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Abstract This paper introduces the concept of critical objective size associated with a linear
program in order to provide operative point-based formulas (only involving the nominal
data, and not data in a neighborhood) for computing or estimating the calmness modulus
of the optimal set (argmin) mapping under uniqueness of nominal optimal solution and
perturbations of all coefficients. Our starting point is an upper bound on this modulus given
in Cánovas et al. (2015). In this paper we prove that this upper bound is attained if and only
if the norm of the objective function coefficient vector is less than or equal to the critical
objective size. This concept also allows us to obtain operative lower bounds on the calmness
modulus. We analyze in detail an illustrative example in order to explore some strategies
that can improve the referred upper and lower bounds.
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1 Introduction

Calmness property of multifunctions in relation to optimization has become an active
research area of increasing interest due to its repercussions in both theory and algorithms.
This paper tries to contribute to this subject in the paradigmatic framework of ordinary
linear programming under full perturbations by providing exact formulas or tight estima-
tions of the calmness modulus of the argmin mapping when the nominal optimal solution
is unique. We emphasize the operativeness of the given expressions or estimations as far as
they depend exclusively on the nominal data, not involving data in a neighborhood.

We consider the parametrized linear optimization problem

P (c, a, b) : minimize c′x
subject to a′

t x ≤ bt , t ∈ T := {1, 2, ..., m}, (1)

where x ∈ R
n is the vector of decision variables, and c ∈ R

n, a ≡ (at )t∈T ∈ (Rn)T ,

and b ≡ (bt )t∈T ∈ R
T are the problem’s data. All elements in R

n are regarded as column-
vectors and y′ denotes the transpose of y ∈ R

n.

Associated with the previous parametrized problem, we consider the optimal set
mapping, S : Rn × (Rn)T × R

T ⇒ R
n, given by

S (c, a, b) := {
x ∈ R

n | x is an optimal solution of P (c, a, b)
}
.

The parameter space Rn × (Rn)T × R
T is endowed with the norm

‖(c, a, b)‖ := max {‖c‖∗ , ‖(a, b)‖∞} , (2)

where R
n is equipped with an arbitrary norm, ‖·‖, with dual norm given by ‖u‖∗ =

max‖x‖≤1
∣∣u′x

∣∣ , and ‖(a, b)‖∞ := maxt∈T

∥∥∥
(
at

bt

)∥∥∥ , where

∥∥∥∥

(
at

bt

)∥∥∥∥ := max {‖at‖∗ , |bt |} . (3)

For the sake of simplicity, from now on we abbreviate our nominal parameter as p; i.e.,
p := (

c, a, b
) ∈ R

n × (
R

n
)T × R

T .

The Slater constraint qualification (SCQ) is said to hold at parameter
(
a, b

) ∈ (Rn)T ×R
T

if there exists x̂ ∈ R
n (called a Slater point) such that a′

t x̂ < bt for all t ∈ T .

Assumptions From now on, we consider a given p = (
c, a, b

) ∈ R
n × (Rn)T × R

T and
assume

• S (p) = {x} ,
• The SCQ holds at

(
a, b

)
.

(Observe that these assumptions easily imply c 	= 0n, where 0n denotes the zero-vector of
R

n.)
The starting point of this work is an upper bound on the calmness modulus of S provided

in [4, Theorem 4.2(i)] under uniqueness of nominal optimal solution. Following the goal of
computing the exact calmness modulus of S, we provide a quite tight lower bound, in the
sense that it coincides with the upper bound (and then, provides the exact modulus) in a
variety of situations. At this moment, we advance that one of these situations is characterized
in terms of the size (norm) of vector c in the objective function.
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Recall that a generic multifunction M : Y ⇒ X between metric spaces (with distances
denoted indistinctly by d) is said to be calm at (y, x) ∈ gphM (the graph of M) if there
exist a constant κ ≥ 0 and neighborhoods U of x and V of y such that

d (x,M (y)) ≤ κd (y, y) (4)

whenever x ∈ M (y) ∩ U and y ∈ V ; where, as usual, d (x,�) is defined as
inf {d (x, z) | z ∈ �} for � ⊂ R

n. It is well-known that the calmness of M at (y, x) is
equivalent to themetric subregularity ofM−1 at (x, y) (see, for instance, [8, Theorem 3H.3
and Exercise 3H.4]). Recall thatM−1 (given by y ∈ M−1 (x) ⇔ x ∈ M (y)) ismetrically
subregular at (x, y) if there exist a constant κ ≥ 0 and a (possibly smaller) neighborhood
U of x such that

d (x,M (y)) ≤ κd
(
y,M−1 (x)

)
, for all x ∈ U. (5)

The infimum of those κ ≥ 0 for which (4) –or (5)– holds (for some associated neighbor-
hoods) is called the calmness modulus ofM at (y, x) and it is denoted by clmM (y, x) .

More details about this and other variational properties can be traced out from the mono-
graphs [8, 14, 18, 21]; see also [9, 12, 15, 16] in relation to the calmness of constraint
systems in the context of canonical perturbations; where the calmness property is closely
connected with local error bounds. Other subdifferential approaches to calmness/local error
bounds can be found in [1, 11, 13, 17].

The structure of the paper is as follows. Section 2 provides the necessary notation and
preliminary results. Section 3 sharpens the referred [4, Theorem 4.2(i)] by showing that
this result can be confined to those KKT index sets (see Section 2) which are minimal with
respect to the inclusion order. Section 4 is devoted to obtain a lower bound on the calmness
modulus of the argmin mapping S which leads to the exact modulus when the objective
function coefficient vector is small enough. In Section 5 we introduce the so-called critical
objective size, providing the threshold for ‖c‖ under which an upper bound existing in the
literature becomes the exact calmness modulus. Section 6 is devoted to illustrate by means
of examples some strategies providing tighter estimations on the modulus. We finish the
paper with a section of conclusions.

2 Preliminaries

In this section we introduce some additional notation and preliminary results which are
needed later on. Given X ⊂ R

k, k ∈ N, we denote by convX and coneX the convex hull
and the conical convex hull of X, respectively. It is assumed that coneX always contains 0k ,
in particular cone(∅) = {0k}. If X is a subset of any topological space, intX, clX and bdX
stand, respectively, for the interior, the closure, and the boundary of X.

We denote by F : (Rn)T × R
T ⇒ R

n the feasible set mapping associated with problem
(1), which is given by

F (a, b) := {
x ∈ R

n | a′
t x ≤ bt , t ∈ T

}
, (a, b) ∈ (

R
n
)T × R

T .

In the case of finite linear systems (i.e., when T is finite), it is well-known that, for
a given a ≡ (at )t∈T , F(a, ·) is always calm at any point of its (polyhedral) graph as a
consequence of a classical result by Robinson [20]. In the context of canonical perturba-
tions (where perturbations fall on (c, b)), the same result ensures that mapping S(·, a, ·)
is always calm at any point of its graph, since the KKT conditions allow us to express
the graph of S(·, a, ·) as a finite union of polyhedral sets. This is no longer the case
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in the current framework of perturbations of all data (i.e., when a becomes a parameter
subject to perturbations). In relation to this last framework, [7, Theorem 5] asserts that
clmF

((
a, b

)
, x

) = (‖x‖ + 1) clmF (a, ·) (
b, x

)
at any

((
a, b

)
, x

) ∈ gphF and, accord-
ingly, F is always calm at any point of its graph. Again in the context of perturbations of
all data, assuming S (p) = {x} and combining [19, Theorems 1 and 2], [4, Theorem 4.1]
establishes a characterization for the calmness of the corresponding argmin mapping S in
the following terms: either the SCQ holds at

(
a, b

)
or F

(
a, b

)
is a singleton. In the next

paragraphs we detail the necessary background about calmness moduli.
Throughout the paper, we appeal to the set of active indices at x ∈ F (a, b) , denoted by

Ta,b (x) and defined as
Ta,b (x) := {

t ∈ T | a′
t x = bt

}
.

Associated with a given (p, x) ∈ gphS , we appeal to the following family of index
subsets associated with the Karush-Kuhn-Tucker (KKT) conditions (hereafter referred to as
KKT index sets)

Kp (x) =
{

D ⊂ Ta,b (x)

∣∣∣ |D| ≤ n and − c ∈ cone {at , t ∈ D}
}

,

where |D| stands for the cardinality ofD and condition |D| ≤ n comes from Caratheodory’s
Theorem. For anyD ∈ Kp (x)we consider the mappingLD : (Rn)T ×R

T ×(Rn)D×R
D ⇒

R
n given by

LD (a, b, u, d) := {
x ∈ R

n | a′
t x ≤ bt , t ∈ T ; u′

t x ≤ dt , t ∈ D
}
. (6)

Here, analogously to (3), we consider the norm

‖(a, b, u, d)‖∞ := max {‖at‖∗ , |bt | , ‖us‖∗ , |ds | : t ∈ T , s ∈ D} (7)

Observe that LD is the feasible set mapping associated with an enlarged system with |D|
new constraints, so that the existing theory for feasible set mappings may be applied to LD.

Also note that, for D ∈ Kp (x) and using the notation aD = (at )t∈D , bD = (
bt

)
t∈D

, the

set LD

(
a, b, −aD, −bD

)
is nothing else but the set of KKT points of P

(
c, a, b

)
having D

as the KKT index set.
For each D ∈ Kp (x) let us consider the convex function fD : Rn −→ R given by

fD (x) := max
{
a′

t x − bt , t ∈ T ; − a′
t x + bt , t ∈ D

}

= max
{
a′

t x − bt , t ∈ T \ D; ∣∣a′
t x − bt

∣∣ , t ∈ D
}
.

The next proposition comes straightforwardly from [2, Lemma 10].

Proposition 2.1 For any D ∈ Kp (x) and any x ∈ R
n one has

d
((

a, b, −aD,−bD

)
,L−1

D (x)
)

= fD (x)

‖x‖ + 1
,

where d stands for the distance associated with the norm (7) considered in (Rn)T × R
T ×

(Rn)D × R
D.

Remark 2.1 Recalling the definition of calmness modulus (see (5)), for any D ∈ Kp (x) the
previous proposition clearly entails

clmLD

((
a, b, −aD,−bD

)
, x

) = lim sup
x→x, x 	=x

‖x − x‖
fD (x) / (‖x‖ + 1)

,

taking into account that the assumption S (p) = {x} entails LD

(
a, b, −aD,−bD

) = {x}
and, accordingly, fD (x) > 0 for x 	= x.
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The following result follows by combining [7, Theorem 5] and [3, Proposition 4.1] and
provides a more tractable expression for clmLD

((
a, b, −aD, −bD

)
, x

)
, as far as it only

depends on the nominal data p and x. Here we use the notation

CD := conv{at , t ∈ Ta,b (x) ; −at , t ∈ D} for D ∈ Kp (x) .

Recall that the assumption S (p) = {x} entails −c ∈ int cone{at , t ∈ Ta,b (x)} and,
accordingly, 0n ∈ intCD for all D ∈ Kp (x) .

Proposition 2.2 Under the current assumptions, for any D ∈ Kp (x) we have

clmLD

((
a, b, −aD,−bD

)
, x

) = ‖x‖ + 1

d∗ (0n, bdCD)
,

where d∗ stands for the distance associated with ‖·‖∗ in R
n.

The next result constitutes a key tool in the present paper.

Theorem 2.1 [4, Theorem 4.2 (i)] Under the current assumptions we have

clmS (p, x) ≤ max
D∈Kp(x)

‖x‖ + 1

d∗ (0n, bdCD)
. (8)

3 Minimal KKT Index Sets

The aim of this section is to establish the following refinement of [4, Theorem 4.2 (i)], for
which it is not clear that the original proof might be adapted, and we follow an alternative
reasoning.

Proposition 3.1 The right-hand-side of (8) remains equal if the maximum is restricted to

Mp (x) := {
D ∈ Kp (x) | D is minimal for the inclusion order

}
.

Proof According to [6, Corollary 8], which is developed in the framework of canonical
perturbations, the right hand side of (8) may be written as

(‖x‖ + 1) clmSa

((
c, b

)
, x

)
,

where Sa (c, b) := S (c, a, b) for (c, b) ∈ R
n × R

T .

In the referred framework of canonical perturbations, [5, Corollary 2] establishes that,
adapted to our current notation and without assuming the uniqueness of nominal optimal
solution,

clmSa

((
c, b

)
, x

) = max
D∈Mp(x)

clmLD (a, ·, −aD, ·) ((
b, −bD

)
, x

)
. (9)

Finally, by applying [3, Theorem 3.1] (see also the proof of [3, Proposition 4.1], (9) may
be rewritten as

clmSa

((
c, b

)
, x

) = max
D∈Mp(x)

1

d∗ (0n, bdCD)
.



570 M. J. Cánovas et al.

Corollary 3.1 Under the current assumptions we have

clmS (p, x) ≤ max
D∈Mp(x)

‖x‖ + 1

d∗ (0n, bdCD)
. (10)

Remark 3.1 According to the previous paragraphs (see also [4, Remark 4.2]), inequality
(10) may be read as

clmS (p, x) ≤ (‖x‖ + 1) clmSa

((
c, b

)
, x

)
. (11)

This inequality could constitute a refinement of the expected result derived from
[19, Lemma 2], which would replace (‖x‖ + 1) in (11) by max{(‖(x, u)‖ + 1) : u is a dual
solution of P (p)}.

For simplicity in the notation let us denote

�p (x) := argmin
D∈Mp(x)

d∗ (0n, bdCD) .

Observe that, under the current notation, (10) reads as

clmS(
(
c, a, b

)
, x) ≤ ‖x‖ + 1

d∗ (0n, bdCD)
for any D ∈ �p (x) .

The following example concerns the same nominal problem as [4, Example 4.1], which
was used in that paper to show that inequality (8) may be strict. We will come back to this
example in Section 6. At this moment we use it for illustrating sets Kp (x) , Mp (x) , and
�p (x) .

Example 3.1 Consider the nominal problem, in R2 endowed with the Euclidean norm,

P
(
c, a, b

) : minimize 10x1
subject to − x1 + x2 ≤ −1 (t = 1),

−2x1 − 2x2 ≤ −6 (t = 2),
− x1 ≤ −2 (t = 3),

whose unique optimal solution is x = (2, 1)′. Setting once more p = (
c, a, b

)
, the reader

can check the following:

D ∈ Kp (x) clmLD

((
a, b, −aD,−bD

)
, x

)

{3}, {1, 3} 5 + √
5 ≈ 7.2361

{1, 2} √
10

(
1 + √

5
)

/4 ≈ 2.5583

{2, 3} √
13

(
1 + √

5
)

/2 = 5.8339

Accordingly,Mp (x) = {{3}, {1, 2}} and �p (x) = {{3}} .

4 Lower Bound on the Calmness Modulus

Theorem 4.1 provides a lower bound on clmS (p, x)which turns out to be crucial for obtain-
ing, in Corollary 4.1, more operative sufficient conditions under which the upper bound in
Corollary 3.1 is attained. At this point we need some more notation. Although the statement
of Theorem 4.1 is quite technical, its proof encloses important perturbation ideas, which are
exploited in the rest of the paper.
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For any given x ∈ R
n and any D ∈ Mp (x) we define

U (x) := {
u ∈ R

n | ‖u‖∗ = 1, u′x = ‖x‖} ,

λt,x := bt − a′
t x

‖x‖ + 1
, t ∈ T ,

JD (x) :=
⋃

u∈U(x)

cone
{
at + λt,xu, t ∈ D

}
.

Note that, as a straightforward consequence of the definition, λt,x = 0 for all t ∈ Ta,b (x) .

Theorem 4.1 We have

clmS (p, x) ≥ max
D∈Mp(x)

lim sup
x→x, x 	=x

‖x − x‖
max {d∗ (−c, JD (x)) , fD (x) / (‖x‖ + 1)} .

Proof Fix arbitrarily any D ∈ Mp (x) and consider sequence Rn\{x} � xr → x such that

γD := lim sup
x→x, x 	=x

‖x − x‖
max {d∗ (−c, JD (x)) , fD (x) / (‖x‖ + 1)}

= lim
r→∞

‖xr − x‖
max {d∗ (−c, JD (xr)) , fD (xr) / (‖xr‖ + 1)} .

We are going to build a sequence {pr } converging to p, with xr ∈ S (pr) for all r , and
such that lim supr→∞ ‖xr − x‖ / ‖pr − p‖ ≥ γD . For each r let ur ∈ U (xr) and cr ∈
−cone

{
at + λt,xr ur , t ∈ D

}
(finitely generated and hence closed) be such that

∥∥c − cr
∥∥∗ = d∗

(−c, cone
{
at + λt,xr ur , t ∈ D

})
(12)

≤ r + 1

r
d∗

(−c, JD

(
xr

))
,

and define (ar , br ) ≡
(

ar
t

br
t

)

t∈T

as

(
ar
t

br
t

)
:=

⎧
⎪⎪⎨

⎪⎪⎩

(
at

bt

)
+ λt,xr

(
ur

−1

)
if t ∈ D or a′

t x
r > bt ,

(
at

bt

)
if a′

t x
r ≤ bt and t /∈ D.

Note that all t ∈ T \Ta,b (x) belong to the latter case for r large enough. The reader can
easily check from the definitons that xr ∈ LD

(
ar , br ,−ar

D, −br
D

)
and

∥
∥(

ar , br
) − (

a, b
)∥∥ = fD (xr)

‖xr‖ + 1
. (13)

Moreover, the fact that cr ∈ −cone
{
at + λt,xr ur , t ∈ D

}
entails that xr satisfies the KKT

conditions for problem P (cr , ar , br ) with D as a KKT index set. Accordingly, xr ∈ S (pr),
and (12) and (13) yield

‖xr − x‖
‖pr − p‖ ≥ ‖xr − x‖

max
{

r+1
r

d∗ (−c, JD (xr)) , fD (xr) / (‖xr‖ + 1)
}

≥ r

r + 1

‖xr − x‖
max {d∗ (−c, JD (xr)) , fD (xr) / (‖xr‖ + 1)} ,
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which implies clmS (p, x) ≥ lim supr→∞ ‖xr − x‖ / ‖pr − p‖ ≥ γD. This finishes the
proof, recalling that D ∈ Mp (x) has been arbitrarily chosen.

Corollary 4.1 Assume that either −c ∈ [0, 1] conv
{
at , t ∈ D̂

}
or −c ∈

int cone
{
at , t ∈ D̂

}
for some D̂ ∈ �p (x) . Then

clmS (p, x) = ‖x‖ + 1

d∗
(
0n, bdCD̂

) .

Proof Consider first the case −c ∈ [0, 1] conv
{
at , t ∈ D̂

}
for a certain D̂ ∈ �p (x) , and

write

c := −
∑

t∈D̂

μtat

with μt ≥ 0 for all t ∈ D̂ and
∑

t∈D̂ μt ≤ 1. Let us see that, for any x ∈ R
n one has

d∗
(−c, JD̂ (x)

) ≤ fD̂ (x) / (‖x‖ + 1) . To do this, take any u ∈ U (x) and define

−c :=
∑

t∈D̂

μt

(
at + λt,xu

)
,

which clearly belongs to JD̂ (x) and verifies

‖−c + c‖∗ ≤ max
t∈D̂

∣∣λt,x

∣∣ ≤ fD̂ (x) / (‖x‖ + 1) .

Appealing now to Theorem 4.1 together with Remark 2.1 and Proposition 2.2, we conclude

clmS (p, x) ≥ lim sup
x→x, x 	=x

‖x − x‖
fD̂ (x) / (‖x‖ + 1)

= clmLD̂

((
a, b, −aD̂,−bD̂

)
, x

)

= ‖x‖ + 1

d∗
(
0n, bdCD̂

) ≥ clmS (p, x) ,

where we have taken D̂ ∈ �p (x) into account. Recall that the last inequality of the previous
chain is nothing else but (10).

Finally let us consider the case when −c ∈ int cone
{
at , t ∈ D̂

}
for a certain D̂ ∈

�p (x) . In this case we have d∗
(−c, JD̂ (x)

) = 0 for x close enough to x. To see this, just
recall the definition of JD̂ (x) and observe that, for each t ∈ D̂, one has λt,x → 0 as x → x

(see, for instance, [10, Exercise 6.12]).

Remark 4.1 Taking our uniqueness assumption S (p) = {x} into account, if the Linear
Independence Constraint Qualification (LICQ) is satisfied at x for our nominal system, i.e.,{
at , t ∈ Ta,b (x)

}
is linearly independent, then we have

�p (x) = Kp (x) =
{
Ta,b (x)

}
,

and the second case of the previous corollary occurs.
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5 Critical Objective Size

In this section we are going to show that, if ‖c‖∗ is small enough, then the upper bound (10)
is attained. Define

pk := (
kc, a, b

)
for k > 0.

Clearly S
(
pk

) = {x} andMpk
(x) = Mp (x) (and hence�pk

(x) = �p (x)) for all k > 0.
Define as well

Ap (x) :=
{
k > 0 | clmS (

pk, x
) = ‖x‖ + 1

d∗ (0n, bdCD)
for some D ∈ �p (x)

}
.

Obviously, ‘for some’ could be replaced with ‘for all’ in the definition ofAp (x) . The next
result shows the monotonic behavior of clmS

(
pk, x

)
with respect to k.

Proposition 5.1 clmS
(
pk, x

) ≥ clmS
(
pk0

, x
)
whenever 0 < k < k0. Consequently, if

k0 ∈ Ap (x), then k ∈ Ap (x) for all k ∈ ]0, k0[ .

Proof Let us write clmS
(
pk0

, x
) = limr→∞ ‖xr−x‖∥∥∥pr−pk0

∥∥∥
for certain sequences of param-

eters pr = (cr , ar , br ) and points xr ∈ S (pr) such that (pr , xr ) → (
pk0

, x
)
with

pr 	= pk0
. Take any k ∈ ]0, k0[ . Then, since obviously xr ∈ S

(
kk−1

0 cr , ar , br
)

,
(
kk−1

0 cr , ar , br
)

→ pk as r → ∞, and, directly from the definitions of the norms

involved,
∥∥∥
(
kk−1

0 cr , ar , br
)

− pk

∥∥∥ ≤ ∥∥pr − pk0

∥∥ , we conclude

clmS
(
pk0

, x
) ≤ lim sup

r→∞
‖xr − x‖

∥∥∥
(
kk−1

0 cr , ar , br
)

− pk

∥∥∥
≤ clmS

(
pk, x

)
.

The next proposition ensures the nonemptiness ofAp (x) .

Proposition 5.2 The following conditions hold:
(i) Let −c = ∑

t∈D̂ λtat for some (λt )t∈D̂ ∈ R
D̂+ and some D̂ ∈ �p (x) . Then

(∑

t∈D̂
λt

)−1 ∈ Ap (x) .

(ii) If −c ∈ int cone
{
at , t ∈ D̂

}
for some D̂ ∈ �p (x) , thenAp (x) = ]0, +∞[ .

Proof Both statements are straightforward consequences of Corollary 4.1.

Definition 5.1 The critical objective size of problem P
(
c, a, b

)
, at x, is defined as

τp (x) := ‖c‖∗ supAp (x) ,

understood as +∞ ifAp (x) = ]0, +∞[ .
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Remark 5.1 As a direct consequence of Proposition 5.2 (i), if −c = ∑
t∈D̂ λtat for some

(λt )t∈D̂ ∈ R
D̂+ and some D̂ ∈ �p (x) , then we have

τp (x) ≥
(∑

t∈D̂
λt

)−1 ‖c‖∗ .

On the other hand, if −c ∈ int cone
{
at , t ∈ D̂

}
for some D̂ ∈ �p (x) , then τp (x) =

+∞. This is the case when LICQ holds at x for our nominal system (see Remark 4.1).

Proposition 5.3 The supremum supAp (x) , when finite, is attained.

Proof We can follow a sort of diagonal process. Let k0 = supAp (x) ∈ R and take any
sequence {kr }r∈N ⊂ Ap (x) converging to k0. Pick any D̂ ∈ �p (x) . For each r, write

clmS
(
pkr

, x
) = ‖x‖ + 1

d∗
(
0n, bdCD̂}) = lim

s→∞
‖xr,s − x‖

∥∥pr,s − pkr

∥∥

(see the comment right after the definition of Ap (x)) for certain sequences of parameters
pr,s and points xr,s ∈ S (pr,s) such that (pr,s , xr,s) → (

pkr
, x

)
as s → ∞, with pr,s 	= pkr

for all s. Take, for each r, a certain sr > r such that ‖xr,sr − x‖ < 1
r
,
∥∥pr,sr − pkr

∥∥ < 1
r
,

and ∣∣∣∣∣
‖xr,sr − x‖

∥∥pr,sr − pkr

∥∥ − ‖x‖ + 1

d∗
(
0n, bdCD̂

)

∣∣∣∣∣
<

1

r
. (14)

Now write for simplicity xr instead of xr,sr and pr = (cr , ar , br ) instead of pr,sr . Define,

for each r , p̃r :=
(

k0
kr

cr , ar , br
)

. Then we can write

∥∥p̃r − pk0

∥∥ =
∥∥∥∥

(
k0

kr

cr , ar , br

)
−

(
k0

kr

krc, a, b

)∥∥∥∥

= max

{
k0

kr

∥∥cr − krc
∥∥∗ ,

∥∥(
ar , br

) − (
a, b

)∥∥
}

,

from which we easily get

∥∥pr − pkr

∥∥ ≤ ∥∥p̃r − pk0

∥∥ ≤ k0

kr

∥∥pr − pkr

∥∥ .

This fact together with (14) entails

clmS
(
pk0

, x
) ≥ lim

r→∞
‖xr − x‖

∥∥p̃r − pk0

∥∥ = ‖x‖ + 1

d∗
(
0n, bdCD̂

) ,

which completes the proof of the proposition.

Remark 5.2 We have τkp (x) = τp (x) for all k > 0; i.e., the critical objective size does not
depend on ‖c‖∗ . As an immediate consequence of the definition we conclude that the upper
bound (10) on clmS (p, x) is attained if and only if ‖c‖∗ ≤ τp (x) . In particular, as an
immediate consequence of Corollary 4.1, if −c ∈ conv

{
at , t ∈ D̂

}
for some D̂ ∈ �p (x) ,

then 1 ∈ Ap (x) and, hence, ‖c‖∗ ≤ τp (x) occurs.

Remark 5.3 Corollary 4.1 also ensures that τp (x) = +∞ in the case when −c ∈
int cone

{
at , t ∈ D̂

}
for some D̂ ∈ �p (x) .
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The following theorem provides, in terms of the critical objective size, a lower bound on
clmS (p, x) which only depends on the nominal data p and x.

Theorem 5.1 The following condition holds:

clmS (p, x) ≥ max
D∈Mp(x)

‖x‖ + 1

d∗ (0n, bdCD)max
{
1, ‖c‖∗ /τp (x)

} .

Proof According to Remark 5.2, we just have to prove the case when ‖c‖∗ > τp (x) . In
this case, for k := τp (x) / ‖c‖∗ < 1 we have 1 ∈ Apk

(x) (see Proposition 5.3). This means

clmS
(
pk, x

) = maxD∈Mp(x)
‖x‖+1

d∗(0n,bdCD)
. Now write

clmS
(
pk, x

) = lim
r→∞

‖xr − x‖
∥∥pr − pk

∥∥

for some sequences pr := (cr , ar , br ) → pk = (
kc, a, b

)
and S (pr) � xr → x. Then we

have

clmS (p, x) ≥ lim sup
r→∞

‖xr − x‖
∥∥∥
(
k
−1

cr , ar , br
)

− p

∥∥∥

= lim sup
r→∞

‖xr − x‖
max

{
k
−1 ∥∥cr − kc

∥∥∗ ,
∥∥(ar , br ) − (

a, b
)∥∥

}

≥ lim sup
r→∞

‖xr − x‖
k
−1

max
{∥∥cr − kc

∥∥∗ ,
∥∥(ar , br ) − (

a, b
)∥∥}

= kclmS
(
pk, x

) = max
D∈Mp(x)

‖x‖ + 1

d∗ (0n, bdCD)
(‖c‖∗ /τp (x)

) .

6 Perturbation Strategies for Improved Estimates

The lower bound on τp (x) given in Remark 5.1 has the virtue of relying exclusively on the
nominal data p and x (we could indeed consider the best choice of D̂ ∈ �p (x) for this).
Nevertheless, Theorem 4.1 provides the following strategy to improve such a lower bound:

1. Choose any D̂ ∈ �p (x) and write

clmLD̂

((
a, b, −aD̂,−bD̂

)
, x

) = lim
r→∞

‖xr − x‖
∥∥(ar , br ) − (

a, b
)∥∥

for suitable sequences {(ar , br )} ⊂ (Rn)T × R
T and {xr } ⊂ R

n such that

xr ∈ LD̂

(
ar , br ,−ar

D̂
,−br

D̂

)
and

∥∥(
ar , br

) − (
a, b

)∥∥ = 1

r
for all r ∈ N.

2. Find k > 0 and c̃r ∈ cone
{−ar

t , t ∈ D̂
}
such that

∥∥kc − c̃r
∥∥∗ = d∗

(
kc, cone

{−ar
t , t ∈ D̂

}) ≈ 1

r
,
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i.e., limr→∞ r ‖kc − c̃r‖∗ = 1 (of course, 1
r
can be replaced from the beginning of the

proof with any εr ↓ 0).
3. Then, such a k belongs toAp (x) .

Now we come back to Example 3.1, where we provide lower and upper estimations
of τp (x), as well as sharper lower and upper bounds on clmS (p, x) than those given in
Theorem 5.1 and Corollary 3.1, respectively. Some technical details given below show a
strong parallelism with [4, Section 6], and the reader is addressed there for a complete
discussion.

Example 6.1 Consider the nominal problem P
(
c, a, b

)
given in Example 3.1. We point out

the following facts:

(i) By applying the previous strategy with D̂ = {3} and the same

{(
ar
t

br
t

)}

t∈{1,2,3}
defined in [4, Example 4.2], we obtain

d∗
(
kc, cone

{−ar
t , t ∈ D̂

}) ≈ 10k

r
√
5
.

Accordingly, k := 1/
(
2
√
5
)

∈ Ap (x) , which entails τp (x) ≥ √
5.

(ii) By replacing ‘10’ with ‘10k’ in the system given in [4, Equation (27)] we obtain, with
the corresponding counterpart of the point x̃r defined just before [4, Equation (28)],
for any k > 0,

clmS
(
pk, x

) ≤ lim
r→∞

‖x̃r − x‖
αr

= ϕ (k) :=
√
8
√
5 + 30 + 7+√

5
5k + 1

50k2
.

Then we see that ϕ is a strictly decreasing function with ϕ−1
(
5 + √

5
)

=
(
2 + √

5
)

/10, which entails τp (x) ≤ 2 + √
5.

(iii) Also observe that lim
k→+∞ clmS

(
pk, x

) ≤ lim
k→∞ ϕ (k) =

√
8
√
5 + 30 (quantity which

appears at the end of [4, Section 6]). Note that the first limit exists since the function
k �→ clmS

(
pk, x

)
is decreasing according to Proposition 5.1. We will come to this

point later.

From the beginning of this section we are considering the strategy of perturbing x and(
a, b

)
in order to obtain xr and (ar , br ) such that clmLD̂

((
a, b, −aD̂, −bD̂

)
, x

)
, for a

given D̂ ∈ �p (x), may be written as limr→∞ ‖xr − x‖ /
∥∥(ar , br ) − (

a, b
)∥∥ , and then

perturbing c in such a way that the perturbed xr becomes optimal for the perturbed parame-
ter (cr , ar , br ) . The drawback of this strategy is that the perturbation size ‖cr − c‖∗ might
be essentially larger than

∥∥(ar , br ) − (
a, b

)∥∥ , which would spoil the limit of the ratio when
replacing

∥∥(ar , br ) − (
a, b

)∥∥ with
∥∥(cr , ar , br ) − (

c, a, b
)∥∥. An alternative strategy to pre-

vent this situation consists of making a smaller perturbation on those at with t ∈ D̂ in order
to need a smaller perturbation of c to get the KKT conditions at the perturbed xr . Roughly
speaking, instead of just moving kc towards cone

{−ar
t , t ∈ D̂

}
, we could move kc to the

new perturbed cone and, at the same time, move the cone towards kc. We try to illustrate
these ideas in the next example, which leans again on [4, Example 4.1 and Section 6].
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Example 6.2 Consider again the nominal problem Example 6.1, as well as D̂ = {3}. Recall
that we are dealing with the Euclidean norm. Consider the same ar

t for t ∈ {1, 2} and the
same br

t for t ∈ {1, 2, 3} as in Example 6.1, and set

ar
3 := a3 + 1

r
v with ‖v‖ = 1, v = (v1, v2) , v1 > 0, v2 > 0,

cr ∈ cone
{−ar

3

}
such that

∥∥kc − cr
∥∥ = d

(
kc, cone

{−ar
3, t ∈ D̂

}) ≈ 1

r
.

With our current data, this entails v =
(√

1 − (10k)−2, (10k)−1
)
with k > 1/10. Then we

define xr as the solution of the system
{(

ar
t

)′
x = br

t , t = 1, 3
}
. It can be checked that, for

any given k > 1/10, xr ∈ S (cr , ar , br ) for r large enough. Thus,

clmS
(
pk, x

) ≥ ψ (k) := lim
r→∞ r

∥∥xr − x
∥∥ ,

and after some calculations we obtain

ψ (k) =
√

10
(√

5+3
)
+ 2

k
25

√
100 − 1

k2
+ 4

√
5 + 18 +

√
5+3
5k − 3

50k2
,

which is strictly increasing in
]
1/10, 1/

(
2
√
5
)]

and strictly decreasing in
[
1/

(
2
√
5
)

, +∞
[
. Moreover,

ψ
(
1/

(
2
√
5
))

= 5 + √
5, (15)

lim
k→+∞ ψ (k) =

√
8
√
5 + 30 ≈ 6.9202. (16)

From (15) we conclude 1/
(
2
√
5
)

∈ Ap (x) , which we already knew and entails τp (x) ≥√
5. Indeed, for our nominal problem P

(
c, a, b

)
, and recalling function ϕ in Example 6.1

(ii), we deduce that

7.0404 ≈ ψ (1) ≤ clmS (p, x) ≤ (1/10)

√
820

√
5 + 3142 ≤ ϕ (1) ≈ 7.0538

(the latter inequality was already known from [4, Example 4.1]). Finally, (16) ensures that√
8
√
5 + 30 ≈ 6.9202 is a lower bound on clmS

(
pk, x

)
for all k > 0. This together with

Example 6.1 (iii) ensures that

lim
k→+∞ clmS

(
pk, x

) =
√
8
√
5 + 30.

For k > 1/
(
2
√
5
)
we only can ensure that

ψ (k) ≤ clmS
(
pk, x

) ≤ min
{
ϕ (k) , 5 + √

5
}

,

but computing the exact value of clmS
(
pk, x

)
remains as an open problem. Recall that

clmS
(
pk, x

) = 5 + √
5 whenever 0 < k ≤ 1/

(
2
√
5
)

.

The conclusions about the previous example are summarized in the following figure
(Fig. 1):
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Fig. 1 Bounds on the calmness modulus in terms of the objective size

7 Conclusions

In this section, we summarize the main contributions of the paper. Our starting point is
the upper bound (8) on clmS (p, x), with p = (

c, a, b
)
and S (p) = {x}, given in [4,

Theorem 4.2(i)]. Proposition 3.1 shows that the right-hand-side of (8) remains equal if the
maximum is restricted to minimal KKT index sets, leading to (10). In Theorem 4.1 we
provide a technical lower bound which leads to sufficient conditions for equality in (10),
see Corollary 4.1. Roughly speaking, the upper bound is attained if and only if the size
of the objective function coefficient vector c is small enough. In order to formalize this
assertion we introduce in Definition 5.1 the concept of critical objective size, τp (x) , and
prove that (10) becomes an equality if and only if ‖c‖∗ ≤ τp (x), see Remark 5.2. Moreover,
in terms of τp (x) we are able to provide a more operative lower bound on clmS (p, x), see
Theorem 5.1. Finally, in Section 6 we illustrate by means of examples some perturbation
strategies which may lead to tighter bounds on clmS (p, x).

Obtaining an operative expression for τp (x) in terms of the nominal data remains as
an open problem. In Examples 6.1 and 6.2 (both tackling the same optimization problem)
we are able to provide lower and upper estimates on such a quantity τp (x), as well as
lower and upper estimates on clmS

((
kc, a, b

)
, x

)
in terms of k, both estimates having

the same asymptotic value. Obtaining an operative exact expression for clmS (p, x) when
‖c‖∗ > τp (x) also remains as an open problem.
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17. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for convex constraint systems in Banach

spaces. SIAM J. Optim. 20, 3280–3296 (2010)
18. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer,

Berlin (2006)
19. Robinson, S.M.: A characterization of stability in linear programming. Oper. Res. 25, 435–447 (1977)
20. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Mathematical programming

at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979). Math. Programming Stud
14, 206–214 (1981)

21. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

http://dx.doi.org/10.1007/s10107-015-0926-x
http://dx.doi.org/10.1007/s10957-015-0793-x

	Critical Objective Size and Calmness Modulus in Linear Programming
	Abstract
	Introduction
	Assumptions

	Preliminaries
	Minimal KKT Index Sets
	Lower Bound on the Calmness Modulus
	Critical Objective Size
	Perturbation Strategies for Improved Estimates
	Conclusions
	Acknowledgments
	References


