold ϑ.

We propose the following detailed form for Step [2] of Algorithm 4:

Algorithm 5. Breadth-first search heuristics.

Step [2a]: Set i := L̄ ∈ {n + 1, . . . , N − 1} and U := ∅.

Step [2b]: Set i := i − 1. If i = n, proceed with Step [3].

Step [2c]: Go through all already evaluated i-tuples and compare their

saved discrepancies with ᾱn. Add tuples with a discrepancy

exceeding ᾱn to U .

Step [2d]: If all i-tuples have been already evaluated go to [2b].

Step [2e]: If |U | ≤ ϑ calculate τU
i and τU

n .

Step [2f]: Evaluate a fraction κ = λτU
n /τU

i of all i-tuples, save their

discrepancies and determine Uκ. Update U := Uκ.

Step [2g]: If τU
i > τU

n or κ ≥ 1 go to [2b].

Step [2h]: If |Uκ| ≤ ϑ calculate τUκ

n and check whether (37) is satisfied.

If this is the case, go to [2j].

Step [2i]: If |Uκ| > ϑ and τU
i < σ · τU

n go to [2j], else proceed with [2b].

Step [2j]: Evaluate all i-tuples, save their discrepancies, and update U .

Go to [2b].

Remark 3. Since the time needed for evaluation of a m−tuple increases with m,
it is reasonable to use L̄ ∈ {n + 1, . . . , N − 1} in Step [2a] whenever n ≪ N .

The vast majority of the computational time is needed for the computation of
discrepancies. Thus, all computed discrepancies are saved and again taken into
account in Step [2c] whenever the upper bound ᾱn decreases. In Step [2f], a sample
of size κ is taken from the i-tuples. Thereby, κ is updated in terms of the τU

j as

long as this does not take too much time, i.e., whenever |U | ≤ ϑ. This is verified
in Step [2e]. Whenever κ ≥ 1 in [2g], all i−tuples have been evaluated in [2f], thus
we can proceed with [2b] and i − 1. When the evaluation of the κ-sample entails
|Uκ| > ϑ for the first time, we do not estimate the worth of an evaluation of all
i-tuples via (37). Instead of that, we compare τU

i with τU
n and decide to compute

all i−tuples if this seems to be comparatively cheap. This is done in Step [2i].
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Table 1. Running times (in seconds) of Algorithm 1 for different
problem parameters.

k n=5 n=10 n=15 n=20

3 0.01 0.04 0.56 6.02
N=100 R3 6 0.03 1.03 14.18 157.51

9 0.15 7.36 94.49 948.17
4 0.01 0.19 1.83 17.22

N=100 R4 8 0.11 5.66 59.28 521.31
12 0.67 39.86 374.15 3509.34

3 0.01 0.05 0.53 4.28
N=200 R3 6 0.03 0.76 11.80 132.21

9 0.12 4.22 78.49 815.79
4 0.01 0.20 2.56 41.73

N=200 R4 8 0.11 4.44 73.70 1042.78
12 0.74 28.29 473.72 6337.68

3 0.01 0.05 0.37 1.79
N=300 R3 6 0.04 0.75 8.35 42.44

9 0.16 4.39 52.47 259.44
4 0.03 0.22 2.83 61.21

N=300 R4 8 0.13 6.29 94.87 2114.38
12 0.63 42.03 622.12 11666.28
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Figure 4. N = 1, 000 initial scenarios (black points) and n =
50 reduced scenarios (gray points) of Example 2. Radii of the
points are proportional to their probabilities. The left figure shows
the uniformly weighted points obtained by Quasi-Monte Carlo, the
right figure shows their probabilities readjusted with Algorithm 1.

6. Numerical results. All algorithms have been implemented in C++, the half-
space representation of posW has been determined by Fukuda’s cdd+ ([4]), and
the linear program (20) has been solved with CPLEX 10.0 ([12]). The following
numerical results have been realized on a Pentium4 with 3 GHz CPU and 1 GB
RAM.

Table 1 shows running times of Algorithm 1 for the optimal redistribution given
a fixed support for different problem parameters. In Rs, the case k = s stands
for the rectangular discrepancy. Running time quickly increases with increasing
support size n and number of facets k, due to the fact that the number of potential
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Table 2. Polyhedral and rectangular discrepancies for different
problem parameters.

k n=5 n=10 n=15 n=20

3 0.66 0.48 0.41 0.36
N=100 R3 6 0.83 0.60 0.49 0.40

9 0.83 0.65 0.53 0.43
4 0.85 0.53 0.38 0.31

N=100 R4 8 0.91 0.65 0.43 0.36
12 0.93 0.68 0.47 0.39

3 0.54 0.47 0.35 0.32
N=200 R3 6 0.62 0.55 0.39 0.34

9 0.68 0.59 0.44 0.38
4 0.80 0.55 0.46 0.40

N=200 R4 8 0.87 0.61 0.54 0.48
12 0.89 0.64 0.57 0.52

3 0.72 0.48 0.37 0.29
N=300 R3 6 0.81 0.56 0.44 0.34

9 0.85 0.59 0.48 0.37
4 0.86 0.68 0.51 0.44

N=300 R4 8 0.89 0.74 0.57 0.50
12 0.92 0.76 0.61 0.52

Table 3. Growth of running times (in seconds) of Forward Se-
lection Algorithm 2 for the rectangular discrepancy and different
problem parameters.

N=100 n=5 n=10 n=15

R2 0.21 2.07 17.46
R3 0.33 8.40 230.40
R4 0.61 33.69 1944.94

supporting polyhedra is equal to
(

n+1
2

)k
. For n = 5, k = 3 and n = 20, k = 12 the

latter is equal to 3375 and 7.36×1027, respectively. The dependency of the running
time in terms of the initial number of scenarios N appears to be linear. Table 2
shows the resulting polyhedral and rectangular discrepancies. As one would expect,
these are increasing in k and decreasing in n. Furthermore, it has been shown that
the majority of Algorithm 1’s running time is spent for the determination of the
supporting polyhedra, while the time needed to solve the linear program (20) is
insignificant.

Table 3 illustrates the increase of Forward Selection Algorithm 2’s running time,
when reducing initial measures supported by N = 100 atoms in R3 and R4 w.r.t.
the rectangular discrepancy. The growth of the running time is due to the fact
that the inner problem, which becomes more complex with increasing dimension
and number of remaining scenarios, has to be solved very often in the course of
a Forward Selection. Consequently, this heuristic seems to be not appropriate for
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Table 4. Running times (in seconds) of complete enumeration, the
branch and bound Algorithm 4, and Forward selection Algorithm
2. The terms in brackets show the gaps between the achievable
minimal discrepancies and the ones obtained by the heuristics.

R2 R4

complete branch & forward complete branch & forward
n enum. bound selection enum. bound selection

1 0.04 0.96 0.03 (0%) 0.03 21.24 0.03 (0%)
2 0.35 1.22 0.06 (43%) 0.38 21.47 0.06 (8%)
3 2.30 2.57 0.10 (27%) 2.44 22.85 0.10 (50%)
4 10.19 6.44 0.14 (75%) 11.58 28.51 0.15 (35%)
5 34.11 14.82 0.18 (0%) 43.61 49.39 0.18 (50%)
6 89.71 28.67 0.22 (0%) 134.64 99.71 0.25 (40%)
7 187.50 34.12 0.24 (20%) 349.39 175.88 0.31 (11%)
8 325.35 44.68 0.28 (25%) 779.07 376.18 0.45 (0%)
9 459.34 57.68 0.31 (0%) 1490.33 385.53 0.61 (14%)
10 541.39 84.12 0.34 (20%) 2260.59 730.89 0.77 (22%)
11 524.13 26.47 0.38 (33%) 3089.74 1698.63 1.04 (9%)
12 419.53 27.76 0.42 (24%) 3462.72 686.11 1.40 (20%)
13 278.62 16.88 0.45 (50%) 3156.71 778.05 1.80 (25%)
14 150.85 12.79 0.48 (50%) 2307.49 1267.31 2.38 (0%)
15 65.80 18.61 0.50 (50%) 1342.47 223.15 3.10 (25%)
16 22.46 19.55 0.52 (25%) 605.27 222.93 3.94 (50%)
17 5.80 1.85 0.56 (33%) 200.04 113.75 4.98 (100%)
18 1.06 1.33 0.57 (0%) 46.73 53.51 6.19 (100%)

higher dimensional problems. We refer again to Example 2, where another heuristic
is used to tackle the outer problem (15).

Table 4 compares the results of a complete enumeration, the branch and bound
Algorithm 4, and the Forward Selection Algorithm 2 in the case of the cell dis-
crepancy. The initial measures were supported by N = 20 atoms in R2 and R4,
respectively. The percentage values in brackets specify the relative excess of the
minimal discrepancy achieved by Forward Selection over the optimal value. The
parameters used for the breadth-first search are L̄ = min{N − 1, n + 4}, λ = 0.01,
σ = 0.3 and ϑ = 50; the time needed by enumeration is significantly reduced, by
up to 95% (R2, n = 11).

With regard to the complexity of the inner problem (16), we adopted a heuristic
for the outer problem (15), within that (16) has to be solved only once. More
precisely, to approximate the initial measure of Example 2, we used a Quasi-Monte
Carlo (QMC) approach, based on the first n points of the Halton sequence with bases
2 and 3, cf. [16]. It is not completely clear, to the best of our knowledge, how such a
low discrepancy sequence, initially designated to be close to the uniform distribution
on the unit cube, should be tranformed to approximate an arbitrary probability
distribution. However, there exist approaches for special classes of distributions.
For Example 2, we applied the method of Hlawka and Mück [11]. The resulting
(uniformly weighted) points are shown for n = 50 on the left side of Figure 4.
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Figure 5. Rectangular discrepancies and relative deviation of op-
timal values of Example 2 of Quasi-Monte Carlo (dashed line) and
QMC readjusted by Algorithm 1 (solid line), depending on the
number n of remaining scenarios.

The right side of Figure 4 shows the probabilities optimally readjusted w.r.t. the
rectangular discrepancy by Algorithm 1.

The first plot of Figure 5 shows the rectangular discrepancies between the ini-
tial distribution of Example 2 and the approximations obtained by QMC and its
readjustment, respectively, as well as the corresponding running times (in seconds)
of Algorithm 1. The discrepancy can be reduced by Algorithm 1 by up to 50%
(Consequently, the reduction of the gap to the minimal discrepancy will be still
larger.) The following example illustrates that a such an optimal adjustment w.r.t.
to the right discrepancy may significantly improve the approximation quality.

Example 2. Consider a random variable ξ = (ξ1, ξ2) taking values in R2, some
p ∈ [0, 1], L ≥ 0, and the following chance-constrained optimization problem of type
(11):

minimize
{

x1 + x2 : x = (x1, x2) ∈ R2, P (ξ − x ∈ [0, L] × [0, L]) ≥ p
}

(39)

This is a prototype model for so-called reservoir constraints with upper and lower
level restrictions, as they are applied, for instance, in water management [20] or
chemical engineering [10].

We assume that ξ’s distribution consists of 1, 000 uniformly weighted points, sam-
pled from the standard normal distribution in R2. Due to its simple form and low
dimensionality, problem (39) can be solved by enumeration. We compared the opti-
mal value with those obtained by the above-mentioned Quasi-Monte Carlo approach
and its readjusted modification, supported by up to n = 50 atoms.
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The plots of Figure 5 show the relative deviation of the optimal values obtained
by the approximations from the intial optimal value for different parameters of p
and L. It can be seen that a QMC approximation that has been adjusted by a
call of Algorithm 1 performs in most cases significantly better than its unadjusted
counterpart.

Appendix. In this section, we point out why it seems to be difficult to directly
employ the extended B-discrepancy ζr,B(P, Q), introduced in Section 1, for scenario
reduction.

For the set IB of critical index sets I(B), B ∈ B, defined in Section 2, we obtain
for the two (discrete) probability measures P and Q

P =
∑N

i=1
piδξi and Q =

∑n

j=1
qjδξj ,

that the extended B-discrepancy ζr,B(P, Q) is of the form

ζr,B(P, Q) = sup
{

∑

i∈I

pif(ξi) −
∑

j∈I∩{1,...,n}

qjf(ξj) : f ∈ Fr(Ξ), I ∈ IB

}

= max
I∈IB

sup
u∈Ur

{

∑

i∈I

piui −
∑

j∈I∩{1,...,n}

qjuj

}

, (40)

with Ur := {u = (u1, . . . , uN) ∈ RN : |ui| ≤ max{1, ‖ξi‖r}, ui − uj ≤ cij , i, j ∈
{1, . . . , N}} and cij := cr(ξ

i, ξj) := max{1, ‖ξi‖r−1, ‖ξj‖r−1}‖ξi − ξj‖ for all i, j ∈
{1, . . . , N}. Note that (40) corresponds to the identity (19) for the B-discrepancies.
Consequently, when dealing with extended discrepancies, the inner problem (16)
has the form

minimize t subject to q ∈ Sn, (41)

sup
u∈Ur

{

∑

i∈I

piui −
∑

j∈I∩{1,...,n}

qjuj

}

≤ t for all I ∈ IB.

In contrast to (20), the supremum on the left side does not depend monotonously
on |I| when I ∩ {1, . . . , n} and q are fixed, cf. Example A.1. Thus, to the best of
our understanding, passing from (41) to the reduced system of critical index sets
I∗
B and to an analogue of problem (23) in Section 2 seems to be impossible.

Example A.1. We consider N = 4, n = 1, r = 1, and ξi = i for i = 1, 2, 3, and
ξ4 = 1− ε, pi = 0.25, i = 1, . . . , 4, and q1 = 1. Let B denote the system of all closed
intervals on R. We consider the critical index set {1, 2} and two enlarged sets and
calculate the corresponding suprema:

I {1, 2} {1, 2, 3} {1, 2, 4}
supu∈Ur

{. . .} 0.75 1 0.5 + 0.25ε
,

where a tuple u∗ ∈ Ur realizing the suprema for these index sets is given by

(u∗
1, . . . , u

∗
4) = (−1, 0, 1,−1 + ε).

It can be seen that supu∈Ur
{. . .} does not depend monotonously on |I|.
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