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Abstract The points on the revolution axis of a circular cone are somewhat special:
they are the “most interior” elements of the cone. This paper addresses the issue of
formalizing the concept of center for a convex cone that is not circular. Four distinct
proposals are studied in detail: the incenter, the circumcenter, the inner center, and
the outer center. The discussion takes place in the context of a reflexive Banach
space.
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1 Introduction

The purpose of this work is studying four notions of center for a closed convex cone.
For simplicity in the presentation, we ask the underlying space (X, ‖ · ‖) to be Banach
and reflexive. On some occasions we impose even further structural assumptions like
rotundity or smoothness.

An axis, or ray, can be identified with a point on the unit sphere SX . Defining
a central axis in a convex cone is then a matter of identifying the unit vector that
generates such axis. It is the unit vector, rather than the corresponding axis, what we
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have in mind when we refer to the center of a cone. Why should we care about the
goal formulated in the title? By way of motivation, we mention three applications.

Example 1.1 The first motivation arises in numerical linear algebra. Let the space Sn

of symmetric matrices of order n be equipped with the trace inner product 〈A, B〉 =
tr(AB). Suppose that A0 ∈ Sn is positive definite, i.e., A0 belongs to the interior of
the Loewner cone

Pn = {
A ∈ Sn : xT Ax ≥ 0 for all x ∈ R

n} ,

where the superscript “T” indicates transposition. Suppose also that A0 has unit
length. If A0 is near the boundary of Pn, then carrying out a Cholesky factorization
could be problematic. Indeed, a small perturbation E ∈ Sn may produce a nearby
matrix A0 + E that is no longer positive definite. On the contrary, if A0 is somewhere
in the center of Pn, then more important pertubations can be tolerated because there
is a long way to go before A0 + E looses its positive definiteness. Which is the safest
location in Pn for placing the matrix A0? An alternative formulation of the latter
question reads as follows: which is the most positive definite matrix among all the
positive definite matrices of unit length? In the same vein, one could ask also which
is the most strictly copositive matrix, the most positive entrywise, and so on.

Example 1.2 The second motivation concerns the study of nonsmooth convex bod-
ies. Let C be a convex body in a Hilbert space X and u be a nonsmooth boundary
point of C. That u is nonsmooth means that the set

NC(u) = {y ∈ X : 〈y, x − u〉 ≤ 0 for all x ∈ C}
of normal vectors to C at u is not reduced to a ray (cf. Fig. 1). Which one is the “most
normal” among all normal vectors to C at u? This question was raised by Aubry and
Löhner [3] for nonsmooth convex bodies in a three dimensional Euclidean space.
The answer proposed in [3] is quite reasonable, but it is just one option among many.
Everything depends, in fact, on what is to be understood by being the center of the
closed convex cone NC(u).

Fig. 1 What means that y is
the “most normal” vector to C
at u?
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Example 1.3 In the context of the previous example, consider the closed convex cone

TC(u) = cl
[
R+(C − u)

]

of tangent directions to C at u. Here, the notation “cl” stands for the closure
operation in X. If h is in the boundary of TC(u), then the half-line u + R+h may
intersect C only at u. By contrast, if h ∈ int[TC(u)], then there exists an ε > 0 such
that u + t h ∈ int(C) for all t ∈]0, ε]. In such a case, one says that h is an interior
displacement direction to C at u. How to choose h if one wishes to get into the interior
of C in the steepest possible way?

The concept of center of a closed convex cone, say K, can be formalized in
many ways. In this work we explore four options: the incenter, which corresponds
to the center of a certain largest ball inscribed in the cone; the circumcenter, which
corresponds to the center of a certain smallest ball that generates K; the inner
center, which can be identified with the revolution axis of the largest revolution cone
contained in K; the outer center, defined as previously, but now one looks for the
smallest revolution cone containing K. These four types of center are different in
general. Each concept has its own advantages and inconveniences.

Before getting started we need to fix some terminology. The mathematical object
K under analysis is an element of the hyperspace �(X) of nontrivial closed convex
cones in X. That a convex cone is nontrivial means that it is different from the
singleton {0} and different from the whole space X. That K belongs to �(X) is
the bare minimum. In practice, we ask K to satisfy further assumptions. Recall that
K ∈ �(X) is solid if int(K) is nonempty, and it is sharp if there exists a nonzero vector
f in the topological dual space X∗ such that ‖x‖ ≤ 〈 f, x〉 for all x ∈ K. The symbol
〈·, ·〉 stands for the duality product between X and X∗, that is to say, 〈 f, x〉 = f (x)

for all (x, f ) ∈ X × X∗. For convenience, we introduce the notation

�sol(X) = {K ∈ �(X) : K is solid},
�sh(X) = {K ∈ �(X) : K is sharp}.

In a reflexive Banach space setting, solidity and sharpness are dual properties (cf.
[14, 19]). The use of duality arguments is ubiquitous throughout this work: solidity
versus sharpness, smoothness versus rotundity, etc. On several occasions we move
from X to X∗, and viceversa. This is done with the help of the duality map I : X ⇒
X∗ and its inverse I−1 : X∗ ⇒ X. By definition, I is a multivalued map whose graph
is given by

gr(I) = {
(x, f ) ∈ X × X∗ : 〈 f, x〉 = ‖x‖2 = ‖ f‖2

∗
}
.

The norm on X∗ is the usual one, i.e., ‖ f‖∗ = sup‖x‖=1〈 f, x〉. Finally, recall that
the set

K+ = { f ∈ X∗ : 〈 f, x〉 ≥ 0 for all x ∈ K}
is known as the dual cone of K. In the context of a reflexive Banach space, the dual
cone of K+ is nothing else than K itself. Further comments on duality will be given
whenever the need arises.
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2 The Incenter of a Convex Cone

Likely the first idea of center of K introduced in the literature is that of a vector in
the set

K ∩ SX = {x ∈ K : ‖x‖ = 1}
maximizing the distance to ∂K, i.e., to the boundary of K. If not the first chronologi-
cally, such an idea is at least quite natural and has a strong geometric appealing.

Definition 2.1 Let (X, ‖ · ‖) be a reflexive Banach space and let K ∈ �(X). An
incenter of K is a solution to the variational problem

ρ(K) = sup
x∈K∩SX

dist[x, ∂K]. (1)

The coefficient ρ(K) is called the inradius of K.

The above definition makes sense in a general normed space, but we prefer to give
it in a reflexive Banach space. In such a particular context, every element of �(X)

admits at least one incenter.

Proposition 2.2 Let (X, ‖ · ‖) be a reflexive Banach space and let K ∈ �(X). Then

�inc(K) = {x ∈ K ∩ SX : dist[x, ∂K] = ρ(K)}
is nonempty. If K happens to be solid, then �inc(K) is a convex set contained in SX ∩
int(K).

Proof There is no loss of generality in assuming that K is solid, otherwise every point
in K ∩ SX is an incenter and the proposition is trivial. Let us shift the attention to the
“convexified” problem

maximize dist[x, ∂K] (2)

x ∈ K ∩ BX

with BX standing for the closed unit ball of X. The boundary ∂K is nonempty
because K is not the whole space X. The function dist[ · , ∂K] is continuous on
X, and its restriction to the bounded convex closed set K ∩ BX is concave. Since
(X, ‖ · ‖) is Banach and reflexive, (2) admits at least one solution. The solution set
to the convexified problem is clearly convex. On the other hand, the solidity of K
implies that any solution to (2) belongs to int(K). Since dist[ · , ∂K] is positively
homogeneous, a solution to (2) must be a unit vector. This completes the proof of
the proposition. 
�

Solving the maximization problem (1) is often a challenging task. Such a maxi-
mization problem is worked out in the companion paper (Henrion and Seeger, un-
published manuscript) for several convex cones arising in applications. A convenient
way of representing the solution set to (1) is

�inc(K) = {x ∈ SX : x + ρ(K)BX ⊂ K}.
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This representation formula will be used on several occasions in the sequel. In order
to proceed further with the presentation, we need to state a lemma on incenters of
half-spaces. A homogeneous half-space of X is a set of the form

H f = {x ∈ X : 〈 f, x〉 ≥ 0}
with f standing for a unit vector of X∗.

Lemma 2.3 Let (X, ‖ · ‖) be a reflexive Banach space and let f ∈ SX∗ . Then ρ
(
H f

) =
1 and �inc(H f ) = I−1( f ).

Proof As shown in [8, Theorem 1.1.2], the distance from x ∈ X to the closed
hyperplane

∂ H f = {x ∈ X : 〈 f, x〉 = 0}
is given by dist[x, ∂ H f ] = |〈 f, x〉|. Hence, the maximization problem (1) takes the
form

ρ(H f ) = sup
x∈H f ∩SX

〈 f, x〉.

But the constraint x ∈ H f is clearly redundant. Hence, ρ(H f ) = ‖ f‖∗ = 1 and

�inc(H f ) = {x ∈ SX : 〈 f, x〉 = 1},
the set on the right-hand side being precisely I−1( f ). 
�

2.1 Uniqueness of the Incenter

A normed space (X, ‖ · ‖) is rotund (or strictly convex) if the unit sphere SX contains
no segment. By extension, the term rotundity applies also to the norm. The rotundity
of (X, ‖ · ‖) is necessary and sufficient for guaranteeing the uniqueness of solutions
to the variational problem (1).

Theorem 2.4 Let (X, ‖ · ‖) be a reflexive Banach space. Then the following statements
are equivalent:

(a) Each K ∈ �sol(X) has a unique incenter.
(b) Each homogeneous half-space of X has a unique incenter.
(c) (X, ‖ · ‖) is rotund.

Proof The implication (a)⇒(b) is trivial because any homogeneous half-space of
X is an element of �sol(X). In view of Lemma 2.3, what conditions (b) says is
that I−1( f ) is a singleton for all f ∈ SX∗ . By a general result on the geometry of
Banach spaces (cf. [22, Chapter 5]), the latter condition implies the rotundity of
(X, ‖ · ‖). Finally, let (c) be true and let K ∈ �sol(X). The set �inc(K) being convex
and contained in SX , it must be a singleton. 
�

The book by Megginson [22] provides a good dozen of equivalent formulations of
rotundity. The characterization (a) given in Theorem 2.4 is not surprising altogether,
but, to the best of our knowledge, it is new.
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In the sequel, whenever we refer to an incenter, we assume that the underlying
space is rotund. The unique solution to (1) is then denoted by πinc(K), and πinc :
�sol(X) → X is seen as an ordinary or single-valued function. It is helpful to think of
πinc(K) as the “most interior” unit vector of K.

There are various interpretations for ρ(K) and, as a consequence, this coefficient
does not have a universally accepted name. A few historical comments might help
to put matters in perspective. Assuming that K is solid, Freund [11] writes (1) in the
equivalent form

ρ(K) = sup
x∈int(K)

dist[x, ∂K]
‖x‖ (3)

and calls this number the min-width of K. In references [4, 10, 12], the min-width is
called simply the width. Iusem and Seeger [17, 19] refer to (1) as a solidity coefficient
of K, and write this number as the optimal-value of a variational problem

maximize r (4)

‖x‖ = 1

r ∈ [0, 1]
x + rBX ⊂ K

with feasible set in the product space X × R. View under this light, computing
ρ(K) amounts to finding the radius of the largest ball centered in a unit vector and
contained in K. This observation explains why ρ(K) measures to which extent the
cone K is solid.

Corollary 2.5 Let (X, ‖ · ‖) be a rotund reflexive Banach space and let K ∈
�sol(X). Then the variational problem (4) has exactly one solution, namely (x̄, r̄) =
(πinc(K), ρ(K)).

The proof of the corollary is just a matter of exploiting Theorem 2.4 and the
equality

ρ(K) = sup
x∈K∩SX

sup
r∈[0,1]

x+rBX ⊂K

r .

Note that (4) is obtained by assembling the last two suprema. By mimicking the
parlance of the theory of convex bodies, we refer to

Binc(K) = πinc(K) + ρ(K) BX

as the inball of K. There is no risk of confusion with the classical terminology because
we are dealing here with cones and not with bounded sets.

2.2 Finding the Incenter via Least-norm Minimization

There is yet another way of looking at the incenter of a convex cone. Recall that a
set of the form

A � B = {z ∈ X : z + B ⊂ A}
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is referred to as the erosion of A by B. This name is commonly used in morphological
analysis [2, 23], but control theorists refer to A � B as the Pontryagin difference of
A and B.

Proposition 2.6 Let (X, ‖ · ‖) be a rotund reflexive Banach space and let K ∈ �sol(X).
Then

(πinc(K), ρ(K)) =
(

ξ(K)

‖ξ(K)‖ ,
1

‖ξ(K)‖
)

(5)

with ξ(K) = argminz∈K�BX
‖z‖ denoting the least-norm element of K � BX.

Proof In view of Freund’s representation formula (3), one can write

ρ(K) = sup
x∈int(K)

∥∥∥∥
x

dist[x, ∂K]
∥∥∥∥

−1

.

The change of variables

z = x
dist[x, ∂K] (6)

leads to the least-norm problem

1

ρ(K)
= inf

z∈K
dist[z,∂K]=1

‖z‖ . (7)

A standard homogeneity argument shows that the solution set to (7) remains
unchanged if the minimization is carried over the larger set

K � BX = {z ∈ K : dist[z, ∂K] ≥ 1}. (8)

Note that (8) is a closed convex subset of X. Hence, ξ(K) is the unique solution
to (7). The formula (5) is obtained by exploiting the relation (6) and the fact that
πinc(K) has unit length. 
�

Example 2.7 The incenter of the Pareto cone Rn+ can be easily found by solving a
least-norm minimization problem. Let BRn be the closed unit ball of the standard
Euclidean space Rn. The least-norm element of the set

R
n
+ � BRn = {x ∈ R

n : x1 ≥ 1, . . . , xn ≥ 1}
is clearly 1n = (1, . . . , 1)T . Hence, ρ(Rn+) = 1/

√
n and πinc(R

n+) = 1n/
√

n .

Parenthetically, note that ρ(Rn+) → 0 as n → ∞. The asymptotic behavior of
πinc(R

n+) is more problematic. Let us give a quick look at the infinite dimensional
version of the Pareto cone.

Example 2.8 Consider the space 	2(R) of square summable real sequences equipped
with the usual inner product 〈y, x〉 = ∑

i∈N
yixi. The closed convex cone

K = {x ∈ 	2(R) : xi ≥ 0 for all i ∈ N}
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has empty interior. Hence, ρ(K) = 0 and �inc(K) = K ∩ S	2(R). On the other hand,
since K � B	2(R) is empty, its least-norm element is not well defined. This example
shows that the solidity assumption cannot be omitted in Proposition 2.6.

2.3 Stability of the Incenter

This section concerns the stability of the incenter πinc(K) with respect to perturba-
tions in the argument K. In the sequel, the set �(X) is equipped with the truncated
Pompeiu-Hausdorff metric


(K1, K2) = haus(K1 ∩ BX , K2 ∩ BX).

The same metric is used on any subset of �(X). For alternative ways of measuring
distances between closed convex cones, the reader may consult the survey paper [20].

In Theorem 2.9, the underlying normed space must enjoy a geometric property
that is stronger than rotundity. A normed space (X, ‖ · ‖) is uniformly rotund (or
uniformly convex) if for all ε > 0 there exists η > 0 such that ‖u + v‖ ≤ 2(1 − η)

whenever u, v ∈ SX and ‖u − v‖ ≥ ε. It is known (cf. [5, Chapter III.7]) that a
uniformly rotund Banach space (X, ‖ · ‖) is rotund, reflexive, and satisfies the Kadec
property

{xn}n∈N

weak→ x and lim sup
n→∞

‖xn‖ ≤ ‖x‖ =⇒ lim
n→∞ ‖xn − x‖ = 0 (9)

for any x ∈ X and any sequence {xn}n∈N in X. The Kadec property is essential for
passing from weak convergence to strong convergence.

Theorem 2.9 Suppose that (X, ‖ · ‖) is a uniformly rotund Banach space. Then the
function πinc : (�sol(X), 
) → (X, ‖ · ‖) is continuous.

Proof The proof simplifies if distances between closed convex cones are measured
by means of the expression

δ(K1, K2) = max

{

sup
a∈K1∩SX

dist[a, K2], sup
b∈K2∩SX

dist[b , K1]
}

.

In a Hilbert space setting, 
 and δ are exactly the same metric. In a general normed
space, δ is not truely a metric because it does not satisfy the triangular inequality.
This fact has no incidence in the proof of the theorem. The only thing one needs to
know is that

δ(K1, K2) ≤ 
(K1, K2) ≤ 2 δ(K1, K2). (10)

This chain of inequalities can be found, for instance, in [19, Lemma 5]. We need to say
also some words on the inradius function. As shown in [19, Corollary 9], whenever
X is a reflexive Banach space, the function ρ satisfies

|ρ(K1) − ρ(K2)| ≤ 2 δ(K1, K2) (11)

for all K1, K2 ∈ �(X). The combination of (10) and the Lipschitz inequality (11)
implies that ρ : (�(X), 
) → R is continuous. The continuity analysis of πinc is more
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complicated. Consider a reference argument K ∈ �sol(X) and a sequence {Kn}n∈N in
�sol(X) such that

lim
n→∞ 
(Kn, K) = 0. (12)

If one writes cn = πinc(Kn), then one has

cn + ρ(Kn) BX ⊂ Kn (13)

for all n ∈ N. Let us examine what happens with (13) as n → ∞. We know already
that

lim
n→∞ ρ(Kn) = ρ(K).

Since BX is weakly sequentially compact, {cn}n∈N admits a subsequence {cϕ(n)}n∈N

that converges weakly to some c̃ ∈ BX . We claim that

c̃ + ρ(K)BX ⊂ K. (14)

Proving the inclusion (14) amounts to showing the inequality

〈 f, c̃〉 + ρ(K) 〈 f, u〉 ≥ 0 (15)

for all u ∈ BX and f ∈ K+. Pick then u and f as just indicated. By combining (10),
(12), and the Walkup-Wets isometry theorem (cf. [25, Theorem 1]), one gets

lim
n→∞ δ∗

(
K+

n , K+) = 0, (16)

where δ∗ is defined in an obvious way, i.e.,

δ∗(Q1, Q2) = max

{

sup
a∈Q1∩SX∗

dist[a, Q2], sup
b∈Q2∩SX∗

dist[b , Q1]
}

.

In turn, (16) implies that

lim
n→∞ dist

[
f, K+

n

] = dist
[

f, K+] = 0.

Hence, limn→∞ ‖ fn − f‖∗ = 0 for some sequence { fn}n∈N in X∗ such that fn ∈ K+
n for

all n ∈ N. We now take (13) into account. This inclusion yields in particular

〈 fϕ(n), cϕ(n)〉 + ρ(Kϕ(n)) 〈 fϕ(n), u〉 ≥ 0 (17)

for all n ∈ N. A passage to the limit in (17) leads to (15) and confirms the claim (14).
Since 0 /∈ int(K), it is clear that c̃ �= 0. The case 0 < ‖c̃‖ < 1 must also be ruled out,
because the inclusion

c̃
‖c̃‖ + ρ(K)

‖c̃‖ BX ⊂ K

would lead to the contradiction

ρ(K) ≥ ‖c̃‖−1 ρ(K) > ρ(K).

Hence, c̃ is a unit vector. Taking into account (14) and the uniqueness of the metric
center, one deduces that c̃ = πinc(K). In conclusion, the whole sequence {cn}n∈N
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converges weakly to πinc(K). Since everything takes place on SX , the Kadec property
(9) implies that {cn}n∈N converges strongly to πinc(K). 
�

The proof of Theorem 2.9 shows that if (X, ‖ · ‖) is a rotund reflexive Banach
space, but not uniformly rotund, then πinc is continuous from (�sol(X), 
) to X
equipped with the weak topology. On the other hand, a super-reflexive Banach space
can be given an equivalent norm that is uniformly rotund (cf. [9, Corollary 3]). Such
a renorming principle enlarges the range of applicability of Theorem 2.9. However,
one must be aware that a renorming of the space will modify the very definition of
the metric center. Indeed, πinc(K) depends not just on K but also on the choice of
norm.

3 The Circumcenter of a Convex Cone

We now consider the issue of defining a smallest ball associated with K or, more
precisely, a smallest ball-generated cone containing K. By a ball-generated cone in a
normed space (X, ‖ · ‖) one understands a set of the form

M(w, s) = cl
[
R+ (w + sBX)

]
(18)

with w ∈ SX and s ∈ [0, 1]. Note that the closure operation can be dropped when
s ∈ [0, 1[. Ball-generated cones have a relatively simple structure and are used in the
literature for various purposes (cf. [6, 13, 26]). We warn the reader that the concept
of ball-generated cone is norm dependent: a set in X may be a ball-generated cone
with respect ‖ · ‖, but not with respect to an equivalent norm.

Following a similar line of thought as in (4), we formulate the variational problem

minimize s (19)

‖w‖ = 1

s ∈ [0, 1]
K ⊂ M(w, s)

and denote by μ(K) its optimal value. Geometrically speaking, one must find a ball of
smallest radius among all balls whose generated cone contains K. The formulation
of the minimization problem (19) takes place in a space where the norm has been
fixed once and for all. If one wishes to focus on the minimization variable w, then it
is preferable to write (19) in the concatenated form

μ(K) = inf
‖w‖=1

inf
s∈[0,1]

K⊂M(w,s)

s .

Definition 3.1 Let (X, ‖ · ‖) be a reflexive Banach space and let K ∈ �(X) be
contained in a ball-generated cone. The coefficient μ(K) is called the circumradius
of K. A circumcenter of K is a minimizer of the extended-real-valued function

w ∈ SX �→ gK(w) = inf{s : s ∈ [0, 1] , K ⊂ M(w, s)}.
The set of all circumcenters of K is denoted by �circ(K).
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If �circ(K) happens to be a singleton, then its unique element is denoted by
πcirc(K) and

Bcirc(K) = πcirc(K) + μ(K) BX

is called the circumball of K. This name is inspired by a similar concept from the
theory of convex bodies. In Definition 3.1 one asks K ∈ �(X) to be contained in a
ball-generated cone, because otherwise the variational problem (19) is not feasible.
As shown in the example below, a closed convex cone in a reflexive Banach space
may not be contained in a ball-generated cone.

Example 3.2 Let R2 be equipped with the Manhattan norm ‖x‖ = |x1| + |x2|. If w is
a unit vector and s ∈ [0, 1], then M(w, s) ⊂ {x ∈ R2 : σ1x1 + σ2x2 ≥ 0} with σ1, σ2 ∈
{−1, 1}. One can check that K = {x ∈ R2 : c |x1| ≤ x2} is not contained in a ball-
generated cone if the parameter c belongs to the interval [0, 1/2[.

A normed space (X, ‖ · ‖) is smooth if each boundary point of BX admits a unique
supporting hyperplane. By extension, the term smooth applies also to the norm. The
theory of circumcenters simplifies considerably if the underlying space is smooth.

Lemma 3.3 Let (X, ‖ · ‖) be a reflexive Banach space. Then the following statements
are equivalent:

(a) Each K ∈ �(X) is contained in a ball-generated cone.
(b) Each homogeneous half-space of X is contained in a ball-generated cone.
(c) Each homogeneous half-space of X is a ball-generated cone.
(d) (X, ‖ · ‖) is smooth.

Proof For convenience, we divide the proof in several parts:

(a) ⇔ (b) and (c) ⇒ (b). This is immediate.
(d) ⇒ (c). Pick f ∈ SX∗ and w ∈ I−1( f ). Since f is a unit vector, so is w. We claim

that

H f = M(w, 1). (20)

This equality can be obtained by relying on Lemma 3.1 by Zhuang [26],
but we prefer to give here a short and self-contained proof. Note that

M(w, 1) = cl
[
R+ (BX − (−w))

] = TBX (−w) ,

i.e., M(w, 1) is equal to the tangent cone to BX at −w. By passing
to polars (or negative duals), one gets [M(w, 1)]− = NBX (−w) with
NBX (−w) standing for the normal cone to BX at −w. Since −w is a
smooth boundary point of BX , the set NBX (−w) is a ray. But,

〈− f, x − (−w)〉 = 〈− f, x〉 − 1 ≤ 0 for all x ∈ BX ,

i.e., − f ∈ NBX (−w). We have shown in this way that NBX (−w) =
R+(− f ). By passing to polars again, one arrives at

M(w, 1) = [
NBX (−w)

]− = [
R+(− f )

]− = H f .

The relation (20) confirms that (c) holds.
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(b) ⇒ (d). The proof of this implication has been suggested to us by Prof.
J.P. Moreno (Madrid) to whom we express our appreciation. Suppose,
on the contrary, that (X, ‖ · ‖) is not smooth. Hence, (X∗, ‖ · ‖∗) is not
rotund. In such a case, there are distinct vectors f1, f2 ∈ SX∗ such that

f := f1 + f2

2
∈ SX∗ .

Consequently, every element of I−1( f ) is a nonsmooth boundary point
of BX . This is a contradiction with the hypothesis (b). Indeed, (b)
implies that H f ⊂ M(w, s) for some (w, s) ∈ SX × [0, 1]. Clearly, the
radius s must be equal to one. By taking polars in H f ⊂ M(w, 1), one
obtains

NBX (−w) ⊂ R+(− f ). (21)

Since the left-hand side of (21) contains a nonzero vector, the inclusion
(21) is in fact an equality. Hence, w is smooth and I(w) = f . 
�

The concept of circumcenter must be handled with care because there are plenty
of situations leading to rather unexpected conclusions. For instance, even in a Hilbert
space setting, there is no reason to believe that �circ(K) is a subset of K.

Example 3.4 Let y be a unit vector in a Hilbert space X. Then the homogeneous
hyperplane

K = {x ∈ X : 〈y, x〉 = 0}
admits exactly two circumcenters, namely, y and −y. Neither one of the circumcen-
ters lies in K. By the way, this example also shows that �circ(K) may be topologically
disconnected.

Example 3.5 In the same vein, consider a nontrivial closed linear subspace K in
a Hilbert space X. A matter of computation yields �circ(K) = K⊥ ∩ SX . If the
orthogonal subspace K⊥ is not a line, then �circ(K) is arc-connected. However, we
still have the problem that �circ(K) does not intersect K.

That �circ(K) may be contained in the exterior of K is undoubtedly bad news. The
reader may rightly argue that linear subspaces are uninteresting examples of convex
cones. What happens if one considers a set that is “truly” conic?

Example 3.6 In the Euclidean space R3, consider the half-icecream cone

K =
{

x ∈ R
3 : x1 ≥ 0, x3 ≥ [

x2
1 + x2

2

]1/2
}

. (22)

This cone is solid and sharp. It has a unique circumcenter, namely, πcirc(K) =
(0, 0, 1)T . The smallest ball-generated cone containing (22) is the whole icecream
cone

�3 =
{

x ∈ R
3 : x3 ≥ [

x2
1 + x2

2

]1/2
}

.

Although πcirc(K) belongs to K, it does not belong to the interior of K.
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Example 3.6 shows that incenters and circumcenters are different mathematical
objects. The incenter of the half-icecream cone (22) lies in the interior of such cone.
In fact, it is the vector

x̄ =
(
α, 0,

√
1 − α2

)
with α =

√
2 − √

2

2
≈ 0.3827.

Such x̄ is found by solving explicitly the variational problem (1). The computations
are facilitated by the fact that the boundary of (22) is the union of two very simple
pieces. It is not worthwhile to enter into details.

3.1 Comparing Inradii and Circumradii

As shown in the next proposition, the inradius of a convex cone is always smaller than
or equal to the circumradius. This fact is clear geometrically, but its formal proof is
not immediate. We state first a preliminary lemma.

Lemma 3.7 Let (X, ‖ · ‖) be a reflexive Banach space of dimension greater than one.
The implication

M(x, r) ⊂ M(w, s) =⇒ r ≤ s (23)

holds whenever x, w ∈ SX and r, s ∈ [0, 1].

Proof The case s = 1 is ruled out because it is trivial. The inclusion M(x, r) ⊂
M(w, s) yields

x + rBX ⊂ R+ (w + sBX) . (24)

By taking the support function on each side of (24), one gets

〈y, x〉 + r‖y‖∗ ≤ sup
α∈R+

α (〈y, w〉 + s‖y‖∗)

for all y ∈ X∗. The above inequality is equivalent to saying that

〈y, w〉 + s‖y‖∗ ≤ 0 =⇒ 〈y, x〉 + r‖y‖∗ ≤ 0. (25)

Next, we construct a unit vector ỹ ∈ X∗ such that

〈ỹ, w〉 + s = 0 (26)

〈ỹ, x − w〉 ≥ 0. (27)

To see that such ỹ exists, pick any 	 ∈ SX∗ satisfying 〈	,w〉 = 0. Changing 	 by −	 if
necessary, one may assume that 〈	, x〉 ≥ 0. We now take f ∈ I(w) and define

ỹ = −sf + β	.

Since ‖ − sf‖∗ = s < 1, one may choose the scalar β ≥ 0 so that ‖ỹ‖∗ = 1. Note that

〈ỹ, w〉 = −s〈 f, w〉 + β〈	, w〉 = −s

〈ỹ, x〉 = −s〈 f, x〉 + β〈	, x〉 ≥ −s
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takes care of (26)–(27). One gets in this way

−s + r = 〈ỹ, w〉 + r ≤ 〈ỹ, x〉 + r ≤ 0,

where the last inequality is due to (25). This proves that r ≤ s. 
�

Proposition 3.8 Let (X, ‖ · ‖) be a reflexive Banach space of dimension greater than
one, and let K ∈ �(X) be contained in a ball-generated cone. Then ρ(K) ≤ μ(K).

Proof Let {(xn, rn)}n∈N be a maximizing sequence for (4) and {(wn, sn)}n∈N be a
minimizing sequence for (19). By combining the double inclusion

M(xn, rn) ⊂ K ⊂ M(wn, sn)

and (23), one gets rn ≤ sn. A passage to limit leads to ρ(K) ≤ μ(K). 
�

Lemma 3.7 has several other consequences. The first corollary is consistent with
intuition: for a ball-generated cone, the inradius and the circumradius coincide.

Corollary 3.9 Let (X, ‖ · ‖) be a reflexive Banach space of dimension greater than one.
Then ρ(M(w, s)) = μ(M(w, s)) = s for all w ∈ SX and s ∈ [0, 1].

Proof From the definition of a circumradius, it is clear that μ(M(w, s)) ≤ s. On the
other hand, since the ball w + sBX is contained in M(w, s), one has s ≤ ρ(M(w, s)).
For completing the proof we invoke Proposition 3.8. 
�

Remark 3.10 Corollary 3.9 admits a converse: if (X, ‖ · ‖) is a reflexive Banach space
and K ∈ �(X) is such that Binc(K) = Bcirc(K), then K is a ball-generated cone.

The second corollary is not as intuitive as one might think. It works only if one
assumes rotundity.

Corollary 3.11 Let (X, ‖ · ‖) be a rotund reflexive Banach space of dimension greater
than one. Then M : SX × [0, 1] → �(X) is injective.

Proof Let x, w ∈ SX and r, s ∈ [0, 1] be such that M(x, r) = M(w, s). By applying
twice the implication (23), one gets r = s. On the other hand, one knows already
that ρ(M(w, s)) = s. Since w + sBX ⊂ M(w, s) and the incenter of M(w, s) is unique
due to the rotundity assumption, it follows that πinc(M(w, s)) = w. A similar formula
is obtained for the cone M(x, r). One gets in this way

x = πinc(M(x, r)) = πinc(M(w, s)) = w.

Hence, (x, r) = (w, s), as needed for proving injectivity. 
�

3.2 An Alternative Characterization of the Set of Circumcenters

The next theorem characterizes the set �circ(K) when K is ball-sharp, i.e., when K
is contained in a cone generated by a ball whose center is a unit vector and whose
radius is smaller than 1. We comment in passing that ball-sharpness is stronger than
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pointedness, but in an Euclidean space setting both concepts coincide. Recall that a
closed convex cone is pointed if it contains no line.

The basic idea behind Theorem 3.12 is that any K ∈ �(X) can be represented as
closed conic hull

K = cl
[
pos(�)

]
(28)

of a subset � of X such that 0 /∈ �. The definition of the conic hull is as usual, i.e.,

pos(�) =
⎧
⎨

⎩

p∑

j=1

t jg j : p ∈ N, g1, . . . , gp ∈ �, t1, . . . , tp ∈ R+

⎫
⎬

⎭
.

Theorem 3.12 Let (X, ‖ · ‖) be a reflexive Banach space. Let K ∈ �(X) be ball-sharp
and represented as in (28) with 0 /∈ �. Then

μ(K) = inf
‖w‖=1

ϕ�(w) (29)

�circ(K) = {w ∈ SX : ϕ�(w) = μ(K)}, (30)

where ϕ� : X → R stands for the sublinear function given by

ϕ�(w) = sup
a∈�

dist
[
w, R+a

]
.

Proof Sublinearity corresponds to the combination of convexity and positive homo-
geneity. It is clear that ϕ� : X → R enjoys both properties. Given that K is ball-
sharp, the variable s in (19) can be restricted to a closed interval [0, s̄] with s̄ < 1.
The closure operation in the definition of M (w, s) is superfluous if one takes (w, s)
in SX × [0, s̄]. Given the representation formula (28), an inclusion like K ⊂ M (w, s)
amounts to saying that

a ∈ M (w, s) for all a ∈ �. (31)

Note that

a ∈ M (w, s) ⇐⇒ ∥∥t−1a − w
∥∥ ≤ s for some t > 0

⇐⇒ dist
[
w, R+a

] ≤ s.

Hence, the condition (31) is equivalent to ϕ�(w) ≤ s. We have shown in this way that

μ(K) = inf
(w,s)∈SX×[0,s̄]

K⊂M(w,s)

s = inf
(w,s)∈SX×[0,s̄]

ϕ�(w)≤s

s = inf
‖w‖=1

inf
s∈[0,s̄]
ϕ�(w)≤s

s .

By getting rid of the variable s, one ends up with (29)–(30). 
�

Example 3.13 A polyhedral cone K is often represented as intersection of finitely
many half-spaces, but sometimes it is given in terms of a finite collection of
generators:

K =
⎧
⎨

⎩

p∑

j=1

t jg j : t1, . . . , tp ∈ R+

⎫
⎬

⎭
.
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Here, g1, . . . , gp are unit vectors in the Euclidean space Rn. There is no loss of
generality in assuming that none of the gi is a positive linear combination of the
others. Suppose that K is pointed. A natural and convenient choice of � is the set of
generators of K, i.e., � = {g1, . . . , gp}. According with Theorem 3.12, a circumcenter
of K can be found by solving

μ(K) = inf
‖w‖=1

max
1≤ j≤p

dist
[
w, R+g j

]
. (32)

If w is a unit vector such that gT
j w ≤ 0 for some j ∈ {1, . . . , p}, then the cost function

of (32) takes the value 1. Hence, such a vector w cannot be a solution to (32). So, we
are led to solve

minimize max
1≤ j≤p

∥∥∥w −
(

gT
j w

)
g j

∥∥∥ (33)

‖w‖ = 1

gT
j w ≥ 0 ∀ j ∈ {1, . . . , p}.

One should be aware, however, that (33) is a nonconvex optimization problem.

Theorem 3.12 yields as a by-product the next existence result.

Corollary 3.14 Let (X, ‖ · ‖) be finite dimensional and let K ∈ �(X) be contained in
a ball-generated cone. Then �circ(K) is nonempty.

Proof Suppose first that K is not ball-sharp, i.e., the only ball-generated cones that
contain K are those of the form M(w, 1) with w ∈ SX . From the proof of Lemma 3.3
one sees that

K ⊂ M (w, 1) ⇐⇒ w ∈ I−1(K+ ∩ SX∗).

Hence, μ(K) = 1 and �circ(K) = I−1(K+ ∩ SX∗) is nonempty. Suppose now that K
is ball-sharp. In such a case we are in the context of Theorem 3.12. Given that X
is finite dimensional, the variational problem (29) is about minimizing a continuous
function on a compact set. Again, �circ(K) is nonempty. 
�

4 The Outer Center and the Inner Center of a Convex Cone

4.1 Outer Approximation by a Revolution Cone

Finite dimensional revolution cones are used in a conspicuous way in various fields of
mathematics, including mathematical programming [7] and coding theory [24]. The
usual definition of a revolution cone in the Euclidean space Rn is

�(y, θ) = {
x ∈ R

n : yT x ≥ ‖x‖ cos θ
}
, (34)
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where y ∈ Rn is a unit vector that determines the revolution axis, and θ ∈ [0, π/2] is a
parameter called the half-aperture angle (cf. [13]). Note that (34) is the set of vectors
forming an angle not greater than θ with respect to y. The definition of a revolution
cone extends to a Hilbert space setting without any substantial change. Beyond a
Hilbert space setting, one adopts the definition

�(y, θ) = {x ∈ X : 〈y, x〉 ≥ ‖x‖ cos θ} (35)

with y standing for a unit vector in (X∗, ‖ · ‖∗). We still call (35) a revolution cone,
but this is obviously an abuse of language because the angular interpretation of the
parameter θ is lost. Authors working in functional analysis and in vector optimization
refer sometimes to (35) as a Bishop-Phelps cone (cf. [1, 16, 21]).

What about approximating a given K ∈ �(X) by a revolution cone? The first idea
that comes to mind is searching for a revolution cone of smallest half-aperture angle
that contains K. This leads to the minimization problem

θout(K) = inf{θ : ‖y‖∗ = 1, θ ∈ [0, π/2], K ⊂ �(y, θ)}. (36)

The next three equivalent characterizations of θout(K) are borrowed from [19,
Section 5]. The notation “co” refers to the convex hull operation.

Proposition 4.1 Let (X, ‖ · ‖) be a reflexive Banach space and let K ∈ �(X). Then

cos [θout(K)] = sup
‖y‖∗=1

inf
x∈K∩SX

〈y, x〉 (37)

= dist
[
0, co(K ∩ SX)

]
(38)

= ρ(K+). (39)

Note that, in a reflexive Banach space setting, the function θout : (�(X), 
) → R is
continuous. This is a direct consequence of (39). By the way, the duality relation

ρ(K+) = sup
‖y‖∗=1

inf
x∈K∩SX

〈y, x〉

can be found not just in [19], but also in an earlier paper by Freund and Vera [12,
Proposition 2.1]. In the sequel, the set of maximizers of the function

y ∈ SX∗ �→ hK(y) = inf
x∈K∩SX

〈y, x〉 (40)

is denoted by Dout(K). The definition given below is inspired by the characterization
(37). The presence of the inverse duality map I−1 : X∗ ⇒ X may seem strange at
first sight, so we shall comment on this point in a moment.

Definition 4.2 Let (X, ‖ · ‖) be a reflexive Banach space and let K ∈ �(X). An outer
center of K is an element of the set

�out(K) = I−1 [Dout(K)] . (41)

Definition 4.2 is proposed by [17] in an Euclidean space setting. In that reference
a maximizer of (40) is called a centroid of K. Note that Dout(K) is a subset of X∗ and
not of the original space X. This explains why the map I−1 shows up in (41). Up to
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some extent, incenters and outer centers can be viewed as dual objects. In fact, one
has the following duality result.

Theorem 4.3 Let (X, ‖ · ‖) be a reflexive Banach space and let K ∈ �(X). Then

Dout(K) = �inc(K+). (42)

In particular, K possesses at least one outer center.

Proof The change of variable r = cos θ brings the variational problem (36) to the
equivalent form

cos[θout(K)] = sup
‖y‖∗=1

sup
r∈[0,1]

K⊂�(y,arccos r)

r . (43)

A key observation concerning the inclusion constraint in (43) is that

K ⊂ �(y, arccos r) ⇐⇒ 〈y, x〉 ≥ r‖x‖ for all x ∈ K. (44)

There are two ways of interpreting the right-hand side of (44). First of all, one can
write such a condition as a ball inclusion, namely, y + rBX∗ ⊂ K+. Hence, (43) is
nothing else than the old problem of finding a largest ball in K+. The second way of
writing the right-hand side of (44) is

r ≤ inf
x∈K∩SX

〈y, x〉 .

Hence, the second supremum in (43) is just hK(y). 
�

Theorem 4.4 If (X, ‖ · ‖) is a reflexive Banach space, then K ∈ �sh(X) possesses an
outer center that lies in K itself.

Proof The proof of Proposition 4.7 in [17] provides us with the initial inspiration. Let
ȳ be a solution to the convexified problem

maximize {hK(y) : ‖y‖∗ ≤ 1}. (45)

Since K is sharp, there exists a vector y0 ∈ SX∗ such that hK(y0) > 0. This fact and
the positive homogeneity of hK yield

ȳ ∈ Dout(K). (46)

Next we write down the standard optimality condition

0 ∈ ∂ fenchel(−hK)(ȳ) + NBX∗ (ȳ)

for the convex problem (45). Here, the symbol ∂ fenchel indicates the usual subdiffer-
ential operator of convex analysis. Hence, there exists a vector x̄ ∈ X such that

x̄ ∈ NBX∗ (ȳ) (47)

−x̄ ∈ ∂ fenchel(−hK)(ȳ). (48)
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The condition (48) decomposes into

x̄ ∈ cl
[
co(K ∩ SX)

]
(49)

〈ȳ, x̄〉 = hK(ȳ). (50)

Note that (50) forces x̄ to be nonzero, whereas (49) forces x̄ to be in K. On the other
hand, the condition (47) yields

x̂ := ‖x̄‖−1 x̄ ∈ I−1(ȳ). (51)

In view of the relations (46) and (51), the vector x̂ ∈ K belongs to �out(K). This
completes the proof. 
�

We now address the issue of uniqueness of outer centers. Given the duality
formula (42), the following result is not surprising altogether.

Theorem 4.5 Let (X, ‖ · ‖) be a reflexive Banach space. Then the following statements
are equivalent:

(a) Dout(K) is a singleton for each K ∈ �sh(X).
(b) (X, ‖ · ‖) is smooth.

Proof The proof is a matter of combining Theorems 2.4 and 4.3. One must bear in
mind two facts: firstly, K is sharp if and only if K+ is solid (cf. [14, 19]). And, secondly,
the reflexive Banach space (X, ‖ · ‖) is smooth if and only if (X∗, ‖ · ‖∗) is rotund. 
�

Consistent with our notational conventions, the symbol dout(K) indicates the
single element of Dout(K) in case the latter set is a singleton. The next two corollaries
are immediate and so their proofs are omitted.

Corollary 4.6 Let (X, ‖ · ‖) be a smooth reflexive Banach space and let K ∈ �sh(X).
Then the variational problem (36) admits exactly one solution. Furthermore, the y-
component of the solution is dout(K) = πinc(K+).

Smoothness of the space and sharpness of the cone are essential assumptions in
Corollary 4.6. By an obvious reason, one refers to the cone

Kout = � (dout(K), θout(K))

as the outer revolution envelope of K. A word of warning is here appropriate: the
fact that Dout(K) is a singleton does not imply uniqueness of the outer center.
This is simply because I−1 could be multivalued. In other words, the equation
I(x) = dout(K) could have more than one solution x ∈ SX . However, this problem
can be settled by asking not just smoothness but also rotundity.

Corollary 4.7 Suppose that the reflexive Banach space (X, ‖ · ‖) is smooth and ro-
tund. Then each K ∈ �sh(X) possesses exactly one outer center, namely, πout(K) =
I−1(dout(K)). Furthermore, πout(K) belongs to K.
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A normed space (X, ‖ · ‖) is uniformly smooth if limt→0+ τ(t)/t = 0 with

τ(t) = sup
x,h∈SX

{‖x + th‖ + ‖x − th‖
2

− 1

}
.

Uniform smoothness corresponds to the dual concept of uniform rotundity (cf. [22]).
Theorem 2.9 can be combined with Theorem 4.3 in order to obtain a continuity result
for the outer center.

Proposition 4.8 Suppose that the reflexive Banach space (X, ‖ · ‖) is uniformly
smooth and uniformly rotund. Then the function πout : (�sh(X), 
) → (X, ‖ · ‖) is
continuous.

Proof Thanks to Corollaries 4.6 and 4.7, one has

πout(K) = I−1(πinc(K+))

for all K ∈ �sh(X). So, πout is the composition of three continuous functions. The
diagram

(�sh(X), 
)
(·)+→ (�sol(X∗), 
∗)

πout ↓ ↓ πinc

(X, ‖ · ‖) I−1← (X∗, ‖ · ‖∗)

helps for visualizing the situation. Here, 
∗ stands for the truncated Pompeiu-
Hausdorff metric on �(X∗). Thanks to the Walkup-Wets isometry theorem, K �→
K+ is continuous as function from (�sh(X), 
) to (�sol(X∗), 
∗). That (X, ‖ · ‖) is
uniformly smooth implies that (X∗, ‖ · ‖∗) is uniformly rotund. Hence, in view of
Theorem 2.9, the function πinc : (�sol(X∗), 
∗) → (X∗, ‖ · ‖∗) is continuous. Finally,
the uniform rotundity of (X, ‖ · ‖) guarantees not just the single-valuedness, but also
the continuity of the map I−1 : (X∗, ‖ · ‖∗) → (X, ‖ · ‖). 
�

4.2 Inner Approximation by a Revolution Cone

As an alternative to the outer approximation technique, one may consider the
problem of finding a revolution cone of largest half-aperture angle contained in K.
This time one must solve a maximization problem of the form

θinn(K) = sup{θ : ‖y‖∗ = 1, θ ∈ [0, π/2], �(y, θ) ⊂ K}. (52)

This resembles (36), but it is not quite the same problem. The “inner” counterpart of
Definition 4.2 is formulated in Definition 4.3. Note that

θinn(K) = sup
‖y‖∗=1

	K(y), (53)

where 	K is the extended-real-valued function defined on SX∗ by

	K(y) = sup {θ : θ ∈ [0, π/2], �(y, θ) ⊂ K} .

Let Dinn(K) denote the solution set to (53).
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Definition 4.9 Suppose that (X, ‖ · ‖) is a reflexive Banach space and that K ∈ �(X)

contains a revolution cone. An inner center of K is an element of the set

�inn(K) = I−1 [Dinn(K)] .

If Dinn(K) happens to be a singleton, then its single element is denoted by dinn(K).
Needless to say, the set

Kinn = � (dinn(K), θinn(K))

is referred to as the inner revolution envelope of K.
In Definition 4.9, one asks K ∈ �(X) to contain a revolution cone for making

sure that the maximization problem (52) is feasible. Such a feasibility assumption is
automatically satisfied if the reflexive Banach space (X, ‖ · ‖) is rotund. This fact can
be better understood with the help of the example below.

Example 4.10 Imagine that the cone K is very “small”. Take, for instance, K = R+a
with a ∈ SX . Are we sure that �(y, θ) ⊂ R+a for some (y, θ) ∈ SX∗ × [0, π/2]? The
best chance of getting such an inclusion is to take θ = 0. However, a set of the form

�(y, 0) = R+
[
I−1(y)

]

is not necessarily contained in a ray because I−1 is multivalued in general. If one
choose a ∈ SX so that I−1(y) is multivalued for each y ∈ I(a), then R+a will not
contain a revolution cone.

Proposition 4.11 Let (X, ‖ · ‖) be a reflexive Banach space. If K ∈ �(X) contains a
revolution cone with positive half-aperture angle, then �inn(K) ⊂ SX ∩ int(K).

Proof As a start, it is helpful to mention an abstract result on revolution cones
according to which

�(y, θ1)\{0} ⊂ int
[
�(y, θ2)

]

whenever y ∈ SX∗ and 0 ≤ θ1 < θ2 ≤ π/2. Checking this inclusion offers no difficulty,
so we omit the details. In particular, one can write

I−1(y) ⊂ int
[
�(y, θ)

]
(54)

whenever y ∈ SX∗ and θ ∈]0, π/2]. The proof of the proposition itself runs as follows.
The assumption made on K ensures that θinn(K) is positive. If �inn(K) is void, then
there is nothing to prove. Let x ∈ �inn(K), i.e., x ∈ I−1(y) for some y ∈ Dinn(K). For
any θ in the open interval ]0, �inn(K)[, one clearly has �(y, θ) ⊂ K. By applying (54),
one gets

x ∈ int
[
�(y, θ)

] ⊂ int(K),

which completes the proof. 
�

The variational problem (52) can be dualized by exploiting the relationship exist-
ing between revolution cones and ball-generated cones. The class of ball-generated
cones in X was introduced already in (18). Ball-generated cones in X∗ are defined in
a similar way.
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Lemma 4.12 Let (X, ‖ · ‖) be a reflexive Banach space. Then

[
�(y, θ)

]+ = M(y, cos θ)

[M(w, s)]+ = �(w, arccos s)

for all w ∈ SX, y ∈ SX∗ , s ∈ [0, 1], and θ ∈ [0, π/2].

Proof It is enough to prove the second formula. That f ∈ [M(w, s)]+ is equiv-
alent to

〈 f, w + sh〉 ≥ 0 for all h ∈ BX . (55)

Since BX is symmetric with respect to the origin, (55) is yet equivalent to 〈 f, w〉 ≥
s ‖ f‖∗, that is to say, f ∈ �(w, arccos s). 
�

According to Lemma 4.12, the dual of a revolution cone is a ball-generated cone,
and viceversa. This elementary duality result allows us to establish a link between
inner centers and circumcenters.

Theorem 4.13 Let (X, ‖ · ‖) be a reflexive Banach space. If K ∈ �(X) contains a
revolution cone, then

Dinn(K) = �circ(K+) (56)

cos [θinn(K)] = μ(K+). (57)

Proof That K ∈ �(X) contains a revolution cone amounts to saying that K+ ∈
�(X∗) is contained in a ball-generated cone. In view of Lemma 4.12, the inclusion
constraint �(y, θ) ⊂ K can be written in the equivalent form K+ ⊂ M(y, cos θ).
Hence, the variational problem (52) becomes

cos[θinn(K)] = inf{cos θ : ‖y‖∗ = 1, θ ∈ [0, π/2], K+ ⊂ M(y, cos θ)}.

The change of variables s = cos θ leads finally to (56)–(57). 
�

By combining Theorem 4.13 and Corollary 3.14, one readily gets:

Corollary 4.14 Let (X, ‖ · ‖) be finite dimensional and let K ∈ �(X) contain a revo-
lution cone, then �inn(K) is nonempty.

In the same vein, by combining Theorem 4.13 and Propositions 3.8 and 4.1, one
obtains:

Corollary 4.15 Let (X, ‖ · ‖) be a reflexive Banach space and let K ∈ �(X) contain a
revolution cone. Then θinn(K) ≤ θout(K).
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5 Special Results in Hilbert Spaces

In a Hilbert space setting, the class of revolution cones coincides with the class of
ball-generated cones. In particular, the dual of a revolution cone is a revolution cone
and the dual of a ball-generated cone is a ball-generated cone:

Lemma 5.1 Let (X, ‖ · ‖) be a Hilbert space. Then

[
�(y, θ)

]+ = �
(

y,
π

2
− θ

)
(58)

[M(w, s)]+ = M
(
w,

√
1 − s2

)
(59)

for all w, y ∈ SX, s ∈ [0, 1], and θ ∈ [0, π/2].

Proof The duality formula (58) is well known in an Euclidean space setting (cf. [13,
15]). Its proof in a Hilbert space runs as follows. Take v ∈ X such that

v ∈ [
�(y, θ)

]+
. (60)

We shall prove that

v ∈ �
(

y,
π

2
− θ

)
. (61)

One may suppose that v is not a multiple of y, otherwise (61) holds trivially. Let
L = span{y, v} be the two dimensional linear space spanned by the vectors y and
v. Since X = L ⊕ L⊥, every x ∈ X admits a unique decomposition as sum of two
orthogonal vectors:

x = x1 + x2 with x1 ∈ L, x2 ∈ L⊥.

Denote by 〈·, ·〉L and ‖ · ‖L the restriction to the closed linear subspace L of 〈·, ·〉
and ‖ · ‖, respectively. The symbol ‖ · ‖L⊥ is defined in a similar way. The hypothesis
(60), i.e.,

〈v, x〉 ≥ 0 whenever 〈y, x〉 ≥ ‖x‖ cos θ,

takes then the form

〈v, x1〉L ≥ 0 for all (x1, x2) ∈ L × L⊥ s.t. 〈y, x1〉L ≥ [‖x1‖2
L + ‖x2‖2

L⊥
]1/2

cos θ.

(62)
The particular choice x2 = 0 yields

〈v, x1〉L ≥ 0 for all x1 ∈ L s.t. 〈y, x1〉L ≥ ‖x1‖L cos θ. (63)

Since (L, ‖ · ‖L) is an Euclidean space, one gets

〈y, v〉L ≥ ‖v‖L cos
(π

2
− θ

)
. (64)

The latter inequality is equivalent to (61) because one can view v as an element of
L and, at the same time, as an element of X. Conversely, let (61) be true. One may
assume that v is not a multiple of y, otherwise (60) holds trivially. We define L as
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before. The hypothesis (61) is equivalent (64), which in turn is equivalent to (63).
Since

‖x1‖L ≤ [‖x1‖2
L + ‖x2‖2

L⊥
]1/2

for all (x1, x2) ∈ L × L⊥,

the condition (63) implies (62). One arrives in this way to (60). The duality formula
(59) is obtained by combining (58) and Lemma 4.12. 
�

The orthogonal decomposition technique used in Lemma 5.1 forces X to be
Hilbert. As far as this work is concerned, the main impact of Lemma 5.1 is the next
theorem.

Theorem 5.2 Let X be a Hilbert space and K ∈ �(X). Then

[μ(K)]2 + [ρ(K+)]2 = 1 (65)

θinn(K) + θout(K+) = π/2. (66)

Furthermore,

�circ(K) = �out(K) = �inc(K+)

�inc(K) = �inn(K) = �circ(K+).

Proof In view of (58), the equality (52) becomes

θinn(K) = sup
{
θ : ‖y‖∗ = 1, θ ∈ [0, π/2], K+ ⊂ �

(
y,

π

2
− θ

)}
.

The change of variable ϑ = (π/2) − θ leads to

θinn(K) = (π/2) − inf
{
ϑ : ‖y‖∗ = 1, ϑ ∈ [0, π/2], K+ ⊂ � (y, ϑ)

}
,

which explains why we wrote the angular identity (66). By the same token, we got

�inn(K) = �out(K+) = �inc(K),

where the last equality is a consequence of Theorem 4.3. The remaining relations are
obtained by invoking Proposition 4.1 and Theorem 4.13. 
�

The angular identity (66) is reminiscent of a similar looking formula of Iusem
and Seeger [18, Theorem 3] relating the minimal angle of K and the maximal angle
of K+. Theorem 5.2 has a long list of consequences. For instance, in a Hilbert space
setting every K ∈ �(X) admits an inner center and also a circumcenter; this is simply
because an inner center is nothing but an incenter and a circumcenter is nothing but
an outer center. In addition, one gets

πcirc(K) = πout(K) = πinc(K+) if K is sharp,

πinc(K) = πinn(K) = πcirc(K+) if K is solid,

and many other by-products.
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6 By Way of Conclusion

We have studied four kinds of centers for a closed convex cone K in a reflexive
Banach space: the incenter, the circumcenter, the inner center, and the outer center.
As mentioned already in the introduction, these concepts are different in general.
The main lessons that can be drawn from this work are outlined below; see also
Table 1.

• The existence of incenters is automatically guaranteed. For making sure that
the incenter is unique, we ask the cone K to be solid and the underlying space
(X, ‖ · ‖) to be rotund. In such a case, the incenter πinc(K) lies in the interior
of K. This is consistent with the intuitive idea of being a center of a cone.
The concept of incenter has further merits: the function πinc : (�sol(X), 
) →
(X, ‖ · ‖) is continuous if the rotundity assumption is uniform (cf. Theorem 2.9).
It is reassuring to know that πinc(K) behaves in a stable manner with respect to
perturbations in the argument K.

• The existence of outer centers is also automatically guaranteed. This follows
from a general formula that relates the set of outer centers of K and the set of
incenters of the dual cone K+. To make sure that the outer center is unique, we
ask the cone K to be sharp and the underlying space to be smooth and rotund. If
the latter structural properties are uniform, then πout : (�sh(X), 
) → (X, ‖ · ‖)
is continuous (cf. Proposition 4.8). An outer center does not need to be in the
interior of the cone, even if the cone is solid and lives in an Euclidean space.

• The concept of circumcenter suffers from many drawbacks. First of all, a
circumcenter could fail to be in the interior of the cone. In addition to this,
computing a circumcenter is quite complicated in practice. And, finally, we
do not see clearly how to guarantee the uniqueness of circumcenters without
asking X to be Hilbert. Despite this long list of inconveniences, the concept of
circumcenter is geometrically appealing and deserves some attention. We do not
have yet a general existence result, but we have proven that K admits at least
one circumcenter if K is contained in a ball-generated cone and (X, ‖ · ‖) is finite
dimensional. In a Hilbert space setting, every K admits a circumcenter.

• The concept of inner center has some pros and contras. On the positive side:
provided K contains a revolution cone with positive half-aperture angle, every
inner center of K belongs to int(K). One the negative side, we do not know how
to guarantee the uniqueness of inner centers without asking X to be Hilbert. We

Table 1 Different types of center for a cone K in a reflexive Banach space

Type of center Conditions for existence Conditions for uniqueness Notation if
uniqueness

Incenter Extra hypotheses K solid, πinc(K)

are not needed X rotund
Circumcenter X Hilbert, or K sharp πcirc(K)

X smooth and dimX < ∞ X Hilbert
Inner center X Hilbert, or K solid πinn(K)

X rotund and dimX < ∞ X Hilbert
Outer center Extra hypotheses K sharp, πout(K)

are not needed X smooth and rotund
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do not have yet a general existence result, but we know that K admits at least one
inner center if K contains a revolution cone and (X, ‖ · ‖) is finite dimensional.
In a Hilbert space setting, every K admits an inner center.

In this paper we have deliberately kept the discussion at an abstract level, so as
to better understand the role of each assumption (smoothness, rotundity, etc). The
whole theory of centers simplifies dramatically if the underlying space is Euclidean,
i.e., Hilbert and finite dimensional. This special setting is treated exhaustively in
the companion paper (Henrion and Seeger, unpublished manuscript). In addition
to a few theoretical results, we compute there the incenter and the circumcenter for
several convex cones arising in concrete applications.
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