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STABILITY AND SENSITIVITY OF OPTIMIZATION PROBLEMS
WITH FIRST ORDER STOCHASTIC DOMINANCE CONSTRAINTS∗
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Abstract. We analyze the stability and sensitivity of stochastic optimization problems with
stochastic dominance constraints of first order. We consider general perturbations of the underlying
probability measures in the space of regular measures equipped with a suitable discrepancy distance.
We show that the graph of the feasible set mapping is closed under rather general assumptions. We
obtain conditions for the continuity of the optimal value and upper-semicontinuity of the optimal
solutions, as well as quantitative stability estimates of Lipschitz type. Furthermore, we analyze the
sensitivity of the optimal value and obtain upper and lower bounds for the directional derivatives
of the optimal value. The estimates are formulated in terms of the dual utility functions associated
with the dominance constraints.
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1. Introduction. The notion of stochastic ordering (or stochastic dominance of
first order) was introduced in statistics in [14, 13] and further applied and developed
in economics [17, 7, 6]. It is defined as follows. For a random variable X we consider
its distribution function, F (X; η) = P [X ≤ η], η ∈ R. We say that a random variable
X dominates in the first order a random variable Y if

F (X; η) ≤ F (Y ; η) ∀ η ∈ R.(1.1)

We denote this relation X �(1) Y . For a modern perspective on stochastic orders, see
[15, 25].

Let g : Rn × Rs → R be continuous with respect to both arguments, and let V
be an s-dimensional random vector, defined on a certain probability space (Ω,F , P ).
For every z ∈ Rn

Xz(ω) = g(z, V (ω)), ω ∈ Ω,

is a random variable. Given a benchmark random variable Y (defined on the same
probability space), an optimization model with first order stochastic dominance con-
straint is formulated as follows:

min f(z)

s.t. Xz �(1) Y,

z ∈ Z,

(1.2)
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where f : Rn → R and Z ⊂ Rn. Using definition (1.1), we can express the dominance
constraint as a continuum of probabilistic constraints:

P
[
g(z, V ) ≥ η

]
≥ P

[
Y ≥ η

]
, η ∈ R.

In [5] optimality conditions for a relaxation of problem (1.2) were investigated, in
which the dominance constraint was enforced on an interval [a, b] rather than on the
entire real line:

min f(z)

s.t. P
[
g(z, V ) ≥ η

]
≥ P

[
Y ≥ η

]
, η ∈ [a, b],

z ∈ Z.

(1.3)

The restriction of the range of η to a compact interval is motivated by the need to
satisfy a constraint qualification condition for the problem (see Definition 2.4). Both
probability functions in problem (1.3) converge to 0 when η → ∞ and to 1 when
η → ∞, which precludes Robinson-type conditions on the whole real line.

From now on, we shall assume that f is continuous and Z is a nonempty closed
convex set. Our objective is to investigate the stability and sensitivity of the optimal
value, the feasible set, and solution set, respectively, of problem (1.3) when the random
variables V and Y are subject to perturbations.

For the purpose of our analysis it is convenient to formulate the dominance con-
straint with the use of “≥” inequalities, as in (1.3). When the distributions are
continuous, this formulation is equivalent to the formulation used in [5].

Problems with stochastic dominance constraints are new optimization models in-
volving risk aversion (see [3, 4, 5]). As problems with a continuum of constraints on
probability, they pose specific analytical and computational challenges. The proba-
bilistic nature of the problem prevents the direct application of the theory of semi-
infinite optimization. On the other hand, the specific structure of dominance con-
straints is significantly different from the structure of finitely many probabilistic con-
straints. Our stability analysis follows similar patterns to those in [8, 22, 23], where
the focus was on probabilistic constraints. However, a straightforward application of
those results (a recent overview of which can be found in [21]) is not possible due to
the specific structure of problem (1.3). First, in (1.3) we deal with two separate prob-
ability terms due to the consideration of a benchmark variable. Second, and more
importantly, problem (1.3) has a continuum of constraints which requires a more
sophisticated analysis than the case of a finite family of constraints.

In section 2, we establish the closedness of the feasible set mapping, and we obtain
stability results for the optimal value, for the feasible set, and for the solution set.
In section 3, we analyze the sensitivity of the optimal value function, and we obtain
bounds for its directional derivatives.

2. Stability. It is obvious from the formulation of the dominance constraint
that only the distribution laws of V and Y matter there. Therefore, we introduce the
measures μ0 on Rs and ν0 on R induced by V and Y . For all Borel sets A ⊂ Rs and
B ⊂ R,

μ0(A) = P [V ∈ A],

ν0(B) = P [Y ∈ B].

We denote the set of probability measures on Rm by P(Rm).
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Furthermore, we introduce the multifunction H : Rn × R ⇒ Rs defined by

H(z, η) := {v ∈ Rs : g(z, v) ≥ η}.

We consider the following parametric optimization problem:

min f(z)

s.t. μ(H(z, η)) − ν([η,∞)) ≥ 0 ∀η ∈ [a, b],

z ∈ Z,

(2.1)

with parameters μ ∈ P(Rs) and ν ∈ P(R). The original problem (1.3) is obtained
when (μ, ν) = (μ0, ν0). Our aim is to study the stability of solutions and of the
optimal value to (2.1) under small perturbations of the underlying distributions μ0

and ν0.
For this purpose we equip the space P(R) with the Kolmogorov distance function:

α1(ν1, ν2) = sup
η∈R

|ν1([η,∞)) − ν2([η,∞))| .

To introduce a distance function on P(Rs), which is appropriate for our problem, we
define the family of sets:

B := {H(z, η) : z ∈ Z, η ∈ [a, b]} ∪ {v + Rs
− : v ∈ Rs}.

The distance function on P(Rs) is defined as the discrepancy

αB (μ1, μ2) := sup
B∈B

|μ1(B) − μ2(B)| .

On the product space P(Rs) × P(R) we introduce the natural distance:

α((μ1, ν1), (μ2, ν2)) := max{αB (μ1, μ2), α1(ν1, ν2)}.(2.2)

Note that α is a metric, because the measures are compared, in particular, on all the
cells of form z + Rs

− and (−∞, η), respectively.
We consider the constraint set mapping Φ : P(Rs) × P(R) ⇒ Rn, which assigns

to every parameter (μ, ν) the feasible set of problem (2.1), i.e.,

Φ(μ, ν) :=
{
z ∈ Z : μ(H(z, η)) − ν([η,∞)) ≥ 0 ∀η ∈ [a, b]

}
.

Given any open subset U ⊆ Rn, we define the U -localized optimal value function,
ϕU : P(Rs) × P(R) → R, of problem (2.1) as follows:

ϕU (μ, ν) := inf
{
f(z) : z ∈ Φ(μ, ν) ∩ clU

}
.

The U -localized solution set mapping ΨU : P(Rs) × P(R) ⇒ Rn of problem (2.1) is
defined by

ΨU (μ, ν) :=
{
z ∈ Φ(μ, ν) ∩ clU : f(z) = ϕU (μ, ν)

}
.

When U = Rn we simply write ϕ(μ, ν) and Ψ(μ, ν).
The reason to consider localized mappings is that we allow general perturbations

of the probability distributions. Then, without additional compactness conditions, no
reasonable constraint qualification formulated at the solution points of the original
problem (1.3) could guarantee stability of the global solution set mapping Ψ := ΨRn .

We recall a general stability result from [10, Proposition 1 and Theorem 1] in a
version adapted to our setting. In the theorem below, the symbol B(z, r) denotes the
ball about z of radius r.
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Theorem 2.1. Let the following assumptions be satisfied in (2.1):
1. The original solution set Ψ(μ0, ν0) is nonempty and bounded.
2. The graph of the constraint set mapping Φ is closed.
3. At every solution z0 ∈ Ψ(μ0, ν0) of the original problem, there exist ε > 0

and L > 0 such that for all (μ, ν) ∈ B((μ0, ν0); ε) the constraint set mapping
satisfies the following two Lipschitz-like estimates:

d(z, Φ(μ0, ν0)) ≤ Lα((μ, ν), (μ0, ν0)) ∀z ∈ Φ(μ, ν) ∩ B(z0; ε),(2.3)

d(z, Φ(μ, ν)) ≤ Lα((μ, ν), (μ0, ν0)) ∀z ∈ Φ(μ0, ν0) ∩ B(z0; ε).(2.4)

4. f is locally Lipschitz.
Then, for any bounded and open set Q containing the original solution set, the fol-
lowing stability properties hold true:

• ∃δ′ > 0 : ΨQ(μ, ν) �= ∅ for all (μ, ν) ∈ B((μ0, ν0); δ
′).

• ΨQ is upper semicontinuous at (μ0, ν0) in the sense of Berge; i.e., for all open
V ⊇ Ψ(μ0, ν0) = ΨQ(μ0, ν0) there exists some δV > 0 such that

ΨQ(μ, ν) ⊆ V ∀(μ, ν) ∈ B((μ0, ν0); δV ).

• ϕQ is continuous at (μ0, ν0) and satisfies the following Lipschitz-like estimate
for some constants δ∗, L∗ > 0:

|ϕQ(μ, ν) − ϕQ(μ0, ν0)| ≤ L∗α((μ, ν), (μ0, ν0)) ∀(μ, ν) ∈ B((μ0, ν0); δ
∗).

We note that the first two assertions of the theorem already follow from [19,
Theorem 4.3]. In the following we want to provide verifiable conditions for the
assumptions of Theorem 2.1. As far as assumption 1 is concerned, it is of a purely
technical nature and may be difficult to verify in the general setting. If, however, the
abstract part Z of the constraint set in (2.1) happens to be compact, as is the case in
many applied problems, then, of course, the boundedness assumption 1 in Theorem
2.1 is trivially satisfied. In this situation, one can even drop the localizations ϕQ and
ΨQ in the statement of Theorem 2.1 and formulate the corresponding conclusions for
the global optimal value function ϕ and the global solution set mapping Ψ . Indeed, as
one may choose Q in Theorem 2.1 by compactness of Z such that Q ⊇ Z ⊇ Ψ(μ0, ν0),
it follows that

ΨQ(μ, ν) = Ψ(μ, ν) (⊂ Z ⊂ Q) and ϕQ(μ, ν) = ϕ(μ, ν) ∀(μ, ν).

Passing to assumption 2 in Theorem 2.1, this is generally satisfied under the data
assumptions made for problem (1.3). To show this, we first adapt a result of [22].

Lemma 2.2. Assume that a multifunction S : Rn ⇒ Rs has a closed graph. Let
x̄ ∈ Rn be such that S(x̄) �= ∅. Then for every nonnegative regular measure μ on Rs

and for every ε > 0 there exists δ > 0 such that

μ
(
S(x)

)
≤ μ

(
S(x̄)

)
+ ε, whenever ‖x− x̄‖ ≤ δ.(2.5)

Proof. By the closedness of the graph,

S(x̄) =
⋂
δ>0

cl
( ⋃

‖x−x̄‖≤δ

S(x)
)
.
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Therefore, for every regular measure μ,

μ
(
S(x̄)

)
= inf

δ>0
μ

(
cl
( ⋃

‖x−x̄‖≤δ

S(x)
))

.

Consequently, for every ε > 0 there exists δ > 0 such that

μ
(
S(x̄)

)
+ ε ≥ μ

(
cl
( ⋃

‖x−x̄‖≤δ

S(x)
))

.

This implies the result.
Theorem 2.3. The graph of the feasible set mapping Φ is closed.
Proof. Consider a sequence (μn, νn, zn) of the elements of the graph, which is

convergent to some (μ̄, ν̄, z̄) in the space P(Rs) × P(R) × Rn. Since zn ∈ Φ(μn, νn),
then zn ∈ Z and

μn(H(zn, η)) − νn([η,∞)) ≥ 0 ∀η ∈ [a, b].(2.6)

As Z is closed, z̄ ∈ Z. By the definition of α1(·, ·), it follows that

νn([η,∞)) → ν̄([η,∞)) ∀ η ∈ [a, b].(2.7)

Let us consider the first term in (2.6). For a fixed η ∈ [a, b] we have the inequality

μn(H(zn, η)) − μ̄(H(z̄, η))(2.8)

=
[
μn(H(zn, η)) − μ̄(H(zn, η))

]
+
[
μ̄(H(zn, η)) − μ̄(H(z̄, η))

]
≤ αB (μn, μ̄) +

[
μ̄(H(zn, η)) − μ̄(H(z̄, η))

]
.

By assumption, αB (μn, μ̄) → 0, and we can focus on the term in brackets. By the
continuity of g, the multifunction H(·, η) has a closed graph. We now apply Lemma
2.2 to conclude that for every ε > 0 there exists δ > 0 such that

μ̄
(
H(z, η)

)
≤ μ̄

(
H(z̄, η)

)
+ ε, whenever ‖z − z̄‖ ≤ δ.

For all sufficiently large n one has ‖zn − z̄‖ ≤ δ and therefore

μ̄
(
H(zn, η)

)
≤ μ̄

(
H(z̄, η)

)
+ ε.

Passing to the limit with n → ∞ and noting that ε > 0 was arbitrary, we obtain

lim sup
n→∞

μ̄
(
H(zn, η)

)
≤ μ̄

(
H(z̄, η)

)
.(2.9)

Combining relations (2.8) and (2.9), we conclude that

lim sup
n→∞

μn(H(zn, η)) ≤ μ̄(H(z̄, η)).

Using this in (2.6), with a view to (2.7), we obtain

μ̄(H(z̄, η)) − ν̄(η,∞)) ≥ lim sup
n→∞

μn(H(zn, η)) − lim
n→∞

νn([η,∞))

= lim sup
n→∞

[
μn(H(zn, η)) − νn([η,∞))

]
≥ 0.
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Since η was arbitrary, we obtain the relation

μ̄(H(z̄, η)) − ν̄(η,∞)) ≥ 0 ∀ η ∈ [a, b].

This amounts to z̄ ∈ Φ(μ̄, ν̄), as desired.
Remark 1. Let us observe that we did not use the compactness of the set [a, b] in

the proof, and therefore Theorem 2.3 holds true for the dominance relation enforced
on the whole real line.

The verification of assumption 3 in Theorem 2.1 is less direct and will be based
on an appropriate constraint qualification for problem (2.1) at the original parameter
(μ0, ν0). To formulate this constraint qualification, we assume the following differen-
tial uniform dominance condition introduced in [5].

Definition 2.4. Problem (2.1) for μ = μ0 and ν = ν0 satisfies the differential
uniform dominance condition at the point z0 ∈ Z if

(i) μ0(H(z, η)) is continuous with respect to η in [a, b], differentiable with respect
to z in a neighborhood of z0 for all η ∈ [a, b], and its derivative is jointly
continuous with respect to both arguments;

(ii) ν0([·,∞)) is continuous;
(iii) there exists z1 ∈ Z such that

min
a≤η≤b

{
μ0

(
H(z0, η)

)
+ ∇zμ0

(
H(z0, η)

)
(z1 − z0) − ν0

(
[η,∞)

)}
> 0.

The differentiability assumptions on μ0(H(·, η)) can be guaranteed by assuming
continuous differentiability of the function g with respect to both arguments, the
existence of the probability density of the random vector V , and by mild regularity
conditions (see [9]). Then

∇zμ0

(
H(z, η)

)
=

∫
∂H(z,η)

ϕ(v)

‖∇vg(z, v)‖
∇zg(z, v)λ(dv),

where ∂H(z, η) is the surface of the set H(z, η) and λ is the surface Lebesgue measure.
The regularity conditions mentioned require that the gradient ∇vg(z, v) be nonzero
and that the integrand above be uniformly bounded (in a neighborhood of z) by an
integrable function.

For example, if g(z, V ) = 〈z, V 〉 and V has a nondegenerate multivariate normal
distribution N (v̄, Σ), then

μ0(H(z, η)) = 1 − Φ
( η − 〈z, v̄〉√

〈z,Σz〉

)
,

where Φ(·) is the distribution function of the standard normal variable. In this case
condition (i) of Definition 2.4 is satisfied at every z �= 0.

The differential uniform dominance condition has substantial consequences. Let
C be the Banach space of continuous functions on [a, b]. Consider the mapping
Γ : Rn → C defined as

Γ(z)(η) = μ0(H(z, η)) − ν0([η,∞)), η ∈ [a, b],

where ν0([·,∞)) ∈ C . Denote by K the nonnegative cone in C .
Lemma 2.5. Assume that μ0(H(z, η)) is continuously differentiable with respect

to z in a neighborhood of z0 ∈ Z and for all η ∈ [a, b], μ0(H(z, ·)) is continuous in
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[a, b], and Γ(z0) ∈ K. The differential uniform dominance condition is satisfied at z0

if and only if the multifunction

z �→
{

Γ(z) −K if z ∈ Z,

∅ otherwise
(2.10)

is metrically regular at (z0, 0).
Proof. We observe that the differential uniform dominance condition is equivalent

to Robinson’s constraint qualification condition (see [18])

0 ∈ int
{

Γ(z0) + ∇zΓ(z0)(Z − z0) −K
}
.(2.11)

Indeed, it is easy to see that the uniform dominance condition implies Robinson’s
condition. On the other hand, if Robinson’s condition holds true, then there exists
ε > 0 such that the function identically equal to ε is an element of the set on the
right-hand side of (2.11). Then we can find z1 such that

Γ(z0)(η) +
[
∇zΓ(z0)(η)

]
(z1 − z0) ≥ ε ∀ η ∈ [a, b].

Consequently, the uniform dominance condition is satisfied. On the other hand,
Robinson’s constraint qualification at z0 is equivalent to the metric regularity of (2.10)
at (z0, 0) (see [2]).

The next proposition shows that the verification of assumption 3 in Theorem 2.1
can be reduced to the differential uniform dominance condition.

Proposition 2.6. Let the differential uniform dominance condition be satisfied
at some z0 ∈ Φ(μ0, ν0). Then relations (2.3) and (2.4) of Theorem 2.1 hold true at
z0.

Proof. We introduce the multifunction M : C ⇒ Rn as the following parameter
dependent constraint set mapping:

M(w) :=
{
z ∈ Z : μ0(H(z, η)) − w(η) ≥ 0 ∀ η ∈ [a, b]

}
.

(The relation between M and Φ is given by Φ(μ0, ν) = M
(
ν([·,∞))

)
for all continuous

distributions ν ∈ P(R).) Define w0(·) = ν0([·,∞)). By assumption, w0 ∈ C .
By Lemma 2.5, the differential uniform dominance condition is equivalent to

metric regularity of (2.10) at (z0, 0), which, upon passing to the inverse multifunction,
is equivalent to the pseudo-Lipschitz property of M at (w0, z0) (see, e.g., [12, Lemma
1.12] and [20, Theorem 9.43]). Accordingly, there exist ε̃ > 0 and L̃ > 0 such that

d(z,M(w2)) ≤ L̃d(w1, w2) ∀z ∈ M(w1) ∩ B(z0; ε̃) ∀w1, w2 ∈ B(w0; ε̃),(2.12)

where the last ball is taken in the metric of C . First, we verify the following chain of
inclusions for all (μ, ν) ∈ P(Rs) × P(R):

M(w0 + 2α((μ, ν), (μ0, ν0)) · 1) ⊆ Φ(μ, ν) ⊆ M(w0 − 2α((μ, ν), (μ0, ν0)) · 1),(2.13)

where 1 is the function on [a, b] taking the constant value 1. Note that M is applied
to continuous functions as required. Now, if

z ∈ M(w0 + 2αB ((μ, ν), (μ0, ν0)) · 1),
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then z ∈ Z and, by definition of α,

0 ≤ μ0(H(z, η)) − (w0(η) + 2α((μ, ν), (μ0, ν0)))

= μ0(H(z, η)) − ν0([η,∞)) − 2α((μ, ν), (μ0, ν0)))

≤ μ(H(z, η)) − ν([η,∞)) ∀η ∈ [a, b] .

This establishes the first inclusion of (2.13), and the second one is completely analo-
gous.

In order to check (2.3), let (μ, ν) ∈ B((μ0, ν0); ε̃/2) and z ∈ Φ(μ, ν) ∩ B(z0; ε̃/2)
be arbitrary. Define w1 ∈ C by w1 := w0 − 2α((μ, ν), (μ0, ν0)) · 1. Then the second
inclusion of (2.13) entails that z ∈ M(w1). Furthermore,

d(w1, w0) = 2α((μ, ν), (μ0, ν0)) ≤ ε̃.

Consequently, we may apply (2.12) to w1 and to w2 := w0 ∈ C :

d(z, Φ(μ0, ν0)) = d(z,M(w0)) ≤ L̃d(w1, w0) = 2L̃α((μ, ν), (μ0, ν0)).

Therefore, (2.3) holds true with L := 2L̃ and ε := ε̃/2. As for (2.4), take arbitrary
(μ, ν) ∈ B((μ0, ν0); ε̃/2) and z ∈ Φ(μ0, ν0) ∩ B(z0; ε̃/2). Define w2 ∈ C by w2 :=
w0 + 2α((μ, ν), (μ0, ν0)) · 1. Then

d(w2, w0) = 2α((μ, ν), (μ0, ν0)) ≤ ε̃,

and we may apply (2.12) to w1 := w0 and to w2. Further taking into account the first
inclusion of (2.13), one arrives at

d(z, Φ(μ, ν)) ≤ d(z,M(w2) ≤ L̃d(w0, w2) = 2L̃α((μ, ν), (μ0, ν0)),

which is (2.4) with the same values L := 2L̃ and ε := ε̃/2 as for (2.3).

3. Sensitivity of the optimal value.

3.1. Optimality conditions. In order to analyze the sensitivity of the optimal
value function, we need to briefly recall optimality conditions for problem (1.3). From
now on we assume that f is continuously differentiable.

We define the set U ([a, b]) of functions u(·) satisfying the following conditions:

u(·) is nondecreasing and right continuous;

u(t) = 0 ∀ t ≤ a;

u(t) = u(b) ∀ t ≥ b.

It is evident that U ([a, b]) is a convex cone. The slight difference from the definition
of the set U introduced in [5] is due to the fact that we formulate the stochastic
dominance constraint in (1.3) via the ≥ inequality.

We introduce the functional L : Rn × U ([a, b]) × P(Rs) × P(R) → R associated
with problem (1.3):

L(z, u;μ, ν) := f(z) −
∫

u(g(z, v))μ(dv) +

∫
u(y) ν(dy).(3.1)

As shown in [5], the functional L plays a similar role to that of a Lagrangian of the
problem.



330 D. DENTCHEVA, R. HENRION, AND A. RUSZCZYŃSKI

Theorem 3.1. Assume that the differential uniform dominance condition is
satisfied at a local minimum ẑ of problem (1.3). Then there exists a function û ∈
U ([a, b]) such that

−∇zL(ẑ, û;μ0, ν0) ∈ NZ(ẑ),(3.2) ∫
û(g(ẑ, v))μ0(dv) =

∫
û(y) ν0(dy).(3.3)

The proof follows the same line of argument as the proof in [5] and is omitted
here. It uses the correspondence between a nonnegative measure λ on [a, b] and a
function u ∈ U ([a, b]):

u(η) = λ([a, η]), η ∈ [a, b].(3.4)

Remark 2. The set Û(ẑ) of functions in U ([a, b]) satisfying (3.2)–(3.3) for the
local minimum ẑ is convex, bounded, and weakly∗ closed in the following sense: if a
sequence of functions uk ∈ Û(ẑ) and u ∈ U ([a, b]) are such that

lim
k→∞

∫ b

a

c(η) duk(η) =

∫ b

a

c(η) du(η) ∀ c ∈ C ,

then u ∈ Û(ẑ). This follows from [1, Theorem 3.6] and the application of (3.4).
If the function g(·, ·) is quasi-concave and μ has an r-concave probability density

function, with r ≥ −1/s, then the feasible set of problem (1.3) is convex (see [16]).
Therefore we can formulate the following sufficient conditions of optimality, as in [5].

Theorem 3.2. Assume that a point ẑ is feasible for problem (1.3). Suppose that
there exists a function û ∈ U ([a, b]) such that conditions (3.2)–(3.3) are satisfied. If
the function f is convex, the function g(·, ·) is quasi-concave, and V has an r-concave
probability density function, with r ≥ −1/s, then ẑ is an optimal solution of problem
(1.3).

Let us observe that under the assumptions of Theorem 3.2 the functional (3.1) is,
in general, not a quasi-convex function of z.

3.2. Upper bound. Consider the measures

μt = μ0 + tγ,

νt = ν0 + tσ,

where γ and σ are regular signed measures on Rs and R, respectively, and t > 0. We
shall bound the optimal value ϕ(μt, νt) of the perturbed problem

min f(z)

s.t. μt(H(z, η)) − νt([η,∞)) ≥ 0 ∀η ∈ [a, b],

z ∈ Z.

(3.5)

Our objective is to develop bounds for the limit of the quotients
[
ϕ(μt, νt)−ϕ(μ0, ν0)

]
/t,

when t ↓ 0.
Theorem 3.3. Let Ẑ be the set of optimal solutions of problem (1.3). Assume

the following conditions:
(i) The differential uniform dominance condition is satisfied at each point ẑ ∈ Ẑ.
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(ii) γ(H(z, η)) is continuous with respect to both arguments at (ẑ, η) for all η ∈
[a, b], is differentiable with respect to z in a neighborhood of each ẑ ∈ Ẑ for
every value of η ∈ [a, b], and its derivative is jointly continuous with respect
to both arguments.

(iii) σ([η,∞)) is a continuous function of η.
Then

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)]

≤ inf
ẑ∈Ẑ

sup
û∈Û(ẑ)

{∫
û(g(ẑ, v)) γ(dv) +

∫
û(y)σ(dy)

}
,

(3.6)

where Û(ẑ) is the set of functions in U ([a, b]) satisfying (3.2)–(3.3) at the minimum
ẑ.

Proof. Our result is close in spirit to that of [1, Proposition 4.22], but we work
with weaker assumptions by exploiting the structure of the problem.

Fix ẑ ∈ Ẑ. We shall construct feasible points of the perturbed problem of the
form

z̃t = ẑ + th + o(t).(3.7)

Define the set

A =
{
η ∈ [a, b] : μ0(H(ẑ, η)) = ν0([η,∞))

}
,

and let TZ(ẑ) denote the tangent cone to Z at ẑ.
We assume that the direction h in (3.7) is an element of the tangent cone TZ(ẑ)

and satisfies the infinite system of linear inequalities:

〈∇zμ0(H(ẑ, η)), h〉 + γ(H(ẑ, η)) − σ([η,∞)) ≥ 0 ∀ η ∈ A .(3.8)

It follows from the uniform dominance condition that there exists ε > 0 such that

〈∇zμ0(H(ẑ, η)), z1 − ẑ〉 > ε

for all η ∈ A . Therefore inequalities (3.8) can be satisfied by choosing h = τ(z1 − ẑ)
with a sufficiently large τ .

Let zt = ẑ + th. The uniform dominance condition implies that

μt(H(zt, η)) = μ0(H(zt, η)) + tγ(H(zt, η))

= μ0(H(ẑ, η)) + t〈∇zμ0(H(ẑ, η)), h〉 + tγ(H(zt, η)) + o(t, η),
(3.9)

where o(t, η)/t → 0 as t → 0, uniformly over η ∈ [a, b].
We shall estimate the term γ(H(zt, η)) from below. Choose any η̂ ∈ [a, b]. By the

continuity of γ(H(z, η)) around the point (ẑ, η̂), for every ε > 0 there exists δ(ε, η̂) > 0
such that

γ(H(z, η)) ≥ γ(H(ẑ, η̂)) − ε(3.10)

for all (z, η) such that ‖z − ẑ‖ ≤ δ(ε, η̂) and |η− η̂| ≤ δ(ε, η̂). For each ε the intervals
|η−η̂| ≤ δ(ε, η̂), where η̂ runs through [a, b], cover [a, b]. Choosing a finite subcovering,
we conclude that there exists δ(ε) > 0 such that (3.10) holds true for all z satisfying
‖z − ẑ‖ ≤ δ(ε) and for all η ∈ [a, b].
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Define r(t) = inf
{
ε > 0 : δ(ε) ≥ t‖h‖

}
. Observe that r(t) → 0 as t ↓ 0. It follows

from (3.10) that

γ(H(zt, η)) ≥ γ(H(ẑ, η)) − r(t).

Substituting this estimate into (3.9), we obtain

μt(H(zt, η)) ≥ μ0(H(ẑ, η)) + t〈∇zμ0(H(ẑ, η)), h〉 + tγ(H(ẑ, η)) + o(t, η) − tr(t).

Using condition (3.8) and the feasibility of ẑ, we conclude that

μt(H(zt, η)) − νt([η,∞)) =
[
μ0(H(ẑ, η)) − ν0([η,∞))

]
+ t

[
〈∇zμ0(H(ẑ, η)), h〉 + γ(H(ẑ, η)) − σ([η,∞))

]
+ o(t, η) − tr(t)

≥ o(t, η) − tr(t) ∀ η ∈ [a, b].

(3.11)

Consequently, the point zt may violate the constraints of the perturbed problem only
by quantities which are infinitely smaller than t. Define the mapping Γ : Rn ×R → C
as follows:

Γ(z, t)(η) = μt(H(z, η)) − νt([η,∞)), η ∈ [a, b].

The system

Γ(z, t) ∈ K,

z ∈ Z,

is stable about (ẑ, 0) (see, e.g., [1, Theorem 2.87]). Therefore, for all sufficiently small
t > 0, we can slightly modify zt to get a point z̃t such that

Γ(z̃t, t) ∈ K,

z̃t ∈ Z,

‖z̃t − zt‖ ≤ C
[
dist(Γ(zt, t),K) + dist(zt, Z)

]
,

where C is some constant. Using (3.11) and the fact that h is tangent to Z, we obtain
that

lim
t↓0

1

t

(
z̃t − ẑ

)
= h.

As z̃t is feasible,

ϕ(μt, νt) ≤ f(z̃t).

Subtracting ϕ(μ0, ν0), dividing by t, and passing to the limit, we obtain

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ lim sup

t↓0

1

t
[f(z̃t) − f(ẑ)] = 〈∇f(ẑ), h〉.(3.12)

It follows that the limit on the left-hand side of (3.12) is bounded from above by the
optimal value of the problem

min 〈∇f(ẑ), h〉
s.t. 〈∇zμ0(H(ẑ, η)), h〉 ≥ −γ(H(ẑ, η)) + σ([η,∞)) ∀ η ∈ A ,

h ∈ TZ(ẑ).

(3.13)
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The optimal value of the linear-conic problem (3.13) is equal to the optimal value of
the following dual problem (see, e.g., [1, Theorem 5.106]):

max
λ

∫ b

a

[
− γ(H(ẑ, η)) + σ([η,∞))

]
λ(dη)

s.t. −∇f(ẑ) −
∫ b

a

∇zμ0(H(ẑ, η))λ(dη) ∈ NZ(ẑ),

λ ≥ 0.

(3.14)

Here λ is a regular measure on A . Moreover, it is sufficient to consider atomic
measures λ with at most n + 1 atoms.

Extending λ to [a, b], associating with it a function u(·) = λ([a, ·]), and changing
the order of integration, we obtain the identity

∫ b

a

γ(H(ẑ, η))λ(dη) =

∫ b

a

∫
v∈H(ẑ,η)

γ(dv)λ(dη) =

∫ b

a

∫
{v:g(ẑ,v)≥η}

γ(dv)λ(dη)

=

∫ ∫ g(ẑ,v)

a

λ(dη) γ(dv) =

∫
u(g(ẑ, v)) γ(dv).

(3.15)

In a similar way we transform other integrals in (3.14) to obtain the following form
of the dual problem:

max
u(·)

−
∫

u(g(ẑ, v)) γ(dv) +

∫
u(y)σ(dy)

s.t. −∇f(ẑ) −∇z

∫
u(g(ẑ, v))μ0(dv) ∈ NZ(ẑ),

u(·) ∈ U ([a, b]),

u(·) satisfies (3.3).

(3.16)

We observe that the feasible set of this problem is the set Û given by (3.2)–(3.3). Now
we continue the estimate (3.12) as follows:

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ sup

û∈Û(ẑ)

{
−
∫

û(g(ẑ, v)) γ(dv) +

∫
û(y)σ(dy)

}
.

As ẑ ∈ Ẑ was arbitrary, we conclude that

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

{
−
∫

û(g(ẑ, v)) γ(dv) +

∫
û(y)σ(dy)

}
,

which was what we set out to prove.
As discussed in the proof, it is sufficient to consider the supremum over piecewise

constant functions û ∈ Û having at most n + 1 jumps.
Corollary 3.4. Suppose that μ1 = μ0 + γ is a nonnegative measure and let

ν1 = ν0 + σ. Then

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

∫
û(y) ν1(dy).
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Proof. We can rewrite the estimate (3.6) as follows:

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

{∫
û(g(ẑ, v))μ0(dv)

−
∫

û(g(ẑ, v))μ1(dv) +

∫
û(y) ν1(dy) −

∫
û(y) ν0(dy)

}
.

As the function û(·) is nonnegative, we can skip the second term on the right-hand
side. Using the complementarity condition (3.3), we get the required inequality.

3.3. Lower bound. Let us start from the following observation.
Lemma 3.5. Consider any measures μ ∈ P(Rs) and ν ∈ P(R) and a point z ∈ Z

such that

μ(H(z, η)) ≥ ν([η,∞)), η ∈ [a, b].(3.17)

Then for every u ∈ U ([a, b]) we have∫
u(g(z, v))μ(dv) ≥

∫
u(y) ν(dy).

Proof. For a function u ∈ U ([a, b]) we define a nonnegative measure λ on [a, b]
by the relation u(·) = λ([a, ·]). Integrating the inequalities (3.17), changing the order
of integration as in (3.15), we obtain the postulated inequality.

Suppose that u ∈ U ([a, b]). Employing Lemma 3.5, we obtain

ϕ(μ, ν) ≥ inf
z∈Z

{
f(z) −

∫
u(g(z, v))μ(dv)

}
+

∫
u(y) ν(dy).

We get the general dual lower bound

ϕ(μ, ν) ≥ sup
u∈U ([a,b])

inf
z∈Z

{
f(z) −

∫
u(g(z, v))μ(dv) +

∫
u(y) ν(dy)

}
.

In order to obtain tighter bounds we consider the perturbations in directions

μt = μ0 + tγ,

νt = ν0 + tσ.

We shall develop lower bounds for the differential quotients
[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
/t

when t ↓ 0. Our result is similar to the standard approach employed in [1, Theorem
4.24]. However, it is unrealistic to assume that the Lagrangian is convex (even under
the assumptions of Theorem 3.2), and that is why we need Lipschitz stability of
optimal solutions.

Theorem 3.6. Assume that ẑ is the unique optimal solution of problem (1.3)
and that the differential uniform dominance condition is satisfied at ẑ. Furthermore,
assume that the perturbed problems (3.5) have solutions zt such that ‖zt − ẑ‖ ≤ Lt
with some constant L. Let Û be the set of functions û(·) satisfying the optimality
conditions (3.2)–(3.3). Then

lim inf
t→0

1

t

[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
≥ sup

û∈Û

{
−
∫

û
(
g(ẑ, v)

)
γ(dv) +

∫
û(y)σ(dy)

}
.

(3.18)
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Proof. Consider problem (2.1) and its Lagrangian

Λ(z, λ;μ, ν) = f(z) −
∫ b

a

[
μ(H(z, η)) − ν([η,∞))

]
λ(dη),

where λ is a nonnegative regular measure on [a, b]. Fix μ = μ0 and ν = ν0. As in
[5], owing to the differential uniform dominance condition at ẑ, there exists a measure

λ̂ ≥ 0 such that

〈∇zΛ(ẑ, λ̂;μ0, ν0), z − ẑ〉 ≥ 0 ∀ z ∈ Z

and ∫ b

a

[
μ0(H(ẑ, η)) − ν0([η,∞))

]
λ̂(dη) = 0.

Using the nonnegativity of λ̂ and the complementarity condition, we can write the
chain of inequalities

ϕ(μt, νt) − ϕ(μ0, ν0) ≥ f(zt) −
∫ b

a

[
μt(H(zt, η)) − νt([η,∞))

]
λ̂(dη) − f(ẑ)

≥ f(zt) −
∫ b

a

[
μt(H(zt, η)) − νt([η,∞))

]
λ̂(dη)

− f(ẑ) +

∫ b

a

[
μ0(H(ẑ, η)) − ν0([η,∞))

]
λ̂(dη)

= Λ(zt, λ̂;μ0, ν0) − Λ(ẑ, λ̂;μ0, ν0) − t

∫ b

a

[
γ(H(zt, η)) − σ([η,∞))

]
λ̂(dη)

= 〈∇zΛ(ẑ, λ̂;μ0, ν0), zt − ẑ〉 + o(zt, ẑ) − t

∫ b

a

[
γ(H(zt, η)) − σ([η,∞))

]
λ̂(dη),

where o(zt, ẑ)/‖zt − ẑ‖ → 0 as t → 0. By the optimality condition and by the
assumption that ‖zt − ẑ‖ ≤ Lt, we conclude that

lim inf
t→0

1

t

[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
≥ −

∫ b

a

[
γ(H(ẑ, η)) − σ([η,∞))

]
λ̂(dη).(3.19)

Now we use the correspondence between a nonnegative measure λ̂ on [a, b] and a
function û ∈ U ([a, b]) defined as follows:

û(η) = λ̂([a, η]), η ∈ [a, b].

Changing the order of integration, as in (3.15), we obtain∫ b

a

γ(H(ẑ, η)) λ̂(dη) =

∫
û(g(ẑ, v)) γ(dv),

∫ b

a

σ([η,∞)) λ̂(dη) =

∫
û(y))σ(y).

Using the last two equations, we can rewrite (3.19) as follows:

lim inf
t→0

1

t

[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
≥ −

∫
û(g(ẑ, v)) γ(dv) +

∫
û(y))σ(y).



336 D. DENTCHEVA, R. HENRION, AND A. RUSZCZYŃSKI

As λ̂ was an arbitrary optimal multiplier, we can take the supremum of the right-hand
side over û ∈ Û to obtain (3.18).

We point out that the assumption of Lipschitz stability of optimal solutions,
‖zt − ẑ‖ ≤ Lt, has an implicit character. In general stability studies, its fulfillment
involves appropriate second order sufficient optimality conditions. In our case, due to
the nature of the probability distribution functions, such an analysis is very difficult.

Finally, we obtain the directional differentiability result.
Corollary 3.7. Under the assumptions of Theorems 3.3 and 3.6 the optimal

value function is directionally differentiable in the direction (γ, σ) with the derivative

ϕ′((μ0, ν0); (γ, σ)) = sup
û∈Û

{
−
∫

û
(
g(ẑ, v)

)
γ(dv) +

∫
û(y)σ(dy)

}
.

The assumptions simplify considerably if we allow perturbations of the benchmark
distribution only.
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