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Abstract. The paper deals with the calmness of a class of multifunctions in finite dimensions. Its
first part is devoted to various conditions for calmness, which are derived in terms of coderivatives
and subdifferentials. The second part demonstrates the importance of calmness in several areas
of nonsmooth analysis. In particular, we focus on nonsmooth calculus and solution stability in
mathematical programming and in equilibrium problems. The derived conditions find a number of
applications there.
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1. Introduction. The concept of calmness plays a key role in the analysis of
Lipschitz properties for multifunctions. It is closely related to issues from optimization
theory like nondegenerate multiplier rules (e.g., [10], [2], [4]), existence of error bounds
(e.g., [5], [18], [24]), or sensitivity analysis of generalized equations (e.g., [13], [17]).
The aim of this paper is to provide subdifferential conditions for ensuring the calmness
of constraint systems in finite dimensions and to consider calmness in the context of
different applications like nonsmooth calculus or solutions to parametric optimization
or equilibrium problems.

We start by recalling some of the prominent Lipschitz properties formulated for
multifunctions. Let M : Y ⇒ X be a multifunction between metric spaces. M is said
to have the Aubin property around some (ȳ, x̄) ∈ GphM (graph of M) if there exist
neighborhoods V and U of ȳ and x̄ as well as some L > 0 such that

d(x,M(y2)) ≤ Ld(y1, y2) ∀y1, y2 ∈ V, ∀x ∈ M(y1) ∩ U .
It is well known that M has the Aubin property around (ȳ, x̄) if and only if its inverse
M−1 is metrically regular around (x̄, ȳ) (e.g., [27, Theorem 9.43]). Fixing one of the
y-parameters as ȳ in the definition of the Aubin property yields the calmness of M
at (ȳ, x̄):

d(x,M(ȳ)) ≤ Ld(y, ȳ) ∀y ∈ V, ∀x ∈ M(y) ∩ U .
Obviously, the Aubin property implies calmness, whereas the converse is not true (e.g.,
M(y) = {x|x2 ≥ y} at (0, 0)). If one may choose U = X in this last definition, then
the calmness becomes the slightly stronger local upper Lipschitz property introduced
in [25].
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A restricted version of calmness, namely, calmness on selections, has been studied
in the context of sensitivity analysis for generalized equations [13], [15], [6]. Here it is
required that U ∩M(ȳ) = {x̄} in the general definition of calmness, i.e., x̄ is isolated
in M(ȳ). Such an assumption is relevant, for instance, when analyzing solutions to
nonlinear optimization problems. Moreover, one may even further restrict calmness
by combining it with the local uniqueness of M at (ȳ, x̄). Then, locally around (ȳ, x̄),
M is just a usual function satisfying the condition

d(M(y),M(ȳ)) ≤ Ld(y, ȳ).

This situation was studied, for instance, in [16].
For the purpose of verifying the Lipschitz properties of multifunctions, it is use-

ful to have suitable criteria from nonsmooth calculus. Such criteria have proven to
be particularly efficient in finite dimensions. For instance, X and Y being finite-
dimensional, the Aubin property of a closed graph multifunction M is equivalent to
the condition (see [21])

D∗M(ȳ, x̄)(0) = {0}.(1.1)

Here, D∗ refers to Mordukhovich’s coderivative (see section 2). This is a dual criterion
that relies on a normal cone construction to the graph of M . Similar dual conditions
were given in [20, Theorem 5.4] for a property related to but different from calmness.

An equivalent primal criterion for the Aubin property can be formulated in terms
of the contingent derivative D, based on the contingent cone to GphM (see [1, Theo-
rem 4, p. 431] for sufficiency in arbitrary Banach spaces and, e.g., [7, Corollary 1.19]
for necessity in the case of finite-dimensional X):

∃ α > 0, β > 0 : B(0, 1) ⊆ [DM(y, x)]−1(B(0, α)) ∀(y, x) ∈ GphM ∩B((ȳ, x̄), β).

Here, B(z, r) refers to the closed ball around z with radius r. As far as corresponding
criteria for calmness are concerned, the following primal condition was found to be
sufficient in [13, Proposition 2.1] and necessary in [15, Proposition 4.1] for calmness
on selections in finite dimensions:

DM(ȳ, x̄)(0) = {0}.(1.2)

Note that this condition immediately enforces the isolatedness of x̄ in M(ȳ) because
a sequence xn → x̄, xn ∈ M(ȳ), xn �= x̄ would generate a nontrivial tangent vector
(0, ξ) to GphM at (ȳ, x̄), whence a contradiction 0 �= ξ ∈ DM(ȳ, x̄)(0) to the above
condition.

Calmness in the broader sense introduced above is closely related to the regularity
concept of Ioffe studied in [10], [11], even in a Banach space setting. In fact, in [11] a
sufficient condition for calmness has been derived for multifunctions of the type

M(y) = {x ∈ C|g(x) = y}(1.3)

in terms of Clarke’s subdifferential. Another sufficient condition for calmness in the
broader sense was given in [8] for multifunctions of the type

M(y) = {x ∈ C|g(x) + y ∈ D},(1.4)

where g : R
k → R

m is locally Lipschitz and C ⊆ R
k, D ⊆ R

m are closed. It was shown
there that under mild assumptions the calmness of M is implied by the condition⋃

y∗∈ND(g(x̄))\{0}
D∗g(x̄)(y∗) ∩ (−bdNC(x̄)) = ∅,(1.5)
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where “bd” refers to the topological boundary. Recalling that the criterion (1.1) for
the Aubin property reduces in the special setting of (1.4) to the sufficient condition

⋃
y∗∈ND(g(x̄))\{0}

D∗g(x̄)(y∗) ∩ (−NC(x̄)) = ∅,(1.6)

the reduction from the stronger Aubin to the weaker calmness property in (1.4) is
reflected by a transition from a normal cone to its boundary in the criteria (1.5)
and (1.6), respectively. Under some additional regularity assumptions, one may even
pass to the boundary in the left part of (1.6). In [9], attempts were made to extend
these ideas to the infinite-dimensional case, but it seems to be difficult to pass beyond
convex or differentiable structures in this framework. For instance, if f is a locally
Lipschitz function, regular in the sense of Clarke and satisfying f(0) = 0, then the
condition 0 /∈ bd ∂f(0) guarantees calmness of the parametric inequality f(x) ≤ y
at (0, 0) as long as either f is defined on a finite-dimensional space [8, Theorem 4.2]
or f is convex on a Banach space [9, Corollary 3.4]. In contrast, one may construct
a locally Lipschitz f defined on the sequence space l1 which is Clarke regular and
nonconvex such that the mentioned condition is satisfied but calmness fails to hold.

The paper is organized as follows: first, subdifferential criteria for calmness in
finite dimensions are developed which extend those given in [8]. In particular, the
multifunction M in (1.4) gets the more general form M(y) = S(y)∩C, with a purely
parametric contribution by S and a nonparametric contribution by C. In a second
part, calmness (as a condition by itself or implied by the previously derived subdif-
ferential criteria) is studied in several applications like nonsmooth calculus, stability
of solutions to nonsmooth optimization problems, and equilibrium problems.

2. Notation and basic concepts. In the following, we denote by ∂f(x) and
NC(x), respectively, the subdifferential of a function f at some x and the normal cone
to some closed set C at some x ∈ C, both in the sense of Mordukhovich. In contrast,
TC(x) refers to the contingent cone. Note that if f is regular in the sense of Clarke,
then ∂f(x) coincides with Clarke’s subdifferential. Similarly, if C is a regular set at x,
then TC(x) and NC(x) coincide with Clarke’s tangent and normal cone, respectively.
In that case it also holds true that each one of these cones is the (negative) polar
cone of the other. With a multifunction Z : R

p ⇒ R
k and some (ū, v̄) ∈ GphZ we

associate Mordukhovich’s coderivative D∗Z(ū, v̄) : R
k ⇒ R

p defined by

D∗Z(ū, v̄)(v∗) = {u∗ ∈ R
p|(u∗,−v∗) ∈ NGphZ(ū, v̄)}.

If Z is single-valued, we simply write D∗Z(ū) instead of D∗Z(ū, Z(ū)). For single-
valued, locally Lipschitz mappings Z it holds that

D∗Z(ū)(v∗) = ∂ 〈v∗, Z〉 (ū).

For a detailed presentation of these concepts, we refer to [20], [22], [27] and [4].
By B(x, r), B, and S we shall denote a closed ball centered at x with radius r, the

closed unit ball, and the unit sphere in corresponding spaces, respectively. By d(x,C)
we denote the point-to-set distance between x and C induced by a corresponding
norm on R

n, whereas deC(x) represents the particular case of the Euclidean distance
function.

A basic concept which we shall use in the derivation of subdifferential criteria for
calmness is semismoothness as introduced in [19].
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Definition 2.1. A function ψ : R
k → R is called semismooth at x̄ ∈ R

k if it
is locally Lipschitz around x̄ and the following property holds true: for each d ∈ R

k

and for any sequences tn ↓ 0, dn → d, x∗n ∈ ∂ψ(x̄ + tndn), the limit limn→∞ 〈x∗n, d〉
exists.

It has to be noted that in the original definition of [19], the corresponding property
was required for Clarke’s subdifferential of ψ. However, exploiting the well-known
fact that Clarke’s subdifferential is the closed convex hull of Mordukhovich’s, it easily
follows that both definitions of semismoothness are equivalent. As a consequence
of Definition 2.1, a semismooth function ψ has a conventional directional derivative
ψ′(x̄;h) at x̄ in direction d which coincides with the common limit in Definition 2.1.

As with Clarke regularity, semismoothness of functions can be carried over to
sets.

Definition 2.2. A set A ⊆ R
k is called semismooth at x̄ ∈ clA if for any

sequence xn → x̄ with xn ∈ A and ‖xn − x̄‖−1
(xn − x̄) → d it holds that 〈x∗n, d〉 → 0

for all selections of subgradients x∗n ∈ ∂deA(xn).
If A is closed and deA is semismooth in the sense of Definition 2.1, then A is

semismooth in the sense of Definition 2.2 (see [8, Proposition 2.4]).

3. Subdifferential characterization of calmness. We start with an auxiliary
result which is crucial for passing to the boundary of the normal cone in (1.5) and in
the corresponding generalization we have in mind.

Proposition 3.1. Let C ⊆ R
k be regular (in the sense of Clarke) and semismooth

at x̄ ∈ C. Consider a sequence xn → x̄ such that xn ∈ C and ‖xn−x̄‖−1
(xn−x̄) → h

with ‖h‖ = 1. Then each accumulation point x∗ of a sequence x∗n ∈ ∂deC(xn) belongs
to bdNC(x̄).

Proof. By virtue of the semismoothness of C at x̄, one has 〈x∗, h〉 = 0. From
∂deC(xn) ⊆ NC(xn) and from the closedness of the mapping NC(·), it follows that
x∗ ∈ NC(x̄). By construction, h ∈ TC(x̄); hence regularity of C at x̄ implies that
〈y∗, h〉 ≤ 0 for all y∗ ∈ NC(x̄). For arbitrary ε > 0, one has 〈x∗ + εh, h〉 = ε > 0,
whence x∗ + εh /∈ NC(x̄). Along with x∗ ∈ NC(x̄), this means that x∗ ∈ bdNC(x̄).

Consider now a multifunction M : R
p ⇒ R

k defined as the intersection M(y) =
S(y) ∩ C, where S : R

p ⇒ R
k is a multifunction with closed graph and C ⊆ R

k is
closed. As a consequence, M has closed graph as well. The following theorem is the
main result of this section.

Theorem 3.2. Consider some (ȳ, x̄) ∈ GphM . Assume that C is regular and
semismooth at x̄. If for all y∗ ∈ R

p it holds that

D∗S−1(x̄, ȳ)(y∗) ∩ −bdNC(x̄) =

{ ∅ or
{0} if y∗ = 0,

(3.1)

then M is calm at (ȳ, x̄). (Note that the case D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄) = ∅ is
formally included in (3.1).)

Proof. Assume by contradiction that M is not calm at (ȳ, x̄). By definition, there
exist sequences xn → x̄, yn → ȳ, xn ∈ M(yn) such that d(xn,M(ȳ)) > n‖yn − ȳ‖.
Now, set h(y, x) := ‖y− ȳ‖ so that each pair (yn, xn) is an ε-minimizer of h(y, x) over
GphM with ε = ‖yn − ȳ‖. The application of the Ekeland variational principle with
ε and λ := nε to the minimization of h over GphM yields for each n the existence of
a pair (ỹn, x̃n) ∈ GphM such that for all (y, x) ∈ GphM

‖(ỹn, x̃n)− (yn, xn)‖ ≤ n‖yn − ȳ‖,(3.2)
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‖ỹn − ȳ‖ ≤ ‖y − ȳ‖+ n−1‖(y, x)− (ỹn, x̃n)‖.(3.3)

From (3.2) we infer that

‖(ỹn, x̃n)−(ȳ, x̄)‖ ≤ n‖yn− ȳ‖+‖(yn, xn)−(ȳ, x̄)‖ < d(xn,M(ȳ))+‖(yn, xn)−(ȳ, x̄)‖
so that (ỹn, x̃n) → (ȳ, x̄). Furthermore, ỹn �= ȳ and x̃n �= x̄, because otherwise x̃n
∈ M(ȳ), whence the contradiction

n‖yn − ȳ‖ < d(xn,M(ȳ)) ≤ ‖xn − x̃n‖ ≤ n‖yn − ȳ‖,
using (3.2). Now, (3.3) means that (ỹn, x̃n) is a (global) solution of the problem

min{‖y − ȳ‖+ n−1‖(y, x)− (ỹn, x̃n)‖ |(y, x) ∈ GphM}.(3.4)

Since GphM = GphS ∩ (Rp × C), it follows that exactly one of the following cases
occurs (with S denoting the unit sphere):

{0} = NGphS(ỹn, x̃n) ∩ [{0} × (−NC(x̃n))] ,(3.5)

∃ ξn ∈ S ∩NGphS(ỹn, x̃n) ∩ [{0} × (−NC(x̃n))] .(3.6)

At least one of these two cases must apply for infinitely many n. Suppose first that
this is true for (3.5). Without loss of generality, we assume that (3.5) is valid for all
n. Then (see [27, Theorem 6.4.2])

NGphM (ỹn, x̃n) ⊆ NGphS(ỹn, x̃n) + [{0} ×NC(x̃n)] .

Application of the necessary optimality conditions to the solution (ỹn, x̃n) of the
constrained problem (3.4) then yields

0 ∈ [Sy × {0}] + n−1
B +NGphS(ỹn, x̃n) + [{0} ×NC(x̃n)] ,

where Sy refers to the unit sphere in R
p (and occurs due to ỹn �= ȳ) and B is the unit

ball in R
p × R

k. Without loss of generality, B is taken with respect to the maximum
norm; hence B = By × Bx. Accordingly, there exist (y∗n, z

∗
n) ∈ NGphS(ỹn, x̃n) and

x∗n ∈ −NC(x̃n) such that

0 ∈ Sy + n−1
By + y∗n and ‖x∗n − z∗n‖ ≤ n−1.

By the boundedness of y∗n we may assume that y∗n → y∗ ∈ Sy.

If {x∗n} is unbounded, then for x̂∗n := ‖x∗n‖−1
x∗n we may assume that x̂∗n → x∗

for some x∗ ∈ Sx. Furthermore, x̂∗n ∈ −NC(x̃n) and

deNGph S(ỹn,x̃n)(‖x∗n‖−1
y∗n, x̂

∗
n) ≤ deNGph S(ỹn,x̃n)(y

∗
n, x

∗
n) ≤ ρ ‖x∗n − z∗n‖ ≤ ρn−1,

where de denotes the Euclidean distance function and ρ > 0 is some modulus relating
the Euclidean and maximum norms. Since, without loss of generality, ‖x∗n‖−1

y∗n → 0,
the closedness of the coderivative mapping implies that x∗ ∈ D∗S−1(x̄, ȳ)(0). On the
other hand, x̂∗n ∈ −NC(x̃n) ∩ Bx = −∂deC(x̃n) (see [27, Example 8.5.3]). Recalling
that x̃n �= x̄ and x̃n ∈ C, Proposition 3.1 provides that x∗ ∈ −bdNC(x̄), whence the
contradiction x∗ ∈ Sx ∩D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄) with (3.1).

Assuming that {x∗n} is bounded instead, one has without loss of generality that

x∗n → x∗ ∈ D∗S−1(x̄, ȳ)(y∗) ∩ −NC(x̄)
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(again by closedness of the coderivative and of the normal cone mapping). Due to
x̃n �= x̄ we have that TC(x̄) �= {0}, whence NC(x̄) �= R

k and 0 ∈ −bdNC(x̄). Now,
the case x∗ = 0 leads to an immediate contradiction with (3.1) due to y∗ �= 0. If
x∗ �= 0, then set

x̂∗n := ‖x∗n‖−1
x∗n → x̂∗ := ‖x∗‖−1

x∗,

as before. Invoking Proposition 3.1 in the same way as above, one arrives at x̂∗ ∈
Sx∩D∗S−1(x̄, ȳ)(‖x∗‖−1

y∗)∩−bdNC(x̄) by positive homogeneity of the coderivative
mapping. This again is a contradiction with (3.1).

Finally, suppose instead that (3.6) applies for infinitely many n. Again, we do
not relabel the corresponding subsequence. Then, defining ξn = (ξyn, ξ

x
n), we may

assume without loss of generality that ξn = (0, ξxn) → (0, ξx), where ξxn, ξ
x ∈ Sx and,

according to (3.6),

ξxn ∈ D∗S−1(x̃n, ỹn)(0) ∩ −NC(x̃n).

Consequently, ξxn ∈ −∂deC(x̃n), and we may invoke Proposition 3.1 again to obtain
that ξx ∈ −bdNC(x̄). Summarizing, we arrive at the contradiction

ξx ∈ D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄)

with (3.1).

Remark 3.3. The assumptions of (Clarke-) regularity and semismoothness for
C in Theorem 3.2 are completely independent (see Example 3.5 in [8]). Their joint
validity is guaranteed for a sufficiently broad class of closed sets, like convex sets or
sets defined by C1-inequalities and satisfying the Mangasarian–Fromovitz constraint
qualification (cf. Lemma 3.6 in [8]).

Now, we specialize the above theorem to the parametrized constraint system
x ∈ C, g(x, y) ∈ D, where g : R

k×R
p → R

m is locally Lipschitz and C ⊆ R
k, D ⊆ R

m

are closed. We associate with this system the multifunction M : R
p ⇒ R

k defined by

M(y) := {x ∈ C | g(x, y) ∈ D}.(3.7)

Corollary 3.4. In (3.7), let (ȳ, x̄) ∈ GphM and C be regular and semismooth
at x̄. Further, assume the qualification condition

⋃
y∗∈ND(g(x̄,ȳ))\{0}

[∂〈y∗, g〉(x̄, ȳ)]x ∩ −bdNC(x̄) = ∅,(3.8)

where [ ]x denotes projection onto the x-component. Then M is calm at (ȳ, x̄).

Proof. The case in which 0 /∈ bdNC(x̄) is trivial, so assume that 0 ∈ bdNC(x̄).
Consider the map S : R

p ⇒ R
k defined by

S(y) := {x ∈ R
k | g(x, y) ∈ D}.

To compute D∗S−1(x̄, ȳ), we invoke a result from [22]. Since 0 ∈ bdNC(x̄), (3.8)
yields in particular the implication

D∗g(x̄, ȳ)(v∗) = 0, v∗ ∈ ND(g(x̄, ȳ)) =⇒ v∗ = 0.
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This is, however, the qualification condition from [22, Theorem 6.10], and so one has
for each v∗ ∈ R

p the inclusion

D∗S−1(x̄, ȳ)(v∗)(3.9)

⊆ {x∗ ∈ R
k | (x∗,−v∗) ∈ ∂〈y∗, g〉(x̄, ȳ), y∗ ∈ ND(g(x̄, ȳ))}

⊆ {x∗ ∈ [∂〈y∗, g〉(x̄, ȳ)]x | y∗ ∈ ND(g(x̄, ȳ))}.

Let us write (3.8) in the form

[∂〈y∗, g〉(x̄, ȳ)]x ∩ −bdNC(x̄) �= ∅, y∗ ∈ ND(g(x̄, ȳ)) =⇒ y∗ = 0.(3.10)

By combining (3.9) and (3.10), one obtains that

D∗S−1(x̄, ȳ)(0) ∩ −bdNC(x̄) = {0}

and

D∗S−1(x̄, ȳ)(v∗) ∩ −bdNC(x̄) �= ∅ =⇒ v∗ = 0.

These two conditions amount, however, to (3.1), and thus Theorem 3.2 can be applied
to finish the proof.

The following example illustrates the application of Theorem 3.2 in the specific
situation of Corollary 3.4.

Example 3.5. Define M in (3.7) by C = {(x1, x2)|x2 ≥ |x1|}, D = R−,
g(x, y) = min{x1, x2}− y. Then, all data assumptions of Theorem 3.2 are satisfied at
(x̄1, x̄2, ȳ) = (0, 0, 0) ∈ GphM , and also (3.1) holds true:

⋃
y∗∈ND(g(x̄,ȳ))\{0}

[∂〈y∗, g〉(x̄, ȳ)]x ∩ −bdNC(x̄)

=
⋃

y∗>0

y∗∂min{·, ·}(0, 0) ∩ bdC

= {(x1, x2)|x1 + x2 > 0, x1 · x2 = 0} ∩Gph | · | = ∅.

Consequently, the calmness of M in (3.7) can be derived. Note that the stronger
criterion (1.6) ensuring the Aubin property of M fails to apply here due to

{(x1, x2)|x1 + x2 > 0, x1 · x2 = 0} ∩ −NC(x̄) = {(0, x2)|x2 > 0} �= ∅.

At the same time, the contingent derivative criterion (1.2) for calmness on selections
does not apply either, due to M(0) = {(x1, x2)|x2 ≥ −x1 ≥ 0} not being single-
valued.

The following theorem provides a calmness result for the system (1.4) of functional
constraints with canonical perturbations. In contrast to Theorem 3.2, no regularity
or semismoothness assumption on C will be made. Rather, the regularity assumption
is shifted to the perturbed part of the constraints.

Theorem 3.6. In (1.4) let g be Lipschitz near x̄ ∈ M(0), and D be regular at
g(x̄). Further assume that the function 〈y∗, g〉 (·) is regular at x̄ for all y∗ ∈ ∂deD(g(x̄))
and that the qualification condition

int
⋃

y∗∈ND(g(x̄))∩B

∂〈y∗, g〉 (x̄) ∩ − [TC(x̄)]
0 �= ∅(3.11)
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holds true. Then M is calm at (0, x̄).
Proof. Consider the composite function π(x) = deD(g(x̄)), which is evidently

Lipschitz near x̄ and for which one has π(x̄) = 0. From [27, Theorem 10.49] we know
that under our assumptions π is even regular at x̄ and

∂π(x̄) =
⋃

y∗∈ND(g(x̄))∩B

∂〈y∗, g〉 (x̄).(3.12)

From (3.11) and (3.12) we infer the existence of some z̃∗ ∈ − [TC(x̄)]
0
and of some α >

0 such that B(z̃∗, α) ⊆ ∂π(x̄). Then, regularity of π at x̄ implies that 〈z̃∗ + αp∗, h〉 ≤
π′(x̄;h) for all p∗ ∈ B and all h ∈ R

k, where π′(x̄;h) refers to the conventional
directional derivative of π taken at x̄ in direction h. Consequently,

α 〈p∗, h〉 ≤ π′(x̄;h)− 〈z̃∗, h〉 ≤ π′(x̄;h) ∀p∗ ∈ B, ∀h ∈ TC(x̄).

For arbitrary h ∈ TC(x̄) ∩ S we set p∗ := h and derive from the last relation that

π′(x̄;h) ≥ α > 0 ∀h ∈ TC(x̄) ∩ S.(3.13)

Assume that M fails to be calm at (0, x̄). Then, as in the proof of Theorem 3.2, there
exist sequences xn → x̄, yn → 0, xn ∈ M(yn) such that d(xn,M(0)) > n‖yn‖. From
here we deduce that xn �= x̄, xn ∈ C, and ‖xn − x̄‖ > n(π(xn)− π(x̄)) for all n. This
amounts to ‖xn− x̄‖−1(π(xn)−π(x̄)) < n−1. It suffices now to pass to an appropriate
subsequence {xn′} such that ‖xn′ − x̄‖−1(xn′ − x̄) → h for some h ∈ TC(x̄)∩S. Local
Lipschitz continuity of π yields that π′(x̄;h) = 0, which contradicts (3.13) and thus
proves the calmness of M at (0, x̄).

Remark 3.7. From (3.13) it immediately follows that (3.11) implies not only the
calmness of M at (0, x̄) but also the isolatedness of x̄ in M(0), i.e., U∩M(0) = {x̄}
for some neighborhood U of x̄.

Example 3.5 shows that the last remark does not apply to the setting of Theorem
3.2 or Corollary 3.4, where no regularity assumptions are made with respect to S or
g.

4. Calmness in applications.

4.1. Nonsmooth calculus. As shown, e.g., in [2], [4], [28], calmness plays an
important role in deriving optimality conditions and in construction of local Lipschitz
error bounds. It enables us, among other things, to replace the constraint system

g(x) ∈ D, x ∈ C,(4.1)

by a more easily tractable constraint

(y, x) ∈ GphM,

where M is given by (3.7), and the new variable y enters the objective via a suit-
able penalty term. Clearly, the feasible set given by (4.1) amounts to M(0). For
the evaluation of the normal cone to M(0) at a given point x̄, one usually employs
various constraint qualifications. A prominent place is occupied by the Mangasarian–
Fromovitz constraint qualification, which in case of (4.1) becomes (1.6). Condition
(1.6) ensures the Aubin property of M around (0, x̄) and, a fortiori, the inclusion

NM(0)(x̄) ⊂
⋃

y∗∈ND(g(x̄))

D∗g(x̄) (y∗) +NC(x̄).(4.2)
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It turns out, however, that the calmness ofM at (0, x̄) also implies (4.2), and therefore,
at least in some cases, condition (1.6) can be weakened.

Theorem 4.1. Consider the multifunction M given by (1.4) and a pair (0, x̄) ∈
GphM . Assume that g is Lipschitz near x̄ and that M is calm at (0, x̄). Then
inclusion (4.2) holds true.

Proof. We start with the observation that (see [22, Theorem 6.10])

NGphM (0, x̄) ⊂ {(y∗, x∗)|y∗ ∈ ND(g(x̄)), x∗ ∈ ∂〈y∗, g〉 (x̄) +NC(x̄)}.(4.3)

Let L be the modulus of calmness of M at (0, x̄). We claim that

∀x∗ ∈ ∂deM(0)(x̄) ∃y∗ ∈ LB : (y∗, x∗) ∈ NGphM (0, x̄).(4.4)

To see this, note that x∗ ∈ ∂deM(0)(x̄) means the existence of sequences xn → x̄

(xn ∈ M(0)), rn ↓ 0, x∗n → x∗, and εn ↓ 0 such that

deM(0)(x)− deM(0)(x̄) ≥ 〈x∗n, x− xn〉 − εn‖x− xn‖ ∀x ∈ B(xn, rn).

Since M is calm at (0, x̄), along with L > 0 there exists some r > 0 such that

deM(0)(x) ≤ L‖y‖ ∀x ∈ B(x̄, r) ∩M(y), ∀y ∈ B(0, r).(4.5)

This implies that

L‖y‖ − 〈x∗n, x− xn〉+ εn‖x− xn‖ ≥ 0(4.6)

∀(y, x) ∈ GphM ∩ (B(0, r)×B(xn, rn))

for sufficiently large n. The function of (y, x) on the left-hand side of (4.6) attains a
constrained minimum at (0, xn). According to Proposition 4.3.4 in [4], the function

L‖y‖ − 〈x∗n, x− xn〉+ εn‖x− xn‖+KdeGphM (y, x)

attains an unconstrained local minimum at (0, xn) for sufficiently large penalty pa-
rameter K. The respective optimality conditions imply the existence of some y∗n ∈ LB

such that

0 ∈ {−y∗n} × ({−x∗n}+ εnB) +NGphM (0, xn).

We now let n tend to infinity and, passing to a subsequence {y∗n′}, establish the
existence of a limit vector y∗ ∈ LB such that (y∗, x∗) ∈ NGphM (0, x̄). This proves
(4.4). It remains to observe that for each ξ ∈ NM(0)(x̄) there is some x∗ ∈ ∂deM(0)(x̄) =

NM(0)(x̄) ∩ B such that ξ = ‖ξ‖x∗. Since g is Lipschitz, the result follows from (4.3)
and (4.4).

Corollary 4.2. In (1.4), let k = m and x̄ ∈ C ∩D. Assume that the map

M̃(y) := {x ∈ C |x+ y ∈ D}
is calm at (0, x̄). Then one has

NC∩D(x̄) ⊂ NC(x̄) +ND(x̄).(4.7)

Proof. It suffices to specialize the statement of Theorem 4.1 for g being the
identity mapping.
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Remark 4.3. The calmness of M̃ at (0, x̄) is closely related to the so-called
metric inequality for the sets C,D at x̄ [12], which also implies inclusion (4.7).

In the literature (e.g., [20], [22]) one usually requires the qualification condition

ND(x̄) ∩ −NC(x̄) = {0}(4.8)

to ensure the validity of inclusion (4.7). However, condition (4.8) implies the Aubin
property of M̃ around (0, x̄) and is thus clearly more demanding than the calmness
required in Corollary 4.2.

By combining Theorem 3.2 and the above corollary, we immediately conclude
that, to ensure inclusion (4.7), it suffices to replace (4.8) by a weaker condition

ND(x̄) ∩ −bdNC(x̄) = {0}(4.9)

whenever C is regular and semismooth at x̄. Moreover, as observed by Kruger [14],
condition (4.9) alone (without regularity or semismoothness assumptions) implies in-
clusion (4.7). The respective statement can be formulated even for a general mapping
M permitting noncanonical perturbations.

Proposition 4.4 (adapted from [14]). Consider the map M given by (3.7), where
g is Lipschitz around a reference pair (ȳ, x̄) ∈ GphM and C, D are closed subsets
of the respective spaces. Assume that (3.8) is fulfilled. Then either M possesses the
Aubin property around (ȳ, x̄) or

⋃
y∗∈ND(g(x̄,ȳ))\{0}

[∂〈y∗, g〉(x̄, ȳ)]x +NC(x̄) = R
p.(4.10)

Proof. If

⋃
y∗∈ND(g(x̄,ȳ))\{0}

[∂〈y∗, g〉(x̄, ȳ)]x ∩ −NC(x̄) = ∅,(4.11)

then it follows from [22, Theorem 6.10] that

D∗M(ȳ, x̄) (x∗) ⊂ {y∗ ∈ R
m | (y∗,−x∗) ∈ D∗g(x̄, ȳ) ◦ND(g(x̄, ȳ))(4.12)

+ (0×NC(x̄))}.
Combining (4.11) and (4.12) provides D∗M(ȳ, x̄) (0) = {0}, whence the Aubin prop-
erty of M at (ȳ, x̄) (see (1.1)). According to (3.8), assume therefore that

⋃
y∗∈ND(g(x̄,ȳ))\{0}

[∂〈y∗, g〉(x̄, ȳ)]x ∩ −intNC(x̄) �= ∅.(4.13)

Then

∃y∗ ∈ ND(g(x̄, ȳ)) \ {0}, ∃x∗ ∈ [∂〈y∗, g〉(x̄, ȳ)]x , ∃α > 0 : B(x∗, α) ⊂ −NC(x̄).

This implies for each p∗ ∈ B(0, α) that

p∗ ∈
⋃

y∗∈ND(g(x̄,ȳ))\{0}
[∂〈y∗, g〉(x̄, ȳ)]x +NC(x̄).

Now, the result follows.
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Corollary 4.5. Let C,D ⊆ R
k be arbitrary closed sets with x̄ ∈ C ∩D. Then

(4.9) ensures inclusion (4.7).
Proof. Apply Proposition 4.4 with g(x, y) := x.
According to the proof of Proposition 4.4, the difference between (3.8) and the

classical Mangasarian–Fromovitz constraint qualification (4.11) reduces to the case
(4.13), for which the argument from Remark 3.7 implies the local isolatedness of the
feasible points of M(0) (under the additional assumptions of Theorem 3.6). This fact
is easily interpreted for mathematical programs of the form

min{f(x)|x ∈ M(0)}.(4.14)

Evidently, isolated points of M(0) are automatically local minima; hence, in this
context (3.8) goes beyond the Mangasarian–Fromovitz constraint qualification as a
condition providing nondegenerate Lagrange multipliers, in that it identifies local
minima given by isolated feasible points.

Another observation is the following: Since polyhedral mappings are automati-
cally calm (cf. [26]), we derive from Theorem 4.1 that a nonsmooth calculus rule like
(4.2) can be obtained under no constraint qualifications for polyhedral data.

4.2. First-order growth (weak sharp minima), local uniqueness, and
stability of solutions. Consider the problem

(P ) min{f(x)|x ∈ C},
where f : R

k → R is a continuous function and C ⊆ R
k a closed subset. Denote the

solution set of (P ) by S. Recall the following definition.
Definition 4.6. In (P ), the objective function f is said to satisfy a first-order

growth condition if there exist a constant c > 0 and a neighborhood N of S such that

f(x) ≥ f∗ + cd(x, S) ∀x ∈ C ∩N ,

where f∗ = inf{f(x)|x ∈ C}. Equivalently, f is said to have a set S of weak sharp
minima with respect to C ∩N (cf. [3]).

Lemma 4.7. Let the solution set S of (P ) be nonempty and bounded, and suppose
that the multifunction M(y) := {x ∈ C|f(x) ≤ y} is calm on {f∗} × S (i.e., calm at
all (f∗, x) with x ∈ S). Then, f satisfies a first-order growth condition in (P ).

Proof. Fix an arbitrary x0 ∈ S. Obviously, f(x0) = f∗; hence the calmness of M
at (f(x0), x0) implies the existence of ε, δ, L > 0 such that

d(x,M(f(x0))) ≤ L|y − f(x0)| ∀y : |y − f(x0)| < δ, ∀x ∈ M(y) ∩B(x0, ε).

Choose ε > 0 small enough to meet |f(x)− f(x0)| < δ for all x ∈ B(x0, ε). Now, one
may put y := f(x) in the above estimation and derive from M(f(x0)) = S that

d(x, S) ≤ L|f(x)− f(x0)| ∀x ∈ C ∩B(x0, ε).

From f(x) ≥ f(x0) for all x ∈ C, it follows that

f(x) ≥ f∗ + L−1d(x, S) ∀x ∈ C ∩B(x0, ε).

By our assumptions, S is compact. Hence, a finite number of xi ∈ S, εi > 0, and
Li > 0 exists such that S ⊆ ∪iB(xi, εi) and

f(x) ≥ f∗ + L−1
i d(x, S) ∀x ∈ C ∩B(x∀i, εi).
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This, however, implies that f satisfies a first-order growth condition with c := (maxLi)
−1

and N := ∪iB(xi, εi).
Corollary 4.8. In (P ) let f be locally Lipschitz and C be regular and semis-

mooth. Then f satisfies a first-order growth condition if the solution set S is nonempty
and bounded and, moreover, the condition

∂f(x) ∩ −bdNC(x) = ∅ ∀x ∈ S

holds true.
Proof. Combine Lemma 4.7 with Corollary 3.4 (setting g(x, y) := f(x) + y and

D := R− there).
A consequence of the constraint qualification in the last corollary is that solutions

are locally isolated, as described in the following.
Proposition 4.9. Let f : R

k → R be Lipschitz near x̄ ∈ S, and C ⊆ R
k be

regular at x̄. If, in addition, C or f is semismooth at x̄, then the condition ∂f(x̄) ∩
−bdNC(x̄) = ∅ entails that U ∩ S = {x̄} for some neighborhood U of x̄.

Proof. Assume, by contradiction, that xn → x̄ for some sequence xn ∈ S\{x̄}.
Then, without loss of generality, ‖xn − x̄‖−1

(xn − x̄) → h ∈ TC(x̄). On the other
hand, as xn ∈ S, it follows that f(xn) = f(x̄) and 0 ∈ ∂f(xn)+NC(xn). Accordingly,
we may extract a sequence y∗n ∈ ∂f(xn) ∩ −NC(xn). This sequence is bounded
because f is Lipschitz around x̄. Hence, without loss of generality, y∗n → y∗ for some
y∗ ∈ ∂f(x̄)∩−NC(x̄). We claim that y∗ ∈ −bdNC(x̄), whence a contradiction to the
assumed condition ∂f(x̄)∩−bdNC(x̄) = ∅. Indeed, if C is semismooth at x̄, this is an
immediate consequence of Proposition 3.1. In the opposite case, the semismoothness
of f at x̄ provides that

〈y∗n, h〉 → 〈y∗, h〉 = f ′(x̄;h) = lim
n→∞ ‖xn − x̄‖−1

(f(xn)− f(x̄)) = 0.

Now the same reasoning as in the proof of Proposition 3.1 allows us to derive that
y∗ ∈ −bdNC(x̄).

Evidently, Proposition 4.9 may be taken as a subdifferential condition for the local
uniqueness of solutions. Now we are in a position to state a subdifferential condition
for upper Lipschitz stability of solution sets. Consider the parametric optimization
problem

P (y) min{f(x)|g(x) ≤ y },
where f : R

k → R and g : R
k → R

m are locally Lipschitz, and M(y) and S(y) denote
the parameter-dependent sets of feasible points and solutions, respectively. The set
of active indices at x in the relation g(x) ≤ y will be denoted by I(x).

Theorem 4.10. Let S(0) be nonempty and bounded, and assume the following
conditions to hold true for all x ∈ S(0) :

(1) All components gi of g are regular and semismooth at x.
(2) ∂f(x) ∩ −bdNg−1(Rm

− )(x) = ∅.
(3) 0 /∈ bd conv {∂gi(x)}|i ∈ I(x)} (“conv”= convex hull).

Then, there exist some neighborhood U of S(0) and constants ε, L > 0 such that

d(x, S(0)) ≤ L ‖y‖ ∀y ∈ B(0, ε), ∀x ∈ U ∩ S(y).

Proof. We shall show that S is calm at (0, x) for all x ∈ S(0) and that S(0)
consists just of isolated points. Given this fact, our compactness assumption ensures
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that S(0) will consist of only finitely many points, say S(0) = {x1, . . . , xN}. The
calmness property then means the existence of constants Li, εi, δi such that

d(x, S(0)) ≤ Li ‖y‖ ∀y ∈ B(0, εi), ∀x ∈ B(xi, δi) ∩ S(y) (i = 1, . . . , N).

Setting L := max Li, ε := min εi, and U := ∪B(xi, δi), the assertion of the theorem
follows.

In order to prove the stated facts, let x̄ ∈ S(0) be arbitrarily given. Note that our
constraint system M(y) = {x|g(x) ≤ y } is a special case of (1.4) with D := R

m
− and

C := R
k. It is easily checked that assumption (1) implies the setting considered in

Theorem 3.6. Indeed, regularity of the gi implies regularity of any function
∑m

i=1 y
∗
i gi

with y∗i ≥ 0; hence 〈y∗, g〉 is regular at x̄ for all

y∗ ∈ ∂deD(g(x̄)) = ND(g(x̄)) ∩ B = {y∗ ∈ R
m
+ | ‖y∗‖ ≤ 1, y∗i = 0 (i /∈ I(x̄))},

as required in Theorem 3.6.
Suppose first that 0 ∈ intH, where H := conv {∂gi(x̄)}|i ∈ I(x̄)}. By regularity

of the gi, the subdifferentials ∂gi(x̄) are convex; hence

H =




∑
i∈I(x̄)

y∗i ∂gi(x̄)

∣∣∣∣∣∣
∑

i∈I(x̄)

y∗i = 1, y∗i ≥ 0


 .

Therefore

H ⊆
⋃

y∗∈ND(g(x̄))∩B

∂〈y∗, g〉 (x̄),

which along with [TC(x̄)]
0
= {0} implies that (3.11) holds. Hence, by Remark 3.7,

M(0) is locally isolated at x̄. Then, S(0) is isolated at x̄ as well due to S(0) ⊆ M(0).
Furthermore, Theorem 3.6 allows us to derive the calmness of M at (0, x̄), i.e.,

d(x,M(0)) ≤ L ‖y‖ ∀y ∈ B(0, ε), ∀x ∈ V ∩M(y)

for some neighborhood V of x̄ and some ε, L > 0. Choosing V small enough to meet
d(x, S(0)) = ‖x− x̄‖ (by the local isolatedness of S(0)), one may conclude that

d(x, S(0)) ≤ d(x,M(0)) ≤ L ‖y‖ ∀y ∈ B(0, ε), ∀x ∈ V ∩ S(y),

where we used once more that S(y) ⊆ M(y). This, however, is calmness of S at x̄.
In the opposite case, 0 /∈ intH, assumption (3) entails that 0 /∈ H. This condi-

tion along with assumption (1) implies the regularity and semismoothness of the set
g−1(Rm

− ) at x̄ (see [8, Lemma 3.6]). Then, in view of our assumptions, Proposition 4.9
may be invoked to show the local isolatedness of S(0) at x̄ again. Furthermore, the
condition 0 /∈ H is nothing but the Mangasarian–Fromovitz constraint qualification
for a finite set of locally Lipschitz inequalities. It is well known that then the con-
straint mapping M has even the Aubin property around (0, x̄), which is stronger than
calmness. Hence, exactly the same argument as in the previous case can be applied
to derive the calmness of S at (0, x̄).

Concerning the first assumption in Theorem 4.10, an analogous statement to
that of Remark 3.3 applies. In particular, convex and C1-functions are regular and
semismooth (even a maximum of such functions).
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The next example illustrates the application of Theorem 4.10 in a smooth setting
and, along the way, demonstrates how the upper Lipschitz stability of solutions can be
established despite violation of the Mangasarian–Fromovitz constraint qualification.

Example 4.11. Consider the parametric optimization problem

min{(x1 − 1/2)2| − x1 − x2 ≤ y1; x2 ≤ y2; x1(1− x1)− x2 ≤ y3}.

Then S(0) = {xa, xb} with xa = (0, 0), xb = (1, 0). Obviously, S(0) is nonempty
and bounded, and the constraint functions satisfy assumption (1) of Theorem 4.10
by smoothness. At xa all unperturbed constraints are binding; hence the set H from
assumption (3) is given as the convex hull of the three gradients:

H = conv {(−1,−1), (0, 1), (1,−1)}.

Obviously, 0 ∈ intH; hence the Mangasarian–Fromovitz constraint qualification is
violated at xa. In contrast, the condition 0 /∈ bdH of assumption (3) is fulfilled. Fur-
thermore, 0 ∈ intH implies that the unperturbed constraint set M(0) = g−1(R3

−) is
locally isolated at xa (see the proof of Theorem 4.10). Therefore, Ng−1(R3

−)(x
a) = R

2,
and assumption (2) holds trivially. Concerning xb, only the second and third con-
straint are binding, so H = conv {(0, 1), (−1,−1)} and 0 /∈ H. Again, assumption (3)
is satisfied. Moreover, Ng−1(R3

−)(x
b) is the convex cone generated by the two active

gradients (0, 1) and (−1,−1), so its negative boundary is (R+ · (0,−1))∪ (R+ · (1, 1)).
Again, assumption (2) is fulfilled. Summarizing, the upper Lipschitz behavior of solu-
tions to the above parametric problem can be derived.

4.3. Equilibrium mappings. In [23] and [6] the authors study various stability
properties of parametrized equilibria governed by the generalized equations

0 ∈ f(x, y) +Q(x),(4.15)

where x ∈ R
k is the decision variable, y ∈ R

p is the parameter, f : R
k × R

p → R
k

is continuously differentiable, and Q : R
k ⇒ R

k is a closed-valued multifunction. If
one considers an optimization problem with (4.15) as a constraint, and an additional
abstract constraint (x, y) ∈ C, then it is important to verify the calmness of the
mapping H : R

k ⇒ R
k × R

p defined by

H(z) := {(x, y) ∈ C|z ∈ f(x, y) +Q(x)} .

H can easily be converted to the form (3.7), and so Corollary 3.4 can be applied. In
fact, this procedure is illustrated in [8] by a parameterized equilibrium governed by
a nonlinear complementarity problem. In this section we concentrate on a different
mapping associated with parameterized equilibria, namely, the intersection

Θ(y) := S(y) ∩ C,

where S is the so-called solution mapping defined by

S(y) = {x ∈ R
k | 0 ∈ f(x, y) +Q(x, y)},(4.16)

and C is a closed subset of R
k specifying the feasible decision variables. In (4.16) we

admit that Q also depends on the parameter y, which extends the class of considered
equilibria. Calmness of S (with Q depending only on x) has been investigated in [6],
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but in the narrower sense of calmness on selections (see the introduction) where, for
a reference pair (ȳ, x̄), one requires x̄ to be an isolated point of S(ȳ).

The mapping S can be written in the form S(y) = {x ∈ R
k|g(x, y) ∈ D}, where

g(x, y) = (x, y,−f(x, y))T and D = GphQ. Therefore, Θ has exactly the structure
of the multifunction M in (3.7), and we immediately obtain the following statement
from Corollary 3.4.

Theorem 4.12. Let C be regular and semismooth at x̄ ∈ Θ(ȳ). Further assume
that the qualification condition

0 ∈ w − (∇xf(x̄, ȳ))
T z + bdNC(x̄),

(w, v, z) ∈ NGphQ(x̄, ȳ,−f(x̄, ȳ))
}

implies




w = 0,
v = 0,
z = 0,

(4.17)

holds true. Then Θ is calm at (ȳ, x̄).
If Q depends just on x, then g(x, y) = (x,−f(x, y))T , and the qualification con-

dition (4.17) reduces to

0 ∈ w − (∇xf(x̄, ȳ))
T z + bdNC(x̄),

(w, z) ∈ NGphQ(x̄,−f(x̄, ȳ))
}

implies

{
w = 0,
z = 0.

(4.18)

The following example shows that the qualification conditions (4.17), (4.18) may
well be violated even when Θ is calm at (ȳ, x̄).

Example 4.13. In (4.16) let k = p = 1, f ≡ 0, and

Q(x, y) = ∂ϕ(x) +Ny+R−(x), ϕ(x) =

{ −x for x ≤ 0,
0 for x > 0.

Clearly,

S(y) =

{
y for y ≤ 0,
[0, y] otherwise.

Let (ȳ, x̄) = (0, 0). It is easily seen that with C = R+ or C = R− the mapping Θ is
calm at (ȳ, x̄). Nevertheless, condition (4.17) is not fulfilled.

The reason for the failure of (4.17) in the last example is that this condition works
with a too large upper approximation of D∗S(ȳ, x̄). In such cases it makes sense to
directly apply Theorem 3.2: In Example 4.13 one calculates

D∗S−1(ȳ, x̄) (y∗) =
{

y∗ if y∗ �= 0,
R− if y∗ = 0.

Both for C = R+ and C = R−, it is easily verified that (3.1) holds true, and hence,
calmness of Θ can be derived. Observe that this result could not be obtained when
considering the whole cone NC(x̄) instead of its boundary.

Remark 4.14. The calmness of Θ in the above example follows directly from
its polyhedral nature. Nevertheless, it illustrates well the need to weaken the standard
criteria ensuring the Aubin property when analyzing calmness.
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