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Abstract

Simplifying the structure of core arrays from N -way PCA or Tucker3 models is desirable to allow

for easy interpretation of the factor estimates. In the present paper, �rst a general algorithm for maxi-

mizing a di�erentiable goal function depending on a set of orthogonal matrices is formulated and then

speci�ed to the problem of estimating orthonormal transformation matrices for rotating core arrays to

simpler structure. The generality of the chosen approach allows to cope with all possible transforma-

tion criteria by just changing one command in the implementation. In particular, the classical body-

and slice-wise diagonalization of core arrays as well as the recently proposed maximization of the

variance of squared entries are covered. The stability of the algorithm is addressed by a simulation

study using 120 three-way core arrays of dimension (4,4,4). Each core array instantiates a class of

50 equivalent cores by random orthonormal transformations. Theoretically, each core within a given

class has the same optimum with respect to the chosen criterion, and the ability of the algorithm to

provide that result has been investigated. The algorithm proves to work with a high degree of stability

and consistency in optimizing the three discussed goal functions. In addition, theoretical convergence

results of the algorithm are provided. In particular, monotonic convergence of functional values and

convergence of iterates towards a stationary solution are proven. To illustrate the e�ect of maximiz-

ing the variance-of-squares and the functionality of the algorithm, the proposed method is applied

to a three-way data array from 
uorometric analysis of fractions obtained from low-pressure chro-

matographic separation of a preliminary sugar product, thick juice. A signi�cant gain in simplicity is

achieved, and in particular optimizing variance-of-squares provides a simple core structure for the data
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under investigation. The proposed algorithms for maximizing variance-of-squares, body diagonality and

slice-wise diagonality have been implemented in MATLAB and are available by contact to the authors.

c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Having its roots in the �eld of psychometrics, the Tucker3 model of N -way prin-

cipal component analysis (PCA), see Tucker (1966) and Kapteyn et al. (1986), is

applied more and more often within chemometrics in the context of multivariate cali-

bration or explanatory data analysis, see e.g. De Ligny et al. (1984), Zeng and Hopke

(1990), Smilde (1992), Henrion et al. (1997) and Andersson et al. (1997). In both

cases, a huge amount of data, arranged in higher-dimensional arrays, is produced by

modern analytical devices. N -way PCA serves as one possible tool for subsequent

data reduction. The corresponding model reads as (see Magnus and Neudecker, 1988

for details):

vecX ≈ (A1⊗ · · · ⊗AN )vecC: (1)

Here, X represents the N -way data array of order (n1; : : : ; nN ) and Ai of order (ni; si)

is the orthonormal component matrix belonging to the ith way. The array C of order

(s1; : : : ; sN ) designates the core array, while vec and ⊗ refer to vectorization and

Kronecker product, respectively.

A speci�c aspect of the N -way PCA model is its non-uniqueness in the sense

that the factors, together with the core array, can be rotated without loss of �t:

Transforming each of the component matrices Ai in (1) to AiPi by means of or-

thonormal matrices Pi of order (si; si), the same approximation to the data array in

(1) is obtained when transforming the original core array C to

vec C̃= (PT1⊗ · · ·⊗P
T
N ) vecC: (2)

The resulting core, designated by C̃, is of equal order as C. For later argumentation,

it is important to note that the sum of squared elements of core arrays is invariant

under the above transformation.

The core array provides a way to interpret the solutions since its squared entries

represent the relative importance of the factor combinations from di�erent (orthonor-

mal) component matrices in terms of explained variability. Therefore, it is desirable

to have a few signi�cant entries in the core array allowing for easy identi�cation of

the signi�cant factor combinations. Such factor combinations will re
ect the latent

behaviour or pattern in the data. But, often the core array does not facilitate direct

interpretation because the squared entries are of equal magnitude giving no direct

pointer to major trends and systematics in data. Then, the rotational degree of free-

dom described by (2) may be used to accommodate for this situation. A common
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feature of di�erent approaches in this direction is the aim of giving the core a simple

structure by optimizing a well-de�ned goal function that quanti�es the simplicity of

the core.

Much of the work devoted to increasing the interpretability of the N -way PCA

model has been concerned with estimating orthogonal rotation matrices that could

transform the solution to give a more unambiguous interpretation, see Kiers (1992).

The present work will focus on the common algorithmic aspect of applying or-

thonormal core transformations (2) for optimizing any di�erentiable criterion of

core simplicity (for the latest work on oblique rotations the reader is referred to

Kiers, 1999). Special attention will be paid to the variance-of-squares criterion as a

recently proposed goal function, see Henrion and Andersson (1999), as well as to

some more classical diagonalization criteria. The potential of the presented approach

lies in its generality, so for a new criterion of core simplicity, no speci�c algorithm

has to be re-designed. The stability of the algorithm is illustrated by application

to a large amount of synthesized, well-characterized, cores. Furthermore, theoretical

convergence properties are studied. The discussion concludes with an application to

data collected at-line in industrial production of sugar.

2. Criteria for simple-structure transformations

The squared core entries re
ect the signi�cance of the factor combinations in the

model. In order to allow for easy and correct interpretation, it is desirable to obtain

as simple a core structure as possible. If the core can be brought to a simple structure

where only a few but very large elements are present, the analyst may focus on these

respective factor combinations. The worst case is the situation where all elements in

the core are equal, thereby indicating that no signi�cant single factor combination

could be found. The concept of rotating core arrays from three-way PCA originates

from Tucker (1966) and the �eld of multidimensional scaling, e.g. De Leeuw and

Pruzansky (1978) and Carroll and Wish (1974). For the moment we will leave out

of discussion how the measures are maximized and focus on the goal functions.

Classical criteria of core simplicity refer to diagonal shapes. Understanding di-

agonality of a square N -way core array of order (s; : : : ; s) in a strict sense means

that all non-zero elements should be located on the so-called body diagonal of the

array, i.e. Ci1 ;:::;iN = 0 unless i1 = · · · = iN . In general, of course, core arrays cannot
be transformed via (2) to exact body diagonality. All one can do is to maximize the

sum of the squared entries on the body diagonal:

max
s

∑

i=1

C2i; :::; i: (3)

Since the total sum is invariant under the transformation (2), this will simultane-

ously minimize the o�-diagonal sum of squares, hence body diagonal shape is ap-

proached as close as possible. An algorithm for maximizing the body diagonality

of three-way cores has been proposed by Kiers (1992). The whole approach ap-

plies to square N -way cores of order (s; : : : ; s) only. An N -way PCA model with all
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o�-diagonal core elements being zero corresponds to the N -way PARAllel FACtors

(PARAFAC) model (Harshman, 1970) and the CANonical DECOMPosition (CAN-

DECOMP) model (Carroll and Chang, 1970), with the factors being constrained to

orthogonality. The term degree of diagonality refers to the ratio between the sum

of squares of the diagonal elements and the total sum of squares of the core array.

According to the statements above, this degree has values between zero and one

(exact body diagonality), and it may serve to compare the diagonality structure of

cores with di�erent total sum of squares.

A weaker concept of diagonality refers to slices of the core array along one �xed,

say the N th, mode. In order to give sense to the concept of slice diagonality, the

(N − 1)-dimensional slices of the core have to be square arrays, i.e. the core has to
have the order (s; : : : ; s; sN ). For N = 3, the slices are square matrices then, but the

entire array need not be square. For slice-wise diagonal cores, the N -way PCA model

reduces to a PARAFAC model again, but now with factors that are not necessarily

independent. An algorithm for slice-wise diagonalization of 3-way arrays has been

proposed by Kroonenberg (1983). The goal function to be maximized now becomes

max

sN
∑

j=1

s
∑

i=1

C2i; :::; i; j: (4)

In analogy with diagonality, the degree of slice-wise diagonality refers to the ratio

between the sum of squared slice-wise diagonal elements and the total sum of squared

core elements.

Both of the diagonalization approaches focus on optimizing pre-de�ned elements

in the core array, hence, it is implicitly assumed that the data are well described

by these respective factor combinations. Possibly signi�cant o�-diagonal entries are

not maximized. The variance-of-squares measure, recently introduced in Henrion and

Andersson (1999), allows to detect signi�cant factor combinations without using any

a priori assumption on the structure like diagonality. This more 
exible approach to

core simpli�cation usually leads to a smaller number of signi�cant core entries than

with diagonalization procedures. Of course, an interpretation in terms of PARAFAC,

as given above, fails then, since the signi�cant elements can be located anywhere in

the core. The criterion to be maximized measures the variance of the squared core

entries:

max

s1
∑

i1=1

· · ·
sN
∑

iN=1

(C2i1 ; :::; iN −
�C)2; (5)

�C =
N
∏

i=1

s−1i

s1
∑

i1=1

· · ·
sN
∑

iN=1

C2i1 ; :::; iN : (6)

In contrast to any measures of diagonality the variance-of-squares is de�ned for cores

that are non-square. To summarize, Fig. 1 depicts what elements are used during op-

timization of the three goal functions. Fig. 1a illustrates two elements on a body

diagonal of an array of order (2,2,2). Accordingly, Fig. 1b shows the diagonal ele-

ments taken slice-wise in the third way. In Fig. 1c the variance-of-squares expression

is indicated by letting all entries in the core array contribute to the goal function.
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Fig. 1. The di�erences between the three discussed goal functions for a core array of order (2,2,2) are

depicted (a) Maximizing sum of squares of the body diagonal elements, (b) maximizing sum of squares

of the slice-wise diagonal elements and (c) maximizing the variance-of-squares using all elements in

the core.

In accordance with the diagonality criteria, it would be desirable to de�ne a de-

gree for the variance-of-squares criterion in order to compare di�erent cores. For

the diagonality criteria, the maximum possible value which could be obtained within

a class of cores of common order and having equal sum of squares is the total

sum of squares. Since this value and, hence, the mean value in (6), are invariant

under the transformation (2), it is easy to show that the theoretical maximum of

the variance-of-squares criterion is attained in the situation where all core elements

but one are zero. Then, the non-zero element has to account for the total sum of

squares of the core, which is the constant p �C, where p=
∏N
i=1 si refers to the total

number of elements (cf. (6)). Therefore, the variance of squares for such a core

equals (p �C − �C)2 (deviation from mean of the non-zero element) plus (p− 1)(0−
�C)2 (deviation from mean of the p − 1 zero elements) which gives p(p − 1) �C2.
In general, a given core cannot be transformed into one with a single non-zero

element only, hence this situation is the theoretical limit which the actual transfor-

mation may be related to. Due to the invariance of the mean value �C, this limit can

be calculated from any given core. Now, the degree of variance-of-squares is de-

�ned as the ratio between the actual variance-of-squares and the theoretical maximum

p(p− 1) �C2.

3. An algorithm for optimal orthogonal core transformations

In this section, we develop a general algorithm for �nding an optimal orthonor-

mal N -way core transformation according to a speci�c criterion. In particular, the

above-described variance-of-squares maximization, and also the classical body and

slicewise diagonalization are included. Since all these transformations can be si-

multaneously realized by a procedure with common basic structure, we establish

a general-purpose algorithm �rst, which applies to the optimization of any (di�er-

entiable) criterion of orthonormal matrices and not just to the three special cases

mentioned above in the context of core transformations.
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3.1. Proposal for a general-purpose algorithm

Denote by O(n) the manifold of orthogonal matrices of order (n; n) and consider

the optimization problem

(P) max{v(P1; : : : ; PN )|Pi ∈O(ni); i = 1; : : : ; N};

where v :M(n1) × · · · ×M(nN ) → R is a di�erentiable function and M(n) refers

to the space of matrices of order (n; n). The orthogonality constraints above may

be written as PTi Pi = Ini (i = 1; : : : ; N ). Denoting by Ai (i = 1; : : : ; N ) any multiplier

matrix, we de�ne the Lagrangian function

f :M(n1)× · · · ×M(nN )×M(n1)× · · · ×M(nN )→ R

via

f(P1; : : : ; PN ; A1; : : : ; AN ) = v(P1; : : : ; PN )−
N
∑

i=1

tr [Ai(P
T
i Pi − Ini)]:

Now, since the orthogonality constraints de�ne a regular surface in M(n1) × · · · ×
M(nN ), it follows that, if ( �P1; : : : ; �PN ) is a solution of the Problem (P), then there

exist symmetric multiplier matrices �i (i = 1; : : : ; N ) (see Magnus and Neudecker,

1988), such that ( �P1; : : : ; �PN ; �1; : : : ; �N ) is a stationary point of f (i.e. the derivative

of f vanishes at that point).

Writing down the stationary conditions gives

@v

@Pi
( �P1; : : : ; �PN )− 2 �Pi�i = 0 (i = 1; : : : ; N ); (7)

�P
T

i
�Pi − Ini = 0 (i = 1; : : : ; N ): (8)

Here, we made use of the convention that @v=@Pi is a matrix of same order as Pi with

general entry (@v=@Pi)kl=@v=@pkl, where the last expression refers to the usual partial

derivative of v with respect to the general entry pkl of Pi. This special arrangement

of partial derivatives is useful in the context of matrix calculus. Later, we shall also

work with the conventional de�nition of the partial gradient ∇Piv considered as a

linear function assigning to each Q ∈ O(ni) the scalar

〈∇Piv; Q〉=
∑

k;l

@v

@pkl
qkl:

From here, the following relation between the two notions is obvious:

〈∇Piv; Q〉= tr

[

@v

@Pi
Q T

]

: (9)

Of course, (8) means nothing else than the required orthogonality of �P1; : : : ; �PN , so

the interesting part is contained in (7). Multiplying the ith condition of this set from

the left by �PTi , provides (by orthogonality)

�P
T

i

@v

@Pi
( �P1; : : : ; �PN ) = 2�i (i = 1; : : : ; N ):
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From these equations it follows that for any stationary solution ( �P1; : : : ; �PN ) of the

problem (P) the matrices on the left-hand side have to be symmetric. Conversely, if

we �nd orthogonal �Pi, such that the mentioned matrices are symmetric, then we have

obtained a stationary solution of problem (P): This follows after left-multiplication

of the above relation by �Pi leading back to (7) and (8) due to orthogonality of the
�Pi: Summarizing, ( �P1; : : : ; �PN ) is a stationary solution of problem (P) if and only if

the matrices

�P
T

i

@v

@Pi
( �P1; : : : ; �PN ) (10)

are symmetric for i=1; : : : ; N: Therefore, it is desirable to have an algorithm iterating

on orthogonal Pi, thereby ‘symmetrifying’ the above matrices. This is realized by the

following algorithm:

Algorithm 1.

1. Set P0i :=Ini (i = 1; : : : ; N ) and k:=0

2. Set k:=k + 1 and i:=0

3. Set i:=i + 1 and compute an orthogonal matrix P ki :=U
TV T, such that

U

[

@v

@Pi
(P k1 ; : : : ; P

k
i−1; P

k−1
i ; : : : ; P k−1N )

]

V = diag[d1; : : : ; dni ];

where U; V ∈ O(ni); d1 ≥ · · · ≥ dni ≥ 0 (i.e. U and V provide a singular value

decomposition of the derivative matrix). If i¡N , then goto 3.

4. If v(P k1 ; : : : ; P
k
N ) signi�cantly di�ers from v(P k−11 ; : : : ; P k−1N ), then goto 2.

5. Stop

The motivation behind step 3 is that it provides a symmetri�cation in the sense

of (10). Indeed, one has

P kTi

[

@v

@Pi
(P k1 ; : : : ; P

k
i−1; P

k−1
i ; : : : ; P k−1N )

]

= V diag[d1; : : : ; dni ]V
T = S

where S is a symmetric matrix.

Note that the proposed method does not depend on the concrete structure of the

function v to be maximized in problem (P), therefore it applies as a general-purpose

algorithm for maximizing (or minimizing after passing to −v) a di�erentiable func-
tion of N orthogonal matrices of possibly di�ering orders.

3.2. Application to core transformations

Now, we are going to specialize the developed general algorithm to the case of

core transformations. All one has to do, according to the preceding section, is to

calculate the partial derivatives @v=@Pi of the corresponding criteria v with respect

to the transformation matrices Pi. This turns out to be rather di�cult, however,

when evaluating at general current iterates whereas it is quite easy to compute at

identity matrices. In the following, we shall develop an appropriate modi�cation
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of the algorithm described above taking into account the speci�c structure of core

transformations.

It is important to note that, in the context of core transformation, the criteria

depend on the transformation matrices in a composite way: the criterion is a function

of the core array which in turn depends on the transformation matrices. Given a core

array C and orthonormal matrices P1; : : : ; PN , we denote the core array transformed

according to (2) by

T (P1; : : : ; PN ;C) = (P
T
1 ⊗· · ·⊗ P

T
N )vecC: (11)

Now, the criterion as a function of transformation matrices writes as a composition

v(P1; : : : ; PN ) = ṽ(T (P1; : : : ; PN ;C
0));

where C0 is the original core array and ṽ denotes the criterion as a function of the

core array. For the three transformations to be considered here, one has

variance of squares ṽ1(C) =

s1
∑

i1=1

· · ·
sN
∑

iN=1

(C2i1 ;:::; iN −
�C)2; (12)

body diagonality ṽ2(C) =
s

∑

i=1

C2i;:::; i; (13)

slice diagonality ṽ3(C) =

sN
∑

j=1

s
∑

i=1

C2i;:::;i; j: (14)

Let us consider the very �rst step (k = 1; i = 1) of the algorithm above: The initial

transformation matrices are identity matrices and in step 3 one has to compute the

partial derivative

@v

@P1
(Is1 ; : : : ; IsN ) =

@ṽ

@C
(C0)

@T

@P1
(Is1 ; : : : ; IsN ;C

0) (15)

according to the chain rule. The right-hand side matrices are easily calculated as will

be seen later on. First note, however, that in the following iteration (k =1; i=2) of

the algorithm, the partial derivative is no longer taken at a complete set of identity

matrices but at (P11 ; Is2 ; : : : ; IsN ), where P
1
1 is the current iterate obtained in step 3

of the previous iteration. So, in the course of iterations, the convenient possibility

of evaluating the partial derivatives at identity matrices gets lost. Yet, by a simple

modi�cation, this di�culty may be overcome. Let us illustrate this for the second

iteration: De�ne a function

v∗(P1; : : : ; PN ):=v(P
1
1 P1; P2; : : : ; PN ):

Obviously, the maximization of v∗ is equivalent to the maximization of v, since any

solution of the one criterion is immediately transformed into a solution of the other.

Therefore, instead of continuing the maximization of v as proposed in the original

algorithm (with k = 1; i = 2), one may restart the whole algorithm at the beginning,

but now maximizing v∗ and iterating on P2 instead. Starting again with identity



C.A. Andersson, R. Henrion / Computational Statistics & Data Analysis 31 (1999) 255–278 263

matrices means to keep the current value of the old criterion, since v∗(Is1 ; : : : ; IsN ) =

v(P11 ; Is2 ; : : : ; IsN ). From the de�nitions, one gets

v∗(P1; : : : ; PN ) = ṽ(T (P
1
1 P1; : : : ; PN ;C

0)) = ṽ(T (P1; : : : ; PN ;C
1));

where C1 = T (P
1
1 ; Is2 ; : : : ; IsN ;C

0) is the updated core array after applying the trans-

formation matrices P11 ; Is2 ; : : : ; IsN to the original core C
0. In order to apply step 3 of

the algorithm, one has to calculate now the partial derivative @v∗=@P2 at the identity

matrices, so – again by the chain rule – it results

@v∗

@P2
(Is1 ; : : : ; IsN ) =

@ṽ

@C
(C1)

@T

@P2
(Is1 ; : : : ; IsN ;C

1):

Now it is clear how to proceed: calculate the second transformation matrix P21 as to

symmetrize the matrix P2T1 (@v
∗=@P2)(Is1 ; : : : ; IsN ) (compare step 3 of the algorithm),

update the core array by C2 = T (Is1 ; P
2
1 ; Is3 ; : : : ; IsN ;C

1), and, in the next iteration

evaluate the partial derivative according to

@ṽ

@C
(C2)

@T

@P3
(Is1 ; : : : ; IsN ;C

2)

(without explicit reference to a newly de�ned v∗∗). In this way, one gets a sequence

of core arrays maximizing the considered criterion.

Summarizing, the following algorithm for optimal core transformation with respect

to one of the three criteria ṽ introduced above is proposed:

Algorithm 2:

1. Set C new:=C0 (=original core array), Pnewj :=Isj (j = 1; : : : ; N ) and k:=0

2. Set k:=k + 1 and j:=0

3. Set j:=j+ 1; C old:=C new; P oldj :=P newj and compute an orthonormal matrix P:=

U TV T such that

U

[

@ṽ

@C
(C old)

@T

@Pj
(Is1 ; : : : ; IsN ;C

old)

]

V = diag [d1; : : : ; dni ];

where U; V ∈ O(ni); d1 ≥ · · · ≥ dni ≥ 0.
Set C new:=T (Is1 ; : : : ; Isj−1 ; P; Isj+1 ; : : : ; IsN ;C

old) and Pnewj :=Poldj P. If j¡N , then

goto 3.

4. If ṽ(C new) signi�cantly di�ers from ṽ(Cold), then goto 2.

5. Stop

The transformation matrices, leading from the original core array C0 to the �nal

core array C new are given by Pnewj , i.e. Cnew = T (Pnew1 ; : : : ; PnewN ;C0). Step 3 is per-

formed by singular-value decomposition as in Algorithm 1, so it remains to compute

the matrix in brackets. The general element of the second factor in (15), which is

common to all procedures, is obtained as
[

@Ti1 ;:::;iN
@Pj

(Is1 ; : : : ; IsN ;C
old)

]

k;l

=

{

Coldi1 ;:::;ij−1 ;k;ij+1 ;:::;iN l= ij;

0 l 6= ij:
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The general element of the �rst factor calculates for the three criteria according to
[

@ṽ1

@C
(Cold)

]

i1 ;:::;iN

=4(C2 oldi1 ;:::;iN
− �C)Coldi1 ;:::;iN ;

[

@ṽ2

@C
(Cold)

]

i1 ;:::;iN

=

{

2Coldi1 ;:::;i1 i1 = · · ·= iN ;
0 else

[

@ṽ3

@C
(Cold)

]

i1 ;:::;iN

=

{

2Coldi1 ;:::;i1 ;iN i1 = · · ·= iN−1;
0 else:

Now, the expressions in brackets in step 3 become (by multiplication of the corre-

sponding factors) for the three di�erent methods

[ ]1k;l = 4

s1
∑

i1=1

· · ·

sj−1
∑

ij−1=1

sj+1
∑

ij+1=1

sN
∑

iN=1

(C2 oldi1 ;:::;ij−1 ;l;ij+1 ;:::;iN
− �C)Coldi1 ;:::;ij−1 ;l;ij+1 ;:::;iNC

old
i1 ;:::;ij−1 ;k;ij+1 ;:::;iN

;

[ ]2k;l = 2C
old
l;:::;l · C

old
l;:::;l;k;l;:::;l (k at position j);

[ ]3k;l =







2
∑sN

iN=1
Coldl;:::;l;iN · C

old
l;:::;l;k;l;:::;l;iN

(k at position j) if j¡N;

2
∑s

i=1
Coldi;:::;i;l · C

old
i;:::;i;k if j = N:

It is interesting to note that the matrix [ ]3k;l is automatically symmetric for j = N .

Henceforth, the slice-wise diagonality remains una�ected by rotation for j = N , and

with regard to algorithmic e�ciency this last inner iteration should be omitted from

the optimization scheme.

4. Validation of the algorithm

A large quantity of well-characterized core arrays have been simulated for the pur-

pose of assessing the robustness of the proposed algorithm with respect to �nding

global, rather than local, optima. The core arrays have been synthesized especially

for investigating the ability of the algorithm to �nd the global optima of the three

discussed goal functions; variance-of-squares, diagonality and slice-wise diagonality.

The amount and features of cores required for such an analysis can only be provided

by synthesis.

4.1. Experimental

A number of 120 core arrays of dimensions (4,4,4) with random elements in the

range −100 to +100 were synthesized. Each of the 120 synthesized cores were used
to establish a class containing 50 core arrays by random orthonormal transformations

of the same synthesized core array as described by (2). This ensures that all 50

core arrays within one class can be obtained from each other by an orthonormal

transformation, and they are equal in this sense. By comparing the values of the 50

optimized measures within each class, an estimate can be made towards the ability
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of the algorithm to locate the global optimum. Rotated cores within each class have

the same optimal value with regard to the three investigated measures. However,

preliminary calculations on 80 simulated cores showed that for 11 core arrays the

optimal value of the goal function was not found in approx. 10% of the cases.

Thus, to enhance the probability of locating the global optimum, the algorithm was

restarted 5 times with each core using random initial orthonormal rotation matrices.

Additional restarts were performed until the two largest values of the goal function

di�ered less than 1%. This scheme was used throughout the calculations and appears

to be a feasible approach to the problem of non-global optima.

Computations were performed on a DELL 200 MHz Pentium Pro running MAT-

LAB 5.1.0.421 under Windows NT 4.0. The MATLAB built-in function rand() was

used for the purpose of generating random numbers.

4.2. Results

The results from applying the proposed algorithm to the synthesized cores are

depicted in Fig. 2a–c. For each class two groups of core arrays are available; the

Fig. 2. Summary of the 120 classes each containing 50 cores derived from the same synthesized core

array by random orthonormal transformations. The �gure depicts the distribution of un-optimized and

optimized goal function values for (a) variance-of-squares, (b) body diagonality and (c) slice-wise

diagonality. The vertical line indicates the range from the minimum value to the highest value of the

goal function. The dots indicate the medians of the two sets. See Section 4.2 for a detailed discussion.
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Fig. 2. Continued.
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50 un-optimized core arrays and their optimized equivalents. The di�erences in the

goal function values of the two groups are illustrated in Fig. 2a–c. For each distri-

bution a vertical line connects the lowest observed value with the highest observed

value and serves to illustrate the range of observations. The dot on each verti-

cal line depicts the median of the observations. The goal function values for the

un-optimized core arrays are, as expected, lower than the values of the same opti-

mized core arrays. This is seen as a clear-cut separation between the two groups;

the goal function values of the un-optimized core arrays are clearly lower and more

spread than the goal function values of the core upon maximization. The function

values upon optimization are in most cases so similar that there is no di�erence

between the lowest and the highest of the returned goal function values. The gain

of optimization is illustrated by the large di�erences between the respective mea-

sures before and after applying the algorithm. In addition, there is no overlap of

the highest values of un-optimized cores with the lowest values of optimized cores,

thus, all cores have gained in goal function value. Fig. 2a illustrates the degree of

variance-of-squares before and after optimization. There generally is a tri-fold gain

for this measure, providing a signi�cant gain in simplicity for all classes. Within

some classes, the optimal variance-of-squares core arrays obtained by the algorithm

di�er signi�cantly in function values. E.g., for class no. 11 at least one of the

returned cores have a suboptimal function value at approx. 11%, whereas the me-

dian clearly shows that the large part of the estimated optima are equal in value

at approx. 12.5%. An important observation is that for all classes the median is

similar to the highest value, this indicating, that by applying the algorithm several

times a good estimate on the global optimum is found as the highest value. Fig.

2b represents the parameters for the optimization of the body diagonality. For the

body diagonality version of the algorithm, the ranges within classes of the calcu-

lated optima are quite small. This observation con�rms what was apparent during

iterations; the optimal degrees of body diagonality within classes were more similar

than for the values for variance-of-squares. The median of the distributions typically

increase 8 times by optimization. Fig. 2c depicts the parameters for the optimiza-

tion of slice-wise diagonality. The calculated optima are very close within classes,

hence the algorithm for slice-wise diagonalization is slightly more stable in provid-

ing the global optima. This behaviour may be explained as follows: since there is

no transformation matrix for the last mode, there is one less derivative matrix to

return a non-global optimum and the algorithm is less prone to obtain a suboptimal

rotation.

5. A three-way PCA of 
uorometric measurements of thick juice

To exemplify the principle of maximizing the variance-of-squares and the use of

the algorithm described in Section 3, we will apply the method to a core array

derived from 
uorometric measurements. To keep the focus on the proposed method

we will restrict ourselves to discuss solely the core array and leave out detailed

chemical interpretation.
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In northern Europe white crystalline suger is produced from sugar beets, i.e. Beta

Vulgaris. The process is extremely complex and many of the unit processes involve

recycled streams, see Larsson (1989). At di�erent stages in the production, colour is

formed due to combined e�ects of pH, temperature and the natural presence of colour

precursors, polyphenolic oxidases, phenolic amino acids, carbonylic components and

amino-N. The colour is a quality parameter which, in part, has in
uence on the

classi�cation of the �nal crystalline sugar product. From an economical standpoint

it is therefore of great importance to be able to automatically control the operating

conditions to give the whitest possible sugar and the most uniform product. Among

the many possible intermediary products thick juice was chosen as a potential in-

dicator of the degree of colouration in the �nal sugar. Thick juice is comparable

in colour and viscosity to syrup. Spectro
uorometry has been selected for screening

due to its sensitivity towards phenolic compounds and, to some extent, amino acids.

See NHrgaard (1995) for a discussion of the suitability of spectro
uorometry as a

screening method in the sugar process.

5.1. Experimental

From the 1994 production period, 15 thick juice samples were chosen. Each sample

was separated into 28 fractions in a low-pressure liquid chromatography (LPLC)

system. For each fraction, the 
uorescence intensity for six combinations of excitation

and emission wavelengths have been measured, thereby yielding a three-way array

of order (15; 28; 6) corresponding to (samples, fraction, �lter combination). Since

the sensitivity and noise levels are equal for the measured �lter combinations, it

was chosen not to scale the data prior to modelling. However, due to the signi�cant

di�erences in levels of the intensities measured over the �lter combinations data were

centred over the latter mode.

5.2. Results

To determine the correct dimensionality of the model, a number of three-way PCA

models were calculated and the �t to the data was evaluated for each model. The

dimensions ranged from one to four factors in all modes, thus, a total of 37 valid

models were calculated. It applies that not all combinations of 1–4 factors are valid

since the product of the two smallest dimensions of the core must be equal to, or

greater than, the largest dimension. E.g., valid dimensions are (1; 2; 2) and (2; 4; 2),

whereas (1; 1; 2) and (1; 1; 4) are not. The dimensionality of the model is found under

consideration of parsimony, and the chosen model must describe data well with as

little complexity as possible since this minimizes the risk of over�t. In order to

identify the model that is optimal in this sense, the 37 models were arranged in 13

groups according to the number of parameters in the core. For each group of cores

with equal number of elements, the model explaining the highest amount of variation

in the data was identi�ed. The number of core elements is of direct interest for the

analyst, since the higher the number of core elements, the more factor combinations
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Fig. 3. A total of 37 three-way Tucker models of speci�ed dimensions are calculated and each model

is grouped according to the number of elements in the core. For each group the maximum degree of

�t is plotted as a function of the number of core elements in the group. From the plot it is seen that

the best model with 32 core elements explains 79.0% of the variation, see Section 5.2.

must be included in analysis and interpretation. One could undertake a view of model

complexity in terms of the total number of parameters rather than just the number

of parameters in the core. However, the complexity of the systematic behaviour of

data is re
ected by the dimensions of the core since the dimensions directly relate

to the number of latent phenomenon in data. Thus, it is chosen to weigh the �t of

the model against the complexity in terms of number of factors.

In Fig. 3 the highest explained variation in each of the 13 groups is plotted as

a function of the number of core elements in the group. As indicated by the em-

phasized points, two groups are interesting; models having 32 and 48 core elements.

Both these models provide a close �t to the data with a relatively low number of

parameters in the core. When going from 32 core elements to 48, the explained

variation increases merely from 79:0% to 81:1%. Thus, in order to make the inter-

pretation manageable, the array with 32 elements is chosen for further analysis. The

model with the highest explained variation in this group of models was found to

have dimensions (4,4,2) indicating that four principal patterns prevail in the sample

and fraction modes whereas two principal trends su�ce to describe the variation

of the �lter combinations. The core array of the initial (i.e., un-rotated) model is
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depicted by C raw:

C raw =









3256 −2901 620 183

1986 1921 16 1601

742 735 949 −940
−609 184 1168 548

∣

∣

∣

∣

∣

∣

∣

∣

2702 2270 −277 −869
−1025 951 1632 152

−329 67 −1130 315

232 249 30 −580









:

Bearing in mind that the squared value of any core element is proportional to the

variation explained by the respective factor combination, inspection of C raw reveals

that there is no clear threshold allowing for a simple distinction between signi�cant

and insigni�cant core elements. This is a common problem when interpreting larger

core arrays. Because the analyst cannot pin-point a few signi�cant combinations of

factors, interpretation may be rendered impossible. The variance-of-squares of C raw

is 2:22 × 1014 and the degree of variance-of-squares is 7:73%. Application of the
algorithm described in Section 3 for optimizing variance-of-squares rotates C raw into

Cvos by orthonormal transformations.

Cvos =









4486 110 −16 −9
301 2644 496 −1215
222 −75 −1249 662

39 −414 569 1649

∣

∣

∣

∣

∣

∣

∣

∣

129 3509 −198 373

−1319 −605 833 −252
37 −537 −3 −609
274 −45 −2009 −324









:

The variance-of-squares of Cvos is found to be 5:45× 1014 which is 2.5 times higher
than before rotation. With a sum of squared residuals at 1:443820401×107 the �t of
the two models is veri�ed to remain una�ected by the orthonormal transformation.

In contrast to C raw, the rotated core, Cvos, directs the analyst to a few signi�cant

combinations of factors. This is clearly illustrated in Fig. 4 where the squared value

of each of the 32 elements is plotted against the respective ranking (solid lines).

The squares of the elements level out slightly below 2 × 106 after the �fth ele-
ment for the rotated core. Thus, the signi�cant variation in data is accounted for by

interpreting the factors represented by the �ve largest squared core elements. The

sum of squares of these �ve squared elements is 4:62 × 107, whereas the sum of

squares of the �ve largest elements of the un-rotated core amounts to 3:54× 107 as
seen from the curves representing the cumulated values (dashed lines). The largest

squared core element of the rotated core (≈ 2 × 107) is approx. twice as high as
the largest squared element of the unrotated core (≈ 1× 107), thus explaining twice
the variation in the data. For comparison, a number of 9 core elements would have

to be included in the interpretation of the un-rotated core to account for the same

amount of variation.

As no body diagonal is de�ned for the (4,4,2) core array under investigation, the

core cannot be optimized with respect to diagonality. For the sake of comparison

and for proving the functionality of the algorithm, the core array has been optimized

with respect to slice-wise diagonality over the last mode. The resulting core, Cswdia,

is found to have a sum of squared slice diagonals of 3:80 × 107 corresponding to
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Fig. 4. Squared values of the 32 elements in the unrotated core and the rotated core are plotted against

their ranking (solid lines). As expected, the rotated core has fewer and more signi�cant core elements

than does the unrotated core array. By following the course of the cummulated curves (dashed lines) it

is concluded that for any given number of factor combinations the rotated core captures a signi�cantly

higher amount of variation of the data.

a degree of 69:8%:

Cswdia =









4252 −762 −8 554

59 3179 −191 −224
−42 −628 1619 −561
283 −54 363 1365

∣

∣

∣

∣

∣

∣

∣

∣

1362 2213 −356 −1751
−1618 132 1217 773

321 −303 −1533 −489
697 622 671 −1049









:

According to Cswdia the core can be diagonalized to some extent, albeit, not yielding

few signi�cant elements, although the diagonalization has provided the analyst with

a core that is a little simpler than the initial core array, but not as simple as the core

array that is optimal in a variance-of-squares sense.

6. Convergence properties of the algorithm

In this section, we study convergence properties of Algorithm 1 presented in

Section 3.1. First, we are going to show that the sequence of iterates generated
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by this algorithm has monotonically nondecreasing values of the criterion to be

maximized. As a preparatory step, we need the following lemma:

Lemma 1. With a matrix A of order (n; n) associate the optimization problem

max{tr PA |P ∈ O(n)}: (16)

Then; the set of (global) solutions to (16) is given by

GS = {P ∈ O(n) |P = VU; (U; V ) ∈ SV (A)};

where

SV (A) = {(U; V ) ∈ O(n)× O(n)|UAV = D; D is diagonal and nonnegative}

is the set of pairs of orthogonal matrices yielding an ‘unordered’ singular-

value decomposition of A.

Proof. First note that SV (A) consists of all pairs of orthogonal matrices providing

a singular-value decomposition (in arbitrary order of singular values) of A. Now,

writing down the �rst-order optimality conditions of (16), one veri�es (similar to

Section 3.1) the set of stationary solutions of this problem as being

SS = {P ∈ O(n) |PA is symmetric}:

Denote by SEV (B) and SSV (B) the sum of eigenvalues and singular-values, respec-

tively, of a symmetric matrix B. Then,

tr PA= SEV (PA)6SSV (PA) = SSV (A) = trQA ∀(P;Q) ∈ SS × GS (17)

holds. Here, the �rst and second equality are obvious (recall the orthogonality of

P), the inequality follows from the fact that the singular values of a symmetric

matrix coincide with their absolute eigenvalues, and the last equality comes from the

de�nition of GS:

trQA= tr VUAVV T = tr VDV T = trD = SSV (A);

due to the orthogonality of V and to D being a diagonal matrix of all singular values

of A. Hence, the elements of GS realize a value of goal function which is not less

than the value of the goal function of any element in SS, which in turn, being the set

of stationary solutions to (16), contains the global solutions to (16). In conclusion,

all elements of GS are global solutions. If, on the other hand, P is a global solution

to (16), then tr PA¿trQA, where Q ∈ GS is selected arbitrarily (a singular value
decomposition of A always exists). As a global solution, P is a stationary solution as

well, hence, P ∈ SS and SEV (PA) = SSV (PA) due to (17). Now, for the symmetric
(due to P ∈ SS) matrix PA, there exists some V ∈ O(n) such that V TPAV = D,

where D is a nonnegative (by SEV (PA)= SSV (PA)) diagonal matrix. Consequently,

D contains the singular values of PA and, hence, those of A. De�ning U :=V TP, it

follows that P = VU and (U; V ) ∈ SV (A). This means P ∈ GS, hence the set of
global solutions to (16) coincides with GS as was to be shown.

Corollary 1. The choice of P ki in step 3 of Algorithm 1 corresponds to a selection

P ki ∈ argmax{
〈

∇Piv(P
k
1 ; : : : ; P

k
i−1; P

k−1
i ; : : : ; P k−1N ); Q

〉

|Q ∈ O(ni)}:
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Proof. By de�nition of step 3 of Algorithm 1 and according to Lemma 1, one has

P ki ∈ argmax

{

trQT
[

@v

@Pi
(P k1 ; : : : ; P

k
i−1; P

k−1
i ; : : : ; P k−1N )

]

|Q ∈ O(ni)

}

:

Now the assertion follows from (9).

Now, we are able to prove our �rst result on monotone convergence of func-

tional values in Algorithm 1. To this aim, we refer to the criterion v as being par-

tially convex, if it is convex in each variable Pi while the remaining ones are kept

�xed. Of course, each convex v is partially convex, but the converse is not true.

For instance, the function f(x; y) = xy is partially convex (actually linear in both

variables separately) but fails to be convex. We also recall that convexity of a dif-

ferentiable function f implies the relation f(y) − f(x)¿ 〈∇f(x); y − x〉 for all x
and y.

Lemma 2. If the criterion v is partially convex; then the sequence v(P k1 ; : : : ; P
k
N ) is

nondecreasing with k.

Proof. One has

v(P k1 ; : : : ; P
k
N )− v(P

k−1
1 ; : : : ; P k−1N )

=
N
∑

i=1

v(P k1 ; : : : ; P
k
i−1; P

k
i ; P

k−1
i+1 ; : : : ; P

k−1
N )

−v(P k1 ; : : : ; P
k
i−1; P

k−1
i ; P k−1i+1 ; : : : ; P

k−1
N )

≥
N
∑

i=1

〈

∇Piv(P
k
1 ; : : : ; P

k
i−1; P

k−1
i ; P k−1i+1 ; : : : ; P

k−1
N ); P ki − P

k−1
i

〉

≥ 0:

Here, the �rst inequality relies on v being di�erentiable and partially convex, while

the second inequality results from Corollary 1 due to P k−1i ∈ O(ni).

For the three criteria v1; v2; v3 of core simplicity, introduced in Section 2, one has

vi = ṽi ◦ T , where T and the ṽi are de�ned by (11) and (12)–(14), respectively.

Obviously, the ṽi are convex functions (for ṽ1, this follows from the invariance of

the mean �C in (6) under arbitrary orthogonal transformation T ). On the other hand,

the transformation T is multilinear, i.e. linear in each variable while the remaining

ones are kept �xed. Consequently, the vi are partially convex as compositions of a

convex with a multilinear function. Furthermore, they are, of course, di�erentiable.

Then, Lemma 2 allows to formulate the following result:

Corollary 2. For the three criteria of core simplicity de�ned in Section 2;

Algorithm 1 generates a sequence of iterates with monotonically nondecreasing

values.
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Now, we turn to the convergence of iterates themselves. For the purpose of abbre-

viation, we put bold face characters for N -tuples of matrices, i.e., P = (P1; : : : ; PN ).

As a �rst immediate result, we have:

Lemma 3. If the sequence P k of iterates generated by Algorithm 1 converges to-

wards some P∗; and if the criterion v is continuously di�erentiable; then P∗ is a

stationary solution of Problem (P) introduced in Section 3:1.

Proof. Let i ≤ N be arbitrarily given. By the remarks following the de�nition of

Algorithm 1, one has that

P kTi

[

@v

@Pi
(P k1 ; : : : ; P

k
i−1; P

k−1
i ; : : : ; P k−1N )

]

is a symmetric matrix. Passing to the limit k →∞, the above expression converges
by the assumed continuous di�erentiability of v towards

P∗Ti

[

@v

@Pi
(P∗)

]

;

which, as a limit of symmetric matrices, is symmetric itself and, according to (10)

implies P∗ to be a stationary solution of Problem (P).

Hence, if the iterates converge, then their limit is a stationary point, as desired.

However, there is no guarantee for the sequence P k to converge at all. On the

other hand, since the P k belong to the compact set S:=O(n1) × · · · × O(nN ), there

must exist some convergent subsequence P kl →l P
∗ ∈ S. Unfortunately, Lemma 3

does not apply to this subsequence and one may not derive the usual convergence

result, stating that all accumulation points of the sequence of iterates are stationary

solutions. This will be possible after excluding some degeneracy: we shall call P ∈ S
a nondegenerate point of v, if the singular values of (@v=@Pi)(P) are pairwise distinct

and strictly positive for all i ≤ N: Then, we have:

Theorem 1. Let v be continuously di�erentiable and partially convex (as it holds

true for the three criteria of core simplicity de�ned in Section 2). Then each

nondegenerate accumulation point of the sequence P k generated by Algorithm 1 is

a stationary solution of problem (P) introduced in Section 3:1.

Proof. Denote by P∗ ∈ S any nondegenerate accumulation point of P k . The realiza-

tion of step 3 in Algorithm 1 means that P k+1 is de�ned by P k+1i =(U k+1
i )T(V k+1

i )T,

where U k+1
i ; V k+1

i ∈ O(ni) provide a singular-value decomposition

U k+1
i

[

@v

@Pi
(P k+11 ; : : : ; P k+1i−1 ; P

k
i ; : : : ; P

k
N )

]

V k+1
i = diag [d k+1i;1 ; : : : ; d

k+1
i;ni
];

with d k+1i;1 ≥ · · · ≥ d k+1i;ni
≥ 0 for i=1; : : : ; N . Since v was assumed to be continuously

di�erentiable, the derivative @v=@Pi is bounded on the compact set S for all i, hence
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so are its singular values. As a consequence, there exists a subsequence with

P kl →l P
∗; (U kl+1

i ; V kl+1
i ; diag[d kl+1i;1 ; : : : ; d kl+1i;ni

])

→l (U
∗∗

i ; V
∗∗

i ; diag[d
∗∗

i;1 ; : : : ; d
∗∗

i;ni
]):

By de�nition of P k+1i and by continuity of @v=@Pi, it follows that P
kl+1 →l P

∗∗,

where P∗∗i = (U
∗∗

i )
T(V ∗∗i )

T and

U ∗∗i
@v

@Pi
(P∗∗1 ; : : : ; P

∗∗

i−1; P
∗

i ; : : : ; P
∗

N )V
∗∗

i = diag[d∗∗i;1 ; : : : ; d
∗∗

i;ni
] (18)

with d∗∗i;1 ≥ · · · ≥ d
∗∗

i;ni
≥ 0 for i=1; : : : ; N . Furthermore, Lemma 2 along with the fact

that kl+1 ≥ kl+1 provide v(P
kl+1) ≥ v(P kl+1) ≥ v(P kl) and v(P∗) ≥ v(P∗∗) ≥ v(P∗),

after passing to the limit l→∞. It results that v(P∗) = v(P∗∗).
Next we de�ne the index set I to consist of those i ≤ N such that P∗i = U

T
i V

T
i ,

where Ui; Vi ∈ O(ni) provide any ‘unordered’ singular value decomposition

Ui
@v

@Pi
(P∗∗1 ; : : : ; P

∗∗

i−1; P
∗

i ; : : : ; P
∗

N )Vi = diag[di;1; : : : ; di; ni ];

with the di;j ≥ 0 in arbitrary order. Suppose that {1; : : : ; i′}⊆ I for some i′ ≤ N .

Then, by de�nition of I , one gets P∗1 = U
T
1 V

T
1 , where U1; V1 ∈O(n1) provide an

unordered singular value decomposition

U1
@v

@P1
(P∗1 ; : : : ; P

∗

N )V1 = diag[d1;1; : : : ; d1; n1];

which after using some permutation matrix �∈O(n1) turns into a conventional sin-

gular value decomposition

�U1
@v

@P1
(P∗1 ; : : : ; P

∗

N )V1�
T = diag[d1;1; : : : ; d1; n1];

with d1;1 ≥ · · · ≥ d1;ni . From (18) it follows that P∗∗1 = (U ∗∗1 )
T(V ∗∗1 )

T, where

U ∗∗1
@v

@P1
(P∗1 ; : : : ; P

∗

N )V
∗∗

1 = diag[d∗∗1;1; : : : ; d
∗∗

1;n1
]

provides another singular-value decomposition of the same derivative matrix. Now,

the assumption of nondegeneracy of the accumulation point P∗ yields the uniqueness

of the singular-value decomposition of (@v=@P1)(P
∗) (cf. Horn and Johnson, 1991,

pp. 147–148). In particular, U ∗∗1 =�U1 and V
∗∗

1 =V1�
T and, hence, P∗∗1 =U

T
1�

T�V T1 =

U T
1 V

T
1 = P

∗

1 . In case that i
′ ≥ 2, we proceed with the index 2 as before with the

index 1 in order to see that P∗2 = U
T
2 V

T
2 with some U2; V2 ∈ O(n2) which provide a

singular-value decomposition

�U2
@v

@P2
(P∗∗1 ; P

∗

2 ; : : : ; P
∗

N )V2�
T=diag[d2;1; : : : ; d2; n2]

=�U2
@v

@P2
(P∗1 ; : : : ; P

∗

N )V2�
T;

where again � is some permutation matrix, and the last equation comes from the

�rst one by using the identity P∗∗1 = P∗1 proved before. Noting that, by (18),

U ∗∗2
@v

@P2
(P∗∗1 ; P

∗

2 ; : : : ; P
∗

N )V
∗∗

2 = diag[d∗∗2;1; : : : ; d
∗∗

2;n2
] = U ∗∗2

@v

@P2
(P∗1 ; : : : ; P

∗

N )V
∗∗

2
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yields another singular value decomposition of the same derivative matrix on the

right-hand side, the nondegeneracy of P∗ implies P∗∗2 = P∗2 with the same argumen-

tation as given before for the index 1. Proceeding like that for all indices i ≤ i′,

thereby consecutively exploiting the previously obtained relations P∗j =P
∗∗

j for j¡ i,

one ends up at the following statement:

{1; : : : ; i′}⊆ I ⇒ P∗∗i = P∗i ∀i ≤ i′: (19)

Now suppose that I 6= {1; : : : ; N}. Denote by i∗ ≤ N the smallest index such that

i∗ 6∈ I . By de�nition of I , one has that P∗i∗ 6= U
TV T where U; V are arbitrary orthog-

onal matrices providing an ‘unordered’ singular-value decomposition of

@v

@Pi∗
(P∗∗1 ; : : : ; P

∗∗

i∗−1; P
∗

i∗ ; : : : ; P
∗

N ):

Then, Lemma 1 and (9) give (similar to the proof of Corollary 1)

P∗i∗ 6∈ argmax{〈∇Pi∗ v(P
∗∗

1 ; : : : ; P
∗∗

i∗−1; P
∗

i∗ ; : : : ; P
∗

N ); Q〉 |Q ∈ O(ni∗)}: (20)

On the other hand, a combination of (18), Lemma 1 and (9), implies for all i ≤ N ,

P∗∗i ∈ argmax{〈∇Piv(P
∗∗

1 ; : : : ; P
∗∗

i−1; P
∗

i ; : : : ; P
∗

N ); Q〉 |Q ∈ O(ni)}: (21)

Now, (20) together with (21) applied to the index i∗ leads to

〈∇Pi∗ v(P
∗∗

1 ; : : : ; P
∗∗

i∗−1; P
∗

i∗ ; : : : ; P
∗

N ); P
∗∗

i∗ − P
∗

i∗〉¿ 0 (22)

and

v(P∗∗)− v(P∗)

=
N
∑

i=1

v(P∗∗1 ; : : : ; P
∗∗

i−1; P
∗∗

i ; P
∗

i+1; : : : ; P
∗

N )− v(P
∗∗

1 ; : : : ; P
∗∗

i−1; P
∗

i ; P
∗

i+1; : : : ; P
∗

N )

≥
N
∑

i=1

〈∇Piv(P
∗∗

1 ; : : : ; P
∗∗

i−1; P
∗

i ; P
∗

i+1; : : : ; P
∗

N ); P
∗∗

i − P∗i 〉¿ 0;

where the �rst inequality relies on v being di�erentiable and partially convex as in

the proof of Lemma 2. All terms in the last sum are nonnegative in view of (21),

but at least the term with index i∗ is strictly positive according to (22), whence

the strict inequality. The last derivation, however, is in contradiction to the fact that

v(P∗∗) = v(P∗) which was proved above. Consequently, the assumption (following

(19)) was false and it holds that I = {1; : : : ; N}. As a result, for all i ≤ N the P∗i
may be written as products U T

i V
T
i where Ui; Vi ∈ O(ni) and

Ui
@v

@Pi
(P∗∗1 ; : : : ; P

∗∗

i−1; P
∗

i ; : : : ; P
∗

N )Vi = D = Ui
@v

@Pi
(P∗)Vi

with some diagonal matrix D, where the second equality relies on (19). Then,

P∗Ti
@v

@Pi
(P∗) = ViDV

T
i
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are symmetric matrices for all i ≤ N as required in the stationarity condition (10).

Hence, we have shown, that P∗ is a stationary solution of problem (P).

We note that the proof of Theorem 1 follows the typical patterns of conver-

gence proofs for algorithms in nonlinear optimization as developed, for instance, in

Zangwill (1969). The nondegeneracy condition in Theorem 1 may be supposed to

be satis�ed in ‘almost all’ problems since it expresses the typical situation of all

singular values of some matrix being distinct and strictly positive. Indeed, in all

examples we considered so far, the algorithm asymptotically reached a stationary

solution (characterized by (10)).
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