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Abstract. We investigate stability (in terms of metric regularity) for the specific class of cone
increasing constraint mappings. This class is of interest in problems with additional knowledge on
some nondecreasing behavior of the constraints (e.g. in chance constraints, where the occurring
distribution function of some probability measure is automatically nondecreasing). It is demon-
strated, how this extra information may lead to sharper characterizations. In the first part, general
cone increasing constraint mappings are studied by exploiting criteria for metric regularity, as
recently developed by Mordukhovich. The second part focusses on genericity investigations for
global metric regularity (i.e. metric regularity at all feasible points) of nondecreasing constraints
in finite dimensions. Applications to chance constraints are given.
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1. Introduction

The concept of metric regularity as introduced by Robinson [27] is fundamental
for deriving stability results in parametric programming. It is closely related to
several other well-known conditions in stability analysis. Recall, for instance,
the equivalence between metric regularity and pseudo-Lipschitzness (see [1] and
[29]) of multifunctions which was established by Borwein and Zhuang [4] and
Penot [26]. For many different areas of optimization theory (smooth, convex,
nonsmooth, finite-, infinite-dimensional, semi-infinite, etc.) characterizations of
metric regularity in terms of constraint qualifications have been found (e.g. [2,
3, 9, 10, 15, 25, 27–29, 32]). Significant progress in the nonsmooth setting was
made by Mordukhovich who established a condition for his coderivative of multi-
functions which is an equivalent criterion of metric regularity in finite dimensions
[22] and, under additional hypotheses, is at least sufficient in infinite dimensions
[24]. For closely related investigations involving Ioffe’s approximate coderiva-
tive [13], which is the topological counterpart of Mordukhovich’s sequentially
defined coderivative, we refer to Jourani and Thibault [16, 18].
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324 RENÉ HENRION

The purpose of this paper is to demonstrate how the characterization of metric
regularity of constraint systems may be improved in case where the constraint
mapping has the additional property of being cone increasing. By this, we mean
a mapping f : X → Y together with cones Kx ⊆ X and Ky ⊆ Y such that
x1−x2 ∈ Kx implies f(x1)−f(x2) ∈ Ky . The motivation for this investigation
came from stability analysis of chance constraints [11]. To give a simplified
idea, assume that h: Rn → Rm is a mapping which indicates the production
hj(x) (j = 1, . . . ,m) of a certain good (e.g. energy) as a function of n decision
variables xi at m different times. Of course, decisions have to be taken in such
a way that the production meets the demand ξj for this good at all times, so
h(x) > ξ is a natural requirement. Unfortunately, in general, the demand is a
random variable which can be observed only after decisions have been taken.
Therefore, it is not reasonable to model the constraint in the deterministic way
above but rather to replace it by a stochastic formulation like µ(h(x) > ξ) > p0

where µ is a probability measure for the m-dimensional random variable ξ, and p0

is some fixed probability level. So, the constraint has to be fulfilled with a certain
probability at least, i.e. it is a chance constraint. In addition, some nonstochastic
constraints (e.g. capacity constraints for the decision variables) may enter the
model in the form x ∈ C where C ⊆ Rn is some closed subset. It is convenient
to reformulate this chance constraint by introducing the distribution function Fµ
corresponding to µ which is defined for y ∈ Rm as Fµ(y) = µ(ξ 6 y):

(Fµ ◦ h)(x) > p0, x ∈ C. (1)

Since the true underlying measure of ξ is not generally known, one usually
replaces it by empirical measures which are based on observations of ξ and
which may be understood as perturbations of µ. Then, the question of (Lip-
schitzian) stability of optimal values and local minimizers with respect to such
pertubations arises in a problem with a corresponding cost function. As a key
result in this direction, Römisch and Schultz [31] showed that the question of
stability of the chance constraint w.r.t. perturbations of µ may be reduced to
metric regularity of the constraint mapping (Fµ ◦ h)(x) w.r.t. perturbations of
the right-hand side probability level (in [31] an equivalent formulation in terms
of pseudo-Lipschitzness was used). The study of metric regularity of (1) in a
nonsmooth context (note that Fµ is only upper semicontinuous in general and also
h might be nonsmooth) has several specific features. First, the constraint mapping
has the structure of a composite function, hence nonsmooth chain rules are of
interest. Second, as a distribution function, Fµ is automatically nondecreasing, i.e.
in the above terminology, it is (Rm+ ,R+)-cone increasing. In [11], these particular
properties were combined with Mordukhovich’s coderivative criterion to arrive
at verifiable criteria of metric regularity, namely conditions for the density of µ
and constraint qualifications for h.

In the first part of this paper, certain ideas of [11] are generalized to a partially
infinite-dimensional setting, this means to a finite number of inequality constraints
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CONE INCREASING CONSTRAINT MAPPINGS 325

in an infinite-dimensional space. In particular, the information on nondecreasing
behavior is used to get a more precise constraint qualification ensuring metric
regularity for composite mappings or to characterize metric regularity w.r.t. some
unperturbed, fixed set. It is also shown that, for certain cone increasing constraint
mappings, the verification of metric regularity via Mordukhovich’s coderivative
is equivalent to the corresponding condition using Clarke’s coderivative, which
might be easier to handle. Of course, both criteria differ significantly in general.
For other papers, also considering nondecreasing mappings in the context of
subdifferentiation, we refer to [7, 8, 21].

The second part of the paper re-addresses the finite-dimensional situation,
but from a different viewpoint: Usually, metric regularity of a feasible set map-
ping is required to hold at the local minimizers of some optimization problem.
Since this condition is hard to verify, one could substitute it by a global version,
namely metric regularity at all feasible points. This requirement seems to be
strong. On the other hand, it is known, that such global metric regularity is a
generic property of smooth constraint functions, i.e. in some sense it is typical-
ly fulfilled. This follows from the well-known equivalence of metric regularity
with the Mangasarian–Fromovitz Constraint Qualification and the fact, that even
the stronger Linear Independence Constraint Qualification holds at all feasible
points for a generic set of smooth constraint functions (see [14]). A similar result
does not hold in the locally Lipschitzian case (see Example 3.12 below). On the
other hand, for the particular class of nondecreasing, locally Lipschitzian con-
straint mappings, genericity properties may be derived again. It turns out that the
results are sensitive to the structure of some possible additional fixed constraint
set (not subject to perturbations), usually reflecting simple capacity limitations.
Referring back to the application in chance constraints of the type (1), special
attention is devoted to the subclass of distribution functions.

2. Preliminaries

In this section, some basic concepts from multivalued analysis will be recalled.
Let X,Y be arbitrary sets. For a multifunction Φ: X ⇒ Y put

Ker Φ = {x ∈ X | 0 ∈ Φ(x)},
Im Φ = {y ∈ Y | y ∈ Φ(x), x ∈ X},
Gph Φ = {(x, y) ∈ X × Y | y ∈ Φ(x)},
Φ−1(y) = {x ∈ X | y ∈ Φ(x)}.

Now let X,Y be two normed spaces. A multifunction Φ: X ⇒ Y is called
metrically regular at some point (x0, y0) ∈ Gph Φ if there are constants a > 0
and ε > 0 such that

dist (x,Φ−1(y)) 6 a · dist (y,Φ(x)) ∀(x, y) ∈ Bε(x0)×Bε(y0).
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The abstract form of constraint sets writes as C ∩ F−1(K), where C ⊆ X and
K ⊆ Y are closed subsets of the respective spaces (K usually being a closed
convex cone) and F : X → Y is the constraint function. Then, F is said to be
metrically regular with respect to C at some feasible point x0 ∈ C ∩ F−1(K),
if the associated multifunction

Φ(x) =

{−F (x) +K, for x ∈ C,
∅, else,

is metrically regular at (x0, 0). It is easily seen that this is equivalent to the
conventional definition of metric regularity for constrained systems

∃ε > 0 ∃a > 0 ∀(x, y) ∈ (C ∩Bε(x0))×Bε(0),

dist (x,C ∩ F−1(K − y)) 6 a · dist (F (x),K − y).

F is simply called metrically regular in the case C = X.
Given two cones Kx ⊆ X and Ky ⊆ Y , a mapping f : X → Y is called

(Kx,Ky)-increasing at some point x̄ ∈ X if there exists some ε > 0 such that

x1 − x2 ∈ Kx =⇒ f(x1)− f(x2) ∈ Ky ∀x1, x2 ∈ B(x̄, ε).

For a Banach space X with dual X∗ and a multifunction Φ: X ⇒ X∗ denote by

lim sup
x→x̄

Φ(x) = {x∗ ∈ X∗ | ∃xn → x̄,∃x∗n
∗
⇀ x∗, x∗n ∈ Φ(xn)}

the sequential Kuratowski–Painlevé upper limit with respect to the norm topology
in X and the weak-star topology in X∗. To a cone K ⊆ X its polar cone
K0 ⊆ X∗ is assigned by K0 = {x∗ ∈ X∗ | 〈x∗, x〉 6 0 ∀x ∈ K}.

Next, we introduce Mordukhovich’s normal cone which is based on the set
of Fréchet ε-normals:

DEFINITION 2.1. Let C ⊆ X be a nonempty subset of a Banach space X and
ε > 0.

(1) The set of Fréchet ε-normals (ε > 0) to C at some x ∈ C is

N̂ε(C;x) =

{
x∗ ∈ X∗ | lim sup

u∈C
u→x

〈x∗, u− x〉
‖u− x‖ 6 ε

}
.

(2) The (Mordukhovich-) normal cone to C at some x̄ ∈ C is

N(C;x) = lim sup
x→x̄
x∈C
ε↓0

N̂ε(C;x).

In [23] it is shown that for Asplund spaces (i.e. those Banach spaces on which
every continuous convex function is Fréchet differentiable at a dense set of points)
one can let ε = 0 in the definition of the normal cone. It is noted, that in infinite
dimensions, this normal cone lacks the property of being weak star closed unless
a normal compactness assumption introduced by Loewen [20] is made for the
set C:

SVAN310.tex; 24/02/1998; 10:08; v.7; p.4
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DEFINITION 2.2. A closed set C ⊆ X is said to be normally compact around
x̄ ∈ C if there exist γ, σ > 0 and a compact set S ⊆ X such that

σ‖x∗‖ 6 max
s∈S
〈x∗, s〉 ∀x∗ ∈ N̂0(C;x) ∀x ∈ B(x̄, γ) ∩ C.

In [20] Loewen showed that the multifunction x 7→ N(C;x) is closed near
x̄ ∈ C in the norm x weak star topology of X×X∗ provided that C is normally
compact around x̄ and that X is a reflexive Banach space. In particular, N(C; x̄)
is a weak star closed set then.

We also make use of Clarke’s tangent cone (see [6]) to a set C at some point
x ∈ C:

Tc(C;x) = {h ∈ X | ∀xn → x({xn} ⊆ C)

∀tn ↓ 0 ∃hn → h : xn + tnhn ∈ C}

and of its polar, the Clarke’s normal cone Nc(C;x) = T 0
c (C;x). In any Banach

space, one has N(C;x) ⊆ Nc(C; x̄), while in Asplund spaces, the two intro-
duced normal cones are related by (see [23]) Nc(C;x) = co∗N(C;x), where
co∗ denotes the weak star closed, convex hull.

With a multifunction Φ: X ⇒ Y one may associate a multifunctionD∗Φ(x̄, ȳ):
Y ∗ ⇒ X∗ at some point (x̄, ȳ) ∈ Gph Φ which is called the coderivative of Φ
and is defined by

D∗Φ(x̄, ȳ)(y∗) = {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(Gph Φ; (x̄, ȳ))}.

The just defined coderivative relates to Mordukhovich’s normal cone. If, instead,
it relates to Clarke’s normal cone Nc, then we shall use the symbol D∗c for
distinction. From the inclusions for the corresponding normal cones it follows
that

ImD∗Φ(x̄, ȳ) ⊆ ImD∗cΦ(x̄, ȳ) and KerD∗Φ(x̄, ȳ) ⊆ KerD∗cΦ(x̄, ȳ).

For special multifunctions Φ(x) = f(x) + R+ = epi f , where f : X → R is
lower semicontinuous and ‘epi’ denotes the epigraph, one gets the corresponding
Mordukhovich’s and Clarke’s subdifferentials

D∗Φ(x, f(x))(1) = ∂f(x) and D∗cΦ(x, f(x))(1) = ∂cf(x).

Moreover, such epigraphical multifunctions satisfy

KerD∗Φ(x̄, f(x̄)) = {0} ⇐⇒ 0 /∈ ∂f(x̄)
and

KerD∗cΦ(x̄, f(x̄)) = {0} ⇐⇒ 0 /∈ ∂cf(x̄).
(2)

The following facts are collected from Mordukhovich [22–24]. The statement
of the first theorem is a finite-dimensional reduction of the original result. For
a corresponding version obtained by Jourani and Thibault in terms of Ioffes
topological coderivative (which we do not consider here), we refer to [16, 17].
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328 RENÉ HENRION

THEOREM 2.3. Let X be an Asplund space and Φ: X ⇒ Rm a multifunction
with closed graph such that (x̄, ȳ) ∈ Gph Φ. Then, the condition

KerD∗Φ(x̄, ȳ) = {0}
is sufficient to imply metric regularity of Φ at (x̄, ȳ). If, moreover, X is finite
dimensional, then it is both necessary and sufficient for metric regularity.

THEOREM 2.4. Let C1, C2 be two closed subsets of an Asplund space X such
that x̄ ∈ C1 ∩ C2. If one of these sets is normally compact in the sense of
Definition 2.2 and if the condition

N(C1; x̄) ∩−N(C2; x̄) = {0}
holds, then one has N(C1 ∩ C2; x̄) ⊆ N(C1; x̄) +N(C2; x̄).

THEOREM 2.5. Let F : X → Y be a continuous function between Asplund
spaces and f : Y → R a locally Lipschitzian function. Then, at any fixed x̄ ∈ X,
one has

∂(f ◦ F )(x̄) ⊆
⋃

y∗∈∂f(F (x̄))

D∗F (x̄, F (x̄))(y∗).

3. Results

3.1. METRIC REGULARITY FOR CONE INCREASING CONSTRAINT MAPPINGS

In this section, we deal with constraint mappings modelling a finite number
of inequalities in an infinite-dimensional space with additional cone increasing
behaviour. The following simple observation is basic for introducing this infor-
mation into the characterization of metric regularity:

PROPOSITION 3.1. Let X,Y be Banach spaces, Kx ⊆ X a closed cone, Ky ⊆
Y a closed, convex cone and f : X → Y a (Kx,Ky)-increasing function around
x̄ ∈ X. Then, the associated multifunction Φ: X ⇒ Y defined by Φ(x) :=
−f(x) +Ky satisfies:

ImD∗Φ(x̄, ȳ) ⊆ ImD∗cΦ(x̄, ȳ) ⊆ K0
x ∀ȳ ∈ Φ(x̄).

Proof. Only the second inclusion has to be shown. Assume that x∗ ∈ ImD∗c
Φ(x̄, ȳ), that is, there exists some y∗ ∈ Y ∗ such that (x∗,−y∗) ∈ Nc(Gph Φ;
(x̄, ȳ)). We show that (h, 0) ∈ Tc(Gph Φ; (x̄, ȳ)) for all h ∈ Kx. For any (x, y) ∈
Gph Φ in a small neighborhood of (x̄, ȳ) we have f(x + h) − f(x) ∈ Ky and
f(x) + y ∈ Ky , hence, by convexity of Ky it holds f(x + h) + y ∈ Ky .
Therefore, (x + h, y) ∈ Gph Φ. Now consider arbitrary sequences (xn, yn) →
(x̄, ȳ) ((xn, yn) ∈ Gph Φ) and tn ↓ 0. Then (xn, yn)+tn(h, 0) = (xn+tnh, yn) ∈
Gph Φ (since tnh ∈ Kx for all n ∈ N), so (h, 0) ∈ Tc(Gph Φ; (x̄, ȳ)) and we
conclude that 〈x∗, h〉 = 〈(x∗,−y∗), (h, 0)〉 6 0 for all h ∈ Kx. Therefore,
x∗ ∈ K0

x as was to be proved. 2
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COROLLARY 3.2. Let X be a Banach space, Kx ⊆ X a closed cone and
f : X → R a (Kx,R+)-increasing function around x̄ ∈ X. Then ∂f(x̄) ⊆
∂cf(x̄) ⊆ −K0

x. In particular, for X = Rn and Kx = Rn+, one has ∂f(x̄) ⊆
∂cf(x̄) ⊆ Rn+.

Proof. Since −f is (−Kx,R+)- increasing around x̄, it follows from Propo-
sition 3.1 that

∂f(x̄) = D∗f epi(x̄, f(x̄))(1) ⊆ D∗cf epi(x̄, f(x̄))(1) = ∂cf(x̄) ⊆ −K0
x,

where f epi(x) = f(x) + R+. 2

The next lemma deals with a constraint mapping having the structure of a com-
posite function with the outer function being cone increasing. This structure
is motivated by the chance constraint (1) discussed in the introductory section
(recall, that in (1) Fµ as a distribution function is (Rm+ ,R+)-increasing).

LEMMA 3.3. Let F : X → Y be a continuous function between Asplund spaces,
Ky ⊆ Y a closed cone, and f : Y → R a locally Lipschitzian function which is
(Ky,R+)-increasing. Then, the constraint (f ◦ F )(x) > 0 is metrically regular
at some feasible point x̄ if f(F (x̄)) > 0 or if, in the binding case, the following
two conditions are satisfied:

(1) 0 /∈ ∂(−f)(F (x̄)).
(2) 0 /∈ D∗F (x̄, F (x̄))(y∗) ∀y∗ ∈ K0

y \ {0}.

Proof. According to the definitions, we have to verify metric regularity of the
multifunction Φ(x) = −(f ◦ F )(x) + R+ at (x̄, 0) ∈ Gph Φ. This is clear in the
nonbinding case f(F (x̄)) > 0 where, due to continuity, both distances occurring
in the definition of metric regularity equal zero locally. For the binding case
we apply Theorem 2.3. The sufficient criterion KerD∗Φ(x̄, 0) = {0} for metric
regularity is equivalent in the present context to 0 /∈ ∂(−(f ◦F ))(x̄). Now, con-
dition (1) above along with Corollary 3.2 (applied to −f ) give ∂(−f)(F (x̄)) ⊆
K0
y \ {0}. Therefore, 0 /∈ {D∗F (x̄, F (x̄))(y∗) | y∗ ∈ ∂(−f)(F (x̄))} due to con-

dition (2) above, and Theorem 2.5 yields 0 /∈ ∂(−(f ◦ F ))(x̄), which was to be
shown. 2

Note, that Lemma 3.3 provides separate constraint qualifications for the two
functions in the composition. Condition (2) is substantially improved by intro-
ducing additional information on cone increasing behavior. In order to illustrate
this fact, assume for a moment, that F : Rn → Rm is continuously differen-
tiable and Ky = Rm+ . Without exploiting the nondecreasing behavior of f , con-
dition (2) would have to be required to hold for all y∗ ∈ Rm, which means
the linear independence of the gradients ∇Fi(x̄). But restricting condition (2)
to y∗ ∈ K0

y \ {0} = Rm− \ {0} only, amounts to the negative (or, equivalent-
ly, positive) linear independence of these gradients. In some sense, one may
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compare this difference with the one between the Linear Independence and the
Mangasarian–Fromovitz Constraint Qualification for inequality systems.

The following proposition is an auxiliary result, and similar versions of it are
proved in [12] or [15].

PROPOSITION 3.4. Let X be a Banach space. With some locally Lipschitzian
mapping f : X → Rm associate the multifunction Φ: X ⇒ Rm defined by
Φ(x) := −f(x) + Rm+ . Then, at any (x̄, ȳ) ∈ Gph Φ, it holds that

(1) ȳ∗ ∈ Rm− and ‖x̄‖∗ 6 η‖ȳ∗‖ for all (x̄∗, ȳ∗) ∈ N(Gph Φ; (x̄, ȳ)) and for
some η > 0.

(2) Gph Φ is normally compact around (x̄, ȳ).

Proof. Let L, ε > 0 be such that L is a Lipschitz modulus of f in B(x̄, ε).
Consider any (x, y) ∈ Gph Φ ∩ (B(x̄, ε/2) × B(ȳ, ε/2)). Choose an arbitrary
h ∈ X \ {0}. Then, for 0 < t < ε/(2‖h‖), one has

f(x+ th) + y > f(x+ th)− f(x) > −Lt‖h‖1 (1 = (1, . . . , 1) ∈ Rm).

Consequently,

(x+ th, y + Lt‖h‖1) ∈ Gph Φ

and for any (x∗, y∗) ∈ N̂δ(Gph Φ; (x, y)) (with arbitrary δ > 0) it follows that

〈x∗, h〉+ L‖h‖〈y∗,1〉

= ‖(h,L‖h‖1)‖ lim
t↓0

〈
(x∗, y∗),

(x+ th, y + Lt‖h‖1)− (x, y)

t‖(h,L‖h‖1)‖

〉
6 ‖(h,L‖h‖1)‖ lim sup

(x′,y′)→(x,y)

(x′,y′)∈Gph Φ

〈
(x∗, y∗),

(x′, y′)− (x, y)

‖(x′, y′)− (x, y)‖

〉
6 δ‖(h,L‖h‖1)‖. (3)

Next, fix any index i with 1 6 i 6 m and observe that (x, y + tei) ∈ Gph Φ,
where ei denotes the ith standard unit vector in Rm (the remaining variables
fixed as above). It follows for any (x∗, y∗) ∈ N̂δ(Gph Φ; (x, y)) (where δ > 0 is
arbitrary and brackets refer to the components):

y∗[i] = lim
t↓0
〈(x∗, y∗), t−1((x, y + tei)− (x, y))〉 6 δ (4)

with the same argumentation as in (3). Now, corresponding to some (x̄∗, ȳ∗) ∈
N(Gph Φ; (x̄, ȳ)) there exist sequences (xn, yn) → (x̄, ȳ), (x∗n, y

∗
n)

∗
⇀ (x̄∗, ȳ∗)

and δn ↓ 0 such that (xn, yn) ∈ Gph Φ and (x∗n, y
∗
n) ∈ N̂δn(Gph Φ; (xn, yn)).

Consequently, for all h ∈ X (the excluded case h = 0 follows trivially), one gets
by (3)

〈x̄∗, h〉 = lim
n
〈x∗n, h〉 6 lim

n
{δn‖(h,L‖h‖1)‖ − L‖h‖〈y∗n,1〉}

= −L‖h‖〈ȳ∗,1〉
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and by (4): ȳ∗[i] = lim
n
y∗n[i] 6 lim

n
δn = 0, hence ȳ∗ ∈ Rm− . Finally, interchang-

ing h and −h provides

|〈x̄∗, h〉| 6 L‖h‖‖ȳ∗‖1 6 Lρ‖h‖‖ȳ∗‖ ∀h ∈ X,

where ‖ · ‖1 refers to the sum norm and ρ is some modulus of norm equivalence
in Rm. Putting η := Lρ, one arrives at ‖x̄∗‖ 6 η‖ȳ∗‖. It remains to check the
last assertion of the proposition. If we reconsider (3) and (4) but with δ = 0,
then the same reasoning as in the lines before gives that

y∗ 6 0 and ‖x∗‖ 6 η‖y∗‖,
∀(x∗, y∗) ∈ N̂0(Gph Φ; (x, y)),

∀(x, y) ∈ Gph Φ ∩ (B(x̄, ε/2)×B(ȳ, ε/2)).

Therefore, ‖(x∗, y∗)‖ = ‖x∗‖+ ‖y∗‖ 6 (1 + η)‖y∗‖ 6 τ(1 + η)〈−1, y∗〉, where
τ is another modulus of norm equivalence in Rm. Now, normal compactness
of Gph Φ around (x̄, ȳ) follows according to Definition 2.2 with σ := τ−1(1 +
η)−1, γ := ε/2, S := {(0,−1)}. 2

The subsequent theorem relates the conditions for Mordukhovich and Clarke’s
coderivative in the case of cone increasing constraint mappings. It is known
that, in general, the criterion KerD∗cΦ(x̄, 0) = {0} is too strong for the char-
acterization of metric regularity. Take, for instance, the one-dimensional multi-
function Φ(x) = −|x| + R+ which is metrically regular at (0, 0) but where
KerD∗cΦ(0, 0) = R+ (note, however, that KerD∗Φ(0, 0) = {0}). On the other
hand, the theorem will show that, for certain cone increasing constraints (mod-
elling a finite number of inequalities in an infinite-dimensional space), both con-
ditions are equivalent in order to check metric regularity of the associated mul-
tifunction.

THEOREM 3.5. Let X be a reflexive Banach space, Kx ⊆ X a closed cone
with the property

∃x̂ ∈ X: 〈x∗, x̂〉 > 0 ∀x∗ ∈ K0
x \ {0}, (5)

and f : X → Rm a (Kx,Rm+ )-increasing, locally Lipschitzian mapping around
x̄ ∈ X. Then, the multifunction Φ: X ⇒ Rm defined by Φ(x) := −f(x) + Rm+
satisfies

KerD∗cΦ(x̄, ȳ) = {0} ⇐⇒ KerD∗Φ(x̄, ȳ) = {0} ∀ȳ ∈ Φ(x̄)

(note that Φ is the multifunction associated to the constraint system fi(x) >
0 (i = 1, . . . ,m), in the context of verifying metric regularity).

Proof. Due to KerD∗Φ(x̄, ȳ) ⊆ KerD∗cΦ(x̄, ȳ) one has to show the direc-
tion ‘⇐’, so assume that KerD∗Φ(x̄, ȳ) = {0}. This is equivalent to 0 /∈
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D∗Φ(x̄, ȳ)[Sm−1] where Sm−1 = {y ∈ Rm | ‖y‖1 = 1} and ‖ · ‖1 refers
to the sum norm in Rm. First note, that D∗Φ(x̄, ȳ)[Sm−1] is weak∗-compact.
In fact, from Proposition 3.4 we derive that D∗Φ(x̄, ȳ)[Sm−1] ⊆ B(0, γ) for
some γ > 0, hence it is bounded. It remains to show the weak∗-closedness.
Let x∗α

∗
⇀ x∗ with x∗α ∈ D∗Φ(x̄, ȳ)[Sm−1] be a convergent net. By defini-

tion, there exists a net y∗α ∈ Sm−1 such that (x∗α,−y∗α) ∈ N(Gph Φ; (x̄, ȳ)). By
the compactness of Sm−1, there is a convergent subnet y∗α′ → y∗ ∈ Sm−1,
so (x∗α′ ,−y∗α′)

∗
⇀ (x∗,−y∗) with (x∗α′ ,−y∗α′) ∈ N(Gph Φ; (x̄, ȳ)). Accord-

ing to Proposition 3.4, Gph Φ is normally compact around (x̄, ȳ) (compare
Definition 2.2), hence N(Gph Φ; (x̄, ȳ)) is weak star closed. It follows that
(x∗,−y∗) ∈ N(Gph Φ; (x̄, ȳ)), so x∗ ∈ D∗Φ(x̄, ȳ)[Sm−1], which was to be
shown.

As a consequence of the weak∗-compactness, there is some x̂∗ ∈ D∗Φ(x̄,
ȳ)[Sm−1] with 〈x̂∗, x̂〉 = min{〈x∗, x̂〉 | x∗ ∈ D∗Φ(x̄, ȳ)[Sm−1]}, where x̂ refers
to (5). Proposition 3.1 provides D∗Φ(x̄, ȳ)[Sm−1] ⊆ K0

x, hence, by assumption,
x̂∗ ∈ K0

x \ {0}. Now (5) yields 〈x̂∗, x̂〉 > 0. Thus, D∗Φ(x̄, ȳ)[Sm−1] ⊆ H∗ :=
{x∗ ∈ X∗ | 〈x∗, x̂〉 > 〈x̂∗, x̂〉} and 0 /∈ H∗. We are done if we can show that

D∗cΦ(x̄, ȳ)[Sm−1] ⊆ co∗D∗Φ(x̄, ȳ)[Sm−1] (6)

since then D∗cΦ(x̄, ȳ)[Sm−1] ⊆ H∗, due to the convexity and the weak∗-closed-
ness of H∗. In particular, 0 /∈ D∗cΦ(x̄, ȳ)[Sm−1] from which the desired relation
KerD∗cΦ(x̄, ȳ) = {0} follows. Before proving (6), the following implication is
shown:

(x∗,−y∗) ∈ coN(Gph Φ; (x̄, ȳ)),

y∗ ∈ Sm−1 =⇒ x∗ ∈ coD∗Φ(x̄, ȳ)[Sm−1]. (7)

To see this, consider any (x∗,−y∗) ∈ coN(Gph Φ; (x̄, ȳ)) with y∗ ∈ Sm−1.
This means the existence of some γi > 0 (i = 1, . . . , k) and of (x∗i ,−y∗i ) ∈
N(Gph Φ; (x̄, ȳ)) such that

∑k
i=1 γi = 1 and (x∗,−y∗) =

∑k
i=1 γi(x

∗
i ,−y∗i ). We

may assume that y∗i 6= 0, since otherwise Proposition 3.4 implies x∗i = 0 and
the term (x∗i ,−y∗i ) may then be removed from the sum. Furthermore, we know
from Proposition 3.4, that −y∗i ∈ Rm− (i = 1, . . . , k), so y∗ =

∑k
i=1 γiy

∗
i implies

‖y∗‖1 =
∑k
i=1 γi‖y∗i ‖1. By the cone property of N one has

([‖y∗i ‖1]−1x∗i ,−[‖y∗i ‖1]−1y∗i ) ∈ N(Gph Φ; (x̄, ȳ)).

Therefore, w∗i := [‖y∗i ‖1]−1x∗i ∈ D∗Φ(x̄, ȳ)[Sm−1]. It results

x∗ =
k∑
i=1

γix
∗
i =

k∑
i=1

γi‖y∗i ‖1[‖y∗i ‖1]−1x∗i =
k∑
i=1

δiw
∗
i ,

where δi > 0 and
∑k
i=1 δi = ‖y∗‖1 = 1. Consequently, x∗ ∈ coD∗Φ(x̄, ȳ)[Sm−1].
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In order to verify (6), consider x̄∗ ∈ D∗cΦ(x̄, ȳ)(ȳ∗) with ȳ∗ ∈ Sm−1. Then,

(x̄∗,−ȳ∗) ∈ Nc(Gph Φ; (x̄, ȳ)) = co∗N(Gph Φ; (x̄, ȳ)),

so there is a net (x∗α,−y∗α)
∗
⇀ (x̄∗,−ȳ∗) with (x∗α,−y∗α) ∈ coN(Gph Φ; (x̄, ȳ)).

Hence, with (v∗α,−r∗α) := ([‖y∗α‖1]−1x∗α,−[‖y∗α‖1]−1y∗α), one also has (due to
[‖y∗α‖1 → 1)

(v∗α,−r∗α) ∈ coN(Gph Φ; (x̄, ȳ)) and (v∗α,−r∗α)
∗
⇀ (x̄∗,−ȳ∗),

but r∗α ∈ Sm−1. From (7), it follows that v∗α ∈ coD∗Φ(x̄, ȳ)[Sm−1]. Consequent-
ly, x̄∗ ∈ co∗D∗Φ(x̄, ȳ)[Sm−1], which finishes the proof. 2

COROLLARY 3.6. If m = 1 in the setting of Theorem 3.5, then

0 ∈ ∂f(x̄)⇐⇒ 0 ∈ ∂cf(x̄)⇐⇒ 0 ∈ ∂c(−f)(x̄)⇐⇒ 0 ∈ ∂(−f)(x̄).

Proof. Apply Theorem 3.5 along with (2) to see that 0 ∈ ∂c(−f)(x̄) ⇔ 0 ∈
∂(−f)(x̄). Now, f being (Kx,R+)-increasing, it follows that −f is (−Kx,R+)-
increasing. But, since Kx satisfies (5), the same must hold true for −Kx (take
−x̂ and note that (−Kx)0 = −K0

x), hence Theorem 3.5 may also be applied
to −f , which yields 0 ∈ ∂f(x̄) ⇔ 0 ∈ ∂cf(x̄). The remaining equivalence is
obvious by ∂c(−f)(x̄) = −∂cf(x̄) (cf. [6]). 2

COROLLARY 3.7. Let f : Rn → Rm be a (Rn+,R
m
+ )-increasing, locally Lip-

schitzian mapping defining the constraint f(x) > 0. Then f is metrically regular
at some feasible point x̄ ∈ Rn, if and only if KerD∗cΦ(x̄, 0) = {0} for Φ(x) =
−f(x) + Rm+ . In particular, for m = 1, one has

f is metrically regular at x̄⇐⇒ f(x̄) > 0 or 0 /∈ ∂cf(x̄).

Proof. By Theorem 2.3, f is metrically regular at x̄ if and only if KerD∗Φ(x̄,
0) = {0}. Apply Theorem 3.5. The first equivalence in the last statement follows
from KerD∗cΦ(x̄, 0) = {0} if f(x̄) > 0 and from (2). 2

It is clear, that in Theorem 3.5 some cone property has to be required for Kx.
Otherwise, one could take the example f(x) = |x| discussed before the state-
ment of the theorem. Here, f is trivially (0,R+)-increasing, but the equivalence
between the two coderivative conditions does not hold for the associated multi-
function Φ(x) = −|x| + R+. Of course, Kx = {0} violates (5). On the other
hand, the required cone property is not too restrictive. It holds, in particular for
the usual positivity cones Rn+ or lp+, L

p
+ with 2 6 p <∞, so it is not necessary

– although sufficient – to have nonempty interior.
Theorem 3.5 allows the following characterization of the coderivative of

(single-valued) cone increasing functions in terms of subdifferentials of their
components:
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LEMMA 3.8. Let X be a reflexive Banach space and F : X → Rm a locally Lip-
schitzian, (Kx,Rm+ )-increasing function with the closed cone Kx satisfying (5).
Then, the following equivalences hold at any x̄ ∈ X (with F understood as a
single-valued multifunction and D∗F (x̄) := D∗F (x̄, F (x̄))):

KerD∗F (x̄) ∩ (Rm+ ∪ Rm− )

= {0} ⇐⇒ 0 /∈ ∂Fi(x̄) (i = 1, . . . ,m)

⇐⇒ 0 /∈ ∂(−Fi)(x̄) (i = 1, . . . ,m)

⇐⇒ KerD∗(−F )(x̄) ∩ (Rm+ ∪ Rm− ) = {0}.

Proof. The last equivalence will follow from the first one, since −F is
(−Kx,Rm+ )-increasing and −Kx satisfies (5) if Kx does so. The second equiva-
lence follows from Corollary 3.6, since each Fi: X → R is (Kx,R)-increasing.
To verify the first equivalence, we apply the so-called scalarization formula (cf.
[23]) which allows to write the coderivative of a single-valued, locally Lips-
chitzian mapping with finite-dimensional image space in terms of subdifferentials
of linear combinations of the components:

D∗F (x̄)(y∗) = ∂〈y∗ ◦ F 〉(x̄) ⊆
m∑
i=1

∂(y∗i · Fi)(x̄)

=



m∑
i=1

y∗i ∂Fi(x̄), y∗ ∈ Rm+ ,
m∑
i=1

(−y∗i )∂(−Fi)(x̄), y∗ ∈ Rm− .

Here, the scalarization is followed by an inclusion resulting from the sum rule and
a case distinction which is necessary since, in contrast to Clarke’s subdifferential,
only positive scalars may be pulled out from the approximate subdifferential.
Now the direction ‘⇒’ of the first equivalence is obtained from the scalarization
(equation above) along with 0 /∈ D∗F (x̄)(ei), where ei denotes the ith standard
unit vector of Rm. The reverse direction would follow from the relation 0 /∈
co {⋃mi=1 ∂aFi(x̄)}∪co {⋃mi=1 ∂a(−Fi)(x̄)}. Indeed, in this case, 0 cannot belong
to either of the two sums in the case distinction above, provided that y∗ ∈
Rm+ \{0} or y∗ ∈ Rm− \{0}. Consequently, 0 /∈ D∗F (x̄)(y∗) for all such y∗, which
entails the left-hand side of the first equivalence. In order to verify the indicated
relation, assume the right-hand side of the first equivalence. The reflexivity of
X implies that the subdifferentials ∂Fi(x̄) of the locally Lipschitzian functions
Fi are weak star compact. Consequently, there exist a x̂∗i ∈ ∂Fi(x̄) such that

γi = max{〈x∗, x̂〉 | x∗ ∈ ∂Fi(x̄)} = 〈x̂∗i , x̂〉,
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where x̂ refers to (5). On the other hand, each component Fi is (Kx,R+)-
increasing, so Corollary 3.2 along with the assumption 0 /∈ ∂Fi(x̄) gives −x̂∗i ∈
K0
x \ {0}. Then, (5) provides γi < 0. Setting γ := maxγi < 0, we obtain

∂Fi(x̄) ⊆ {x∗ ∈ X∗ | 〈x∗, x̂〉 6 γ} =: H, i = 1, . . . ,m,

where H is a convex set not containing zero. Therefore, 0 /∈ conv{⋃mi=1 ∂Fi(x̄)}.
At the same time, one has 0 /∈ ∂(−Fi)(x̄) from the already proved second equiv-
alence in the statement of the lemma. Then, the −Fi are (−Kx,R+)-increasing,
such that the analogous argumentation as before – but taking the γi as cor-
responding minima rather than maxima – leads to 0 /∈ co {⋃mi=1 ∂(−Fi)(x̄)},
which finishes the proof. 2

The lemma allows to re-address the chain rule of Lemma 3.3, now in a more
specific setting, which allows completely to resolve metric regularity of the com-
posite function in terms of subdifferentials.

COROLLARY 3.9. Let X be a reflexive Banach space and F : X → Rm, f :
Rm → R locally Lipschitzian functions that are (Kx,Rm+ )- and (Rm+ ,R+)-
increasing, respectively, where Kx satisfies (5). Then, the constraint (f ◦F )(x) >
0 is metrically regular at some feasible x̄ if f(F (x̄)) > 0 or if, in the binding
case, the conditions

0 /∈ ∂(−f)(F (x̄)) and 0 /∈ ∂Fi(x̄) (i = 1, . . . ,m)

are fulfilled.

The proof directly results from combining Lemma 3.8 with Lemma 3.3 and
noting that (Rm+ )0 = Rm− . By the way, the same conclusion holds true if in the
definition of the increasing behavior of f and F , respectively, Rm+ is replaced by
Rm− in one or both cases.

Specifying the previous results to the chance constraint (1), where the outer
function Fµ is automatically (Rm+ ,R+)-increasing, one obtains

COROLLARY 3.10. In the chance constraint (1) let C = Rn and Fµ, h be
locally Lipschitzian. Then, this constraint is metrically regular at some feasible
point x̄ if Fµ(h(x̄)) > p0 or if, in the binding case, the conditions

0 /∈ ∂(c)(−Fµ)(h(x̄)) and 0 /∈
m∑
i=1

λi∂hi(x̄) ∀λ ∈ Rm− \ {0}

are satisfied. Here, the symbol ∂(c) indicates that both subdifferentials ∂ and ∂c
could be used equivalently. If, moreover, h is (Rn+,R

m
+ )-increasing (which might

be a reasonable assumption since h measures a kind of production), then the
second condition is implied by

0 /∈ ∂(c)hi(x̄) (i = 1, . . . ,m).
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The proof follows from Lemma 3.3, Corollary 3.6, Corollary 3.9 and from
the scalarization formula (cf. proof of Lemma 3.8).

Now, we turn to a characterization of metric regularity of constraint systems
including unperturbed constraint sets. It is clear that for this issue the behavior of
the constraint function along the unperturbed set is crucial. We shall call a closed
subset C ⊆ X tangentially generating at some x̄ ∈ C if Clarke’s tangent cone is
a generating cone there, i.e. Tc(C; x̄)− Tc(C; x̄) = X. This may be understood
as a kind of constraint qualification for the set C.

LEMMA 3.11. Let X be an Asplund space, f : X → Rm a locally Lipschitzian
mapping and C ⊆ X a closed subset that is tangentially generating at some
point x̄ ∈ C fulfilling f(x̄) > 0. Then, the constraint f(x) > 0 is metrically
regular at x̄ with respect to C if

(1) KerD∗Φ(x̄, 0) = {0}, where Φ(x) := −f(x) + Rm+ .
(2) f is (Tc(C; x̄),Rm+ )-increasing around x̄.

Proof. According to Section 2, we have to show metric regularity of the
multifunction

Φ1(x) :=
{−f(x) + Rm+ , if x ∈ C,

∅, else

at the point (x̄, 0) ∈ Gph Φ1. By Theorem 2.3 it remains to check that
KerD∗Φ1(x̄, 0) = {0}, so choose any y∗ ∈ Rm with (0,−y∗) ∈ N(Gph Φ1;
(x̄, 0)). We have to show that y∗ = 0. Obviously, we can write Gph Φ1 =
Gph Φ∩ (C×Rm) with Φ as introduced in the statement of the lemma. Now, for
arbitrary (x∗, z∗) ∈ N(Gph Φ; (x̄, 0))∩−N(C×Rm; (x̄, 0)) one has z∗ = 0 due
to N(C ×Rm; (x̄, 0)) = N(C; x̄)×{0}. But then, since (x̄, 0) ∈ Gph Φ, Propo-
sition 3.4(1) provides x∗ = 0, hence N(Gph Φ; (x̄, 0))∩−N(C ×Rm; (x̄, 0)) =
{0}. Also from Proposition 3.4, we know that Gph Φ is normally compact
around (x̄, 0). Therefore, Proposition 2.4 yields (0,−y∗) ∈ N(Gph Φ; (x̄, 0)) +
[N(C; x̄) × {0}]. This means the existence of some x∗ ∈ −N(C; x̄) such that
(x∗,−y∗) ∈ N(Gph Φ; (x̄, 0)), i.e. x∗ ∈ D∗Φ(x̄, 0)(y∗). By assumption (2) of
this lemma and by Proposition 3.1 we know that x∗ ∈ (Tc(C; x̄))0 = Nc(C; x̄).
On the other hand, x∗ ∈ −N(C; x̄) ⊆ −Nc(C; x̄). Now, Tc(C; x̄) is a generating
cone, since C is tangentially generating at x̄, so its polar Nc(C; x̄) must be a
pointed cone. Hence, x∗ = 0 and y∗ ∈ KerD∗Φ(x̄, 0). Now, assumption (1) of
this lemma gives y∗ = 0, which completes the proof. 2

Lemma 3.11 decomposes metric regularity of f with respect to C into usual
metric regularity of f without regard to C and cone increasing behavior along
C. This might facilitate the verification as compared to directly checking the
sufficient criterion of Theorem 2.3 for the multifunction Φ1 defined in the proof
of the lemma.
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3.2. GLOBAL METRIC REGULARITY OF FINITE-DIMENSIONAL, NONDECREASING
CONSTRAINT MAPPINGS

In this section, we study global metric regularity of finite-dimensional, non-
decreasing (i.e. (Rn+,R

m
+ )-increasing) constraint mappings. More precisely, we

mean metric regularity w.r.t. C at all feasible points of the constraint

M = {x ∈ Rn | f(x) > 0, and x ∈ C}, (8)

where C ⊆ Rn is closed, f ∈ C0,1(Rn,Rm) and f satisfies x > y ⇒ f(x) > f(y)
with the partial orders of Rn,Rm, respectively. By C0,1(Rn,Rm) we denote the
space of locally Lipschitzian mappings f : Rn → Rm. In the case m = 1, the
symbol C0,1(Rn) will be used. We note that the same concept of ‘global metric
regularity’ was used in [22] in a different sense and should not be mixed up with
its meaning here.

As mentioned in the introductory section, global metric regularity is a typical
or generic property of continuously differentiable constraint mappings. Here,
‘generic’ refers to the fact, that it is fulfilled for a dense Gδ-set (a countable
intersection of open sets) in the space of continuously differentiable mappings
from Rn to Rm endowed with a suitable topology. As we shall see from an
example below, a similar statement does not hold true for locally Lipschitzian
constraint mappings in a natural topology.

First, we endow C0,1(Rn) with a metric. For f ∈ C0,1(Rn) define the func-
tion ψf (x) = max{‖y‖ | y ∈ ∂cf(x)}. Obviously, ψf is nonnegative and it is
uppersemicontinuous due to the uppersemicontinuity of the set-valued mapping
∂cf(·). Furthermore, it has the following properties (for arbitrary f, g ∈ C0,1(Rn)
and arbitrary x ∈ Rn):

ψf+g(x) 6 ψf (x) + ψg(x), (9)

dH(∂cf(x), ∂cg(x)) 6 ψf−g(x). (10)

Here dH refers to the Hausdorff distance of closed subsets of Rn. Relation (9)
is based on the sum rule for Clarke’s subdifferential. To see (10), recall the
representation of the Hausdorff distance between compact, convex sets by means
of their support functionals, which for Clarke’s subdifferential is the generalized
directional derivative d0 (cf. [6]). Since d0 fulfills a triangular inequality w.r.t.
f, g for fixed point and direction, we have

dH(∂cf(x), ∂cg(x))

= sup
‖h‖61

|d0f(x;h)− d0g(x;h)|

6 sup
‖h‖61

max{d0(f − g)(x;h), d0(g − f)(x;h)}

= sup
‖h‖61

max{max{y(h) | y ∈ ∂c(f − g)(x)},
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338 RENÉ HENRION

max{y(h) | y ∈ ∂c(g − f)(x)}}

= max{max{ sup
‖h‖61

y(h) | y ∈ ∂c(f − g)(x)},

max{ sup
‖h‖61

y(h) | y ∈ −∂c(f − g)(x)}}

= max{max{‖y‖ | y ∈ ∂c(f − g)(x)},
max{‖y‖ | −y ∈ ∂c(f − g)(x)}} = ψf−g(x)

which is (10).
Now, put di(f, g) = max{max{|f(x)− g(x)|, ψf−g(x)} | x ∈ B(0, i)} where

B(0, i) denotes the closed ball around 0 with radius i ∈ N. Note that the ‘max’-
sign is justified by uppersemicontinuity of ψf−g(x). It is easy to verify, that di
defines a metric for locally Lipschitzian functions restricted to B(0, i). In fact,
reflexivity of di follows from the symmetry −∂cf = ∂c(−f), while the triangular
inequality basically relies on (9). This metric is reasonable in the sense that the
entity max{ψf (x) | x ∈ B(0, i)} defines the smallest Lipschitz constant of f on
B(0, i). Obviously,

d(f, g) =
∞∑
i=1

2−idi(f, g)/(1 + di(f, g)) (11)

is a metric on C0,1(Rn) and
∑m
i=1 d(fi, gi) is a metric on C0,1(Rn,Rm) which is

compatible with the product topology induced by the metric on the single factors.
(C0,1(Rn,Rm), d) is a complete metric space. Furthermore, one easily verifies the
property

d(f, g) < 21−i(i ∈ N) =⇒ di(f, g) 6 d(f, g)/(21−i − d(f, g)) (12)

for f, g ∈ C0,1(Rn). The following example shows, that there exists a nonempty
open set of functions f ∈ C0,1(R) with the property that global metric regularity
is violated for the constraint f(x) > 0. This means, for all of these f there is
at least one feasible point violating metric regularity. Consequently, the set of
functions satisfying global metric regularity cannot contain a dense Gδ (since the
complement contains a nonempty open subset).

EXAMPLE 3.12. Define f̂ ∈ C0,1(R) to meet the property ∂cf̂(x) = [−1, 1] ∀x ∈
R (see Rockafellar [30] for the construction of such a function). Then, f̂ is obi-
ously not constant, so there are x1, x2 ∈ R with x1 < x2 and, without loss of
generality f̂(x1) < f̂(x2). Take some x̄ ∈ (x1, x2) with f̂(x1) < f̂(x̄) < f̂(x2)

and define f̄(x) := f̂(x) − f̂(x̄). Then, f̄ ∈ C0,1(R), ∂cf̄(x) = [−1, 1] ∀x ∈ R
and f̄(x1) < f̄(x̄) = 0 < f̄(x2). Choose i ∈ N such that x1, x2 ∈ [−i, i] and set

V := {f ∈ C0,1(R) | d(f, f̄) < ε},
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where ε := 21−i min{1/3, |f̄(x1)|/(2 + |f̄(x1)|), |f̄(x2)|/(2 + |f̄(x2)|)} > 0.
V is a nonempty and open subset of C0,1(R). Suppose for a moment that, for
each f ∈ V there exists some x ∈ R such that f(x) = 0 and 0 ∈ ∂(−f)(x)
(Mordukhovich’s subdifferential here). Then (compare Section 2),

0 ∈ ∂(−f)(x) = D∗epi (−f)(x, 0)(1),

hence KerD∗epi (−f)(x, 0) 6= {0} and the multifunction Φ(z) = −f(z)+R+ is
not metrically regular at (x, 0) (see the statement of equivalence in Theorem 2.3)
or, in other words, for all f from an open set V the constraint f(x) > 0 is not
metrically regular at some feasible point x (depending on f ). This is what had
to be shown by the example.

In order to verify the property used above, choose any f ∈ V . By ε < 21−i

one may apply (12) to f, f̄ and continue the estimation using the definition of ε
to arrive at di(f, f̄) < |f̄(xk)|/2 (k = 1, 2). In particular, f(x1) < 0 < f(x2),
so there is some x∗ ∈ (x1, x2) with f(x∗) = 0. Similarly, (10) along with the
definitions of di and of ε provide

dH(∂cf(x), ∂cf̄(x)) 6 di(f, f̄) < d(f, f̄)/(21−i − d(f, f̄))

<
1
3

21−i
/2

3
21−i =

1
2
∀x ∈ [−i, i].

Since ∂cf̄(x) = [−1, 1] ∀x ∈ [−i, i] and ∂cf(x) is a closed interval, one derives
[−1/2, 1/2] ⊆ ∂cf(x) ∀x ∈ [−i, i]. Due to ∂c(−f)(x) = −∂cf(x) it follows
[−1/2, 1/2] ⊆ ∂c(−f)(x) ∀x ∈ [−i, i]. Now, from a theorem of Katriel ([19],
Theorem 1) it is known, that in the one-dimensional case ∂c(−f) and ∂(−f)
agree on a dense subset of D ⊆ R, hence [−1/2, 1/2] ⊆ ∂(−f)(x) ∀x ∈
D ∩ [−i, i]. But the graph of the multifunction x 7→ ∂(−f)(x) being closed and
D ∩ [−i, i] being dense in [−i, i], one arrives at [−1/2, 1/2] ⊆ ∂(−f)(x) ∀x ∈
[−i, i]. In particular, 0 ∈ ∂(−f)(x∗). 2

This example demonstrates by the way the potential of Mordukhovich’s subdif-
ferential as a theoretical tool for characterizing stability (or non-stability). The
decisive argument in the example was to exploit the coderivative condition from
Theorem 2.3 as a necessary criterion for metric regularity in finite dimensions.

Although the example proves global metric regularity not to be a typical
property for general, locally Lipschitzian constraint functions, we shall see in the
following, that genericity considerations are not in vain for the specific subclass
of nondecreasing functions. As a preparatory result, we show

LEMMA 3.13. For arbitrary compact subsets K ⊆ Rn it holds that V K = {f ∈
C0,1(Rn) | ∂cf(x) ⊆ intRn+ ∀x ∈ K} is an open subspace of (C0,1(Rn), d).

Proof. Choose any f ∈ V K . First we show that the function

δ(x) = min{‖y − z‖ | y ∈ ∂cf(x), z ∈ ∂Rn+},
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where ∂Rn+ refers to the boundary of the positive orthant of Rn, is lowersemi-
continuous (the ‘min’-sign is justified by compactness of ∂cf(x)). Now, for
any converging sequence xk → x̄ one has δ(xk) = ‖yk − zk‖ with yk ∈
∂cf(xk), zk ∈ ∂Rn+. Obviously, {yk} is a bounded sequence due to the upper
semicontinuity of ∂cf . On the other hand, ‖zk‖ 6 ‖zk − yk‖ + ‖yk‖ 6 2‖yk‖
(since 0 ∈ ∂Rn+), hence {zk} is a bounded sequence, too. Consequently, for
some subsequences we may assume ykl → ȳ, zkl → z̄, where ȳ ∈ ∂cf(x̄)
(by closedness of the set-valued mapping ∂cf ) and z̄ ∈ ∂Rn+. Consequently,
δ(xkl) = ‖ykl − zkl‖ → ‖ȳ − z̄‖ > δ(x̄), so δ is lowersemicontinuous.

Next, denote by δ̄ the minimum of δ over the compact set K. Then f ∈ V K

implies δ̄ > 0. Let l ∈ N such that K ⊆ B(0, l). We claim that g ∈ V K for all
g ∈ C0,1(Rn) satisfying d(f, g) < 21−lδ̄/(2 + δ̄). In fact, from (10) and (11) one
gets for all these g:

dH(∂cf(x), ∂cg(x)) 6 ψf−g(x) 6 dl(f, g) < δ̄/2 ∀x ∈ K. (13)

On the other hand g /∈ V K would imply the existence of some y∗ ∈ ∂cg(x) \
intRn+ for some x ∈ K. Now, for any y ∈ ∂cf(x) we have y ∈ intRn+, hence
there is some τ ∈ [0, 1] such that yτ = y∗ + τ(y − y∗) ∈ ∂Rn+. Then

δ̄ 6 δ(x) 6 ‖yτ − y‖ = (1− τ)‖y∗ − y‖ 6 ‖y∗ − y‖.

Since y ∈ ∂cf(x) was arbitrary it results the contradiction to (13)

δ̄ 6 min{‖y∗ − y‖ | y ∈ ∂cf(x)} 6 dH(∂cf(x), ∂cg(x)) < δ̄/2.

Therefore g ∈ V K for all g ∈ C0,1(Rn) from the indicated neighborhood of f . 2

Next, we introduce the following subsets of C0,1(Rn,Rm):

M(Rn,Rm) = {f ∈ C0,1(Rn,Rm) | ∀x, y ∈ Rn: x 6 y ⇒ f(x) 6 f(y)},
F(Rn,Rm) = {f ∈ C0,1(Rn,Rm) | fi is the distribution function

of some probability measure on Rn for i = 1, . . . ,m},
D(Rn,Rm) = {f ∈ F(Rn,Rm) | fi has a density for i = 1, . . . ,m},
V = {f ∈ C0,1(Rn) | ∂cf(x) ⊆ intRn+ ∀x ∈ Rn}.

Along with general nondecreasing functions from M(Rn,Rm) we consider the
sets F(Rn,Rm) and D(Rn,Rm) for application to chance constraints. Obvi-
ously, with the identification f = (f1, . . . , fm), one may write M(Rn,Rm) =
M(Rn)× · · · ×M(Rn), and similarly for F(Rn,Rm) and D(Rn,Rm). Further-
more, D(Rn,Rm) ⊆ F(Rn,Rm) ⊆ M(Rn,Rm), where each of the inclusions
may be strict. To see this for the first inclusion, consider the uniform distribution
over the line segment {0, 0}, {1, 1} in R2; then, the distribution function becomes

f(x, y) = min{1,max{0,min{x, y}}} ∈ F(R2,R),

SVAN310.tex; 24/02/1998; 10:08; v.7; p.18



CONE INCREASING CONSTRAINT MAPPINGS 341

but it does not have a density since the Lebesgue measure of the line segment
is zero.

Finally, it holds that

V =
⋂
i∈N

V B(0,i). (14)

In the following we consider all these sets as metric subspaces of (C0,1(Rn,Rm),
d).

LEMMA 3.14. V ∩M(Rn), V ∩F(Rn) and V ∩D(Rn), respectively are dense
subsets of M(Rn),F(Rn) and D(Rn), respectively.

Proof. Let any f ∈ M(Rn),F(Rn),D(Rn), respectively, and any ε > 0
be given. It has to be shown, that there exists g ∈ M(Rn),F(Rn),D(Rn),
respectively, such that g ∈ V and d(g, f) < ε. Define

Φ(x) = (2π)−n/2
∫ x1

−∞
· · ·
∫ xn

−∞
e−‖y‖

2/2 dyn · · · dy1.

Being the distribution function of some multivariate normal distribution, Φ simul-
taneously belongs to D(Rn),F(Rn) and M(Rn). Putting

g =
f + γΦ

1 + γ
, where γ > 0, (15)

we see that, by convexity of the sets D(Rn),F(Rn) and M(Rn), it holds g ∈
M(Rn), F(Rn), D(Rn), respectively, whenever f ∈ M(Rn), F(Rn), D(Rn),
respectively. From the equalities

|g(x) − f(x)| = γ(1 + γ)−1|f(x)− Φ(x)| and

ψg−f (x) = γ(1 + γ)−1ψf−Φ(x) ∀x ∈ Rn

one derives d(g, f) < ε as soon as γ > 0 becomes sufficiently small. It remains
to show that g ∈ V . By the sum rule for Clarke’s subdifferential, one has for
any x ∈ Rn and any ξ ∈ ∂cg(x), that ξ = (1 + γ)−1ξ′ + γ(1 + γ)−1∇Φ(x) with
ξ′ ∈ ∂cf(x). But ∂cf(x) ⊆ Rn+ due to f being (Rn+,R+)-increasing (compare
Corollary 3.2) and ∇Φ(x) ∈ intRn+, hence ξ ∈ intRn+ and g ∈ V (recall that
γ > 0). 2

Before stating the first genericity result, we need a sufficient criterion for metric
regularity of (8) which, in contrast to the general coderivative condition of The-
orem 2.3, is formulated in terms of subdifferentials of the components fi of f
and of the normal cone to the fixed set C. Using Theorem 2.4, it is easily shown,
that the coderivative condition is implied by the relation∑

i∈I(x̄)

λi∂(−fi)(x̄) ∩N(C; x̄) = ∅ ∀λi 6 0 (i ∈ I(x̄)),
∑
i∈I(x̄)

λi < 0,
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where I(x̄) = {i ∈ {1, . . . ,m} | fi(x̄) = 0}. However, with respect to the
metric for locally Lipschitzian functions as introduced above in terms of Clarke’s
subdifferential, it is more reasonable to replace ∂ and N by ∂c and Nc in the
last relation. Although this would result in a much stronger condition in general,
no essential information is lost in the subsequent results. Explicitly, we consider
the constraint qualification∑

i∈I(x̄)

λi∂cfi(x̄) ∩Nc(C; x̄) = ∅ ∀λi > 0 (i ∈ I(x̄)),
∑
i∈I(x̄)

λi > 0. (16)

THEOREM 3.15. It holds

(1) V K ∩M(Rn), V K ∩F(Rn), V K ∩D(Rn), respectively, are open and dense
in M(Rn), F(Rn), D(Rn), respectively, for all compact sets K ⊆ Rn.

(2) V ∩M(Rn), V ∩F(Rn), V ∩D(Rn), respectively, is a dense Gδ inM(Rn),
F(Rn), D(Rn), respectively.

(3) The set of functions f ∈ M(Rn,Rm) for which the constraint set f(x) > 0
is globally metrically regular, contains a dense Gδ inM(Rn,Rm). Similarly,
the set of functions f ∈ F(Rn,Rm)(D(Rn,Rm)) for which the constraint set
f(x) > p is globally metrically regular for all p ∈ Rm, contains a dense Gδ
in F(Rn,Rm)(D(Rn,Rm)).

Proof. (1) follows from Lemma 3.13, Lemma 3.14 and V ⊆ V K . (2) follows
from (1), (14) and Lemma 3.14. To verify (3) note first that by (2) the set
V ′ = (V × · · · × V ) ∩M(Rn,Rm) is a dense Gδ in M(Rn,Rm) such that for
f ∈ V ′ one has ∂cfi(x) ⊆ intRn+ ∀x ∈ Rn, i = 1, . . . ,m. On the other hand,
there is no additional fixed constraint set C, hence C = Rn,Nc(C;x) = 0 and
these functions satisfy:

m∑
i=1

λi∂cfi(x) ∩ {0} = ∅ ∀x ∈ Rn ∀λi > 0 (i = 1, . . . ,m),
m∑
i=1

λi > 0. (17)

This follows from the fact that a nontrivial positive linear combination of sub-
sets of intRn+ again yields a subset of intRn+ which in particular excludes the
origin. But then, by (16), metric regularity of f holds at all feasible points. The
same argumentation (using the statements in parantheses of (2)) provides the
corresponding assertion when replacing M by F or D, respectively. Note, that
(17) holds for all i ∈ {1, . . . ,m} (not just for i ∈ I(x) as required in (16)).
Therefore, the actual value of the right-hand side p ∈ Rm is irrelevant in the
constraint f(x) > p. 2

The reason for the slightly different formulations in the third statement of the
theorem is that, for f ∈ F(Rn,Rm) or f ∈ D(Rn,Rm), it does not make sense
to restrict constraints to the form f(x) > 0. Rather, one would consider the
inequality f(x) > p with 0 6 p 6 1 being some probability level. Formally
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writing this constraint in zero form is not reasonable since then f(x) − p is no
longer a distribution function in general, which has to be nonnegative.

The following example demonstrates that, even in the case n = m = 1 the
property of global metric regularity for the constraint f(x) > 0 is not open in
D(R). Much less it is open in the bigger sets F(R),M(R) or C0,1(R).

EXAMPLE 3.16. Let φ(x) = (2π)−1/2e−x
2/2 be the density for the one-dimen-

sional standard normal distribution Φ(x) =
∫ x
−∞ φ(y) dy and for k ∈ N define

φk(x) =

{
0 if x 6 −k,

φ(x)(1− Φ(−k))−1 if x > −k.

For Φk(x) =
∫ x
−∞ φk(y) dy it follows

Φk(x) =

{
0 if x 6 −k,

(Φ(x)− Φ(−k))(1− Φ(−k))−1 if x > −k.

Therefore Φ,Φk ∈ D(R) (k ∈ N). Now, some elementary calculation shows that

|Φ(x)− Φk(x)| 6 Φ(−k), and

ψΦ−Φk(x) 6 max{φ(−k), (2π)−1/2Φ(−k)(1−Φ(−k))−1}

for all x ∈ R and all k ∈ N. But limk→∞Φ(−k) = limk→∞ φ(−k) = 0, therefore
we get limk→∞ d(Φk,Φ) = 0. On the other hand, the constraint Φ(x) > 0 is
trivially metrically regular at all feasible points (no binding occurs due to strict
positivity of Φ), while all the constraints Φk(x) > 0 fail to be metrically regular
at all points x 6 −k, which are feasible by definition. In fact, the whole interval
(−∞,−k] becomes infeasible after a small right-hand side perturbation of the
constraint. Consequently, global metric regularity of the constraint f(x) > 0
cannot be open in D(R) as far as the metric d is used. 2

The phenomenon encountered in the example is also known even for smooth
constraint functions. In the smooth case, it is possible to avoid such ‘asymptotic
failure’ of global metric regularity by introducing the so-called Whitney topology
(see [14]). The introduction of an analogous topology in C0,1(Rn,Rm) in order to
arrive at a similar ’open and dense’ result in the present context of nondecreasing
functions, seems not to be successful apart from the trivial case n = m = 1.

On the other hand, genericity of global metric regularity in terms of an ‘open
and dense’ statement can be shown in the presence of additional fixed constraints
C (see (8)) with appropriate structure, namely compact box-constraints, which
are quite typical for the unperturbed part of feasibility. Note that now, metric
regularity w.r.t. a closed subset comes into play.

LEMMA 3.17. Let [a, b] be a rectangle in Rn with a 6 b. Then, the set of func-
tions f ∈ M(Rn,Rm) for which the constraint f(x) > 0 is globally metrically
regular with respect to [a, b] contains an open and dense subset of M(Rn,Rm).
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Proof. Define W = V [a,b]∩{f ∈M(Rn) | f(b) 6= 0}. V [a,b]∩M(Rn) is open
and dense in M by item (1) in Theorem 3.15. But {f ∈ M(Rn) | f(b) 6= 0} is
clearly open and dense inM(Rn) too (to verify density, add to f a small constant,
which of course provides a function still in M(Rn)). So, W is representable as
the intersection of two open and dense subsets of M(Rn), hence is itself open
and dense in M(Rn). Therefore, W ′ = W × · · · × W is open and dense in
M(Rn,Rm). It remains to show, that for all functions f ∈ W ′ the constraint
f(x) > 0 is metrically regular with respect to [a, b] at all feasible points. Again,
as in the proof of Theorem 3.15, one has

m∑
i=1

λi∂cfi(x) ⊆ intRn+, ∀λi > 0 (i = 1, . . . ,m),
m∑
i=1

λi > 0,∀x ∈ [a, b].

But, due to the simple structure of a rectangle, it holds Nc([a, b];x) ∩ intRn+ =
∅ ∀x ∈ [a, b] \ {b}. Hence, (16) holds for all x ∈ [a, b] \ {b}. Finally, at x = b
all components of f ∈ W ′ are unequal to zero by definition, so (16) is trivially
satisfied by emptyness of the active index set I(x). 2

This lemma allows the following generalization to noncompact box constraints
(e.g. nonnegativity constraints):

COROLLARY 3.18. Let J1, J2 be two not necessarily disjoint subsets of {1, . . . ,
n} and assume

C = {x ∈ Rn | xi > ai (i ∈ J1), xi 6 bi (i ∈ J2)}.

Then the set of functions f ∈ M(Rn,Rm) for which the constraint f(x) > 0 is
globally metrically regular with respect to C contains a dense Gδ inM(Rn,Rm).

Proof. Put Cj = {x ∈ C | xi > −j (i /∈ J1), xi 6 j (i /∈ J2)}. Then Cj is a
rectangle in Rn and from the proof of Lemma 3.17 there follows existence of an
open and dense set Wj ⊆M(Rn,Rm), such that (16) with C replaced by Cj (!)
is fulfilled for all f ∈Wj at all x ∈ Cj with f(x) > 0. Now, set W =

⋂
j∈NWj

and consider an arbitrary function f ∈W and an arbitrary x ∈ C with f(x) > 0.
Then, for some j ∈ N, we have x ∈ Cj(⊆ C), hence Nc(C;x) ⊆ Nc(Cj ;x).
Therefore (16) holds for f at x because of W ⊆ Wj . On the other hand, W is
a countable intersection of open and dense subsets ofM(Rn,Rm). In particular,
W is a Gδ-subset. In order to verify density of W note, that the following
characterization of nondecreasing functions is valid:

f ∈M(Rn)⇐⇒ ∂cf(x) ⊆ Rn+ ∀x ∈ Rn. (18)

This simple observation is based on Corollary 3.2 and on the mean-value theorem
for Clarke’s subdifferential (see [6]). From here, it is easily seen thatM(Rn,Rm)
is a closed subspace of C0,1(Rn,Rm) (recall the definition of the metric d in (11)
to see from the just given characterization ofM(Rn), that f ∈M(Rn) provided
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that d(fn, f)→ 0 and fn ∈M(Rn)). In particular,M(Rn,Rm) is a Baire space.
Therefore, the countable intersection of open and dense subsets is dense itself. 2

At this point one could ask in how far the box structure of C in Lemma 3.17
and Corollary 3.18 is necessary to arrive at genericity results for global metric
regularity. While this question is not completely clear, the result is negative even
for very simple sets C, as far as the use of the sufficient condition (16) for metric
regularity is concerned. Although not a proof for nongenericity of global metric
regularity with respect to certain closed subsets C, it is a strong indicator at least.
More precisely, the following example (where C is a closed halfspace) shows
that there may exist a nonempty, open subset of nondecreasing functions such
that (16) is violated at least at one feasible point.

EXAMPLE 3.19. As it was shown by Borwein, Moors and Xianfu in [5], for
any polytope P ⊆ Rn there exists a Lipschitzian function h: Rn → R, such that
∂ch ≡ P . In particular, we may choose h: R2 → R, such that ∂ch ≡ (2, 1); (1, 2)
where the line on top refers to the corresponding line segment. For the fixed
direction d = (−1, 1) Clarke’s directional derivative of h is computed at the
origin as

lim sup
y→0
t↓0

t−1(h(y + td)− h(y)) = max{〈v, d〉 | v ∈ ∂ch(0)} = 1.

Consequently, there exist points yi (i = 0, 1, 2) and numbers t2 > t1 > 0 with

yi = y0 + tid (i = 1, 2) and h(y2) > h(y1) > h(y0).

Now define f(x) = h(x) − h(y1). Then

f(y2) > f(y1) = 0 > f(y0), and

∂cf(x) = ∂ch(x) = (2, 1); (1, 2) ∀x ∈ R2. (19)

By (18) one has f ∈ M(R2). Take C = {x ∈ R2 | (1, 1) · (x − y1) 6 0}
as an unperturbed set and consider the constraint f(x) > 0, x ∈ C. Since f is
active at y1, condition (16) at this feasible point means ∂cf(y1)∩Nc(C; y1) = ∅
(Nc being a cone). By defintion, however, Nc(C; y1) is the positive span of
(1, 1), which of course meets ∂cf(y1). Therefore (16) is violated at y1. Next
consider a small (in the sense of the metric (11)) perturbation g of f . On the
one hand the functional values of g will be close to those of f . Consequently,
since [y0; y2] ⊆ C, a continuity argument from (19) provides existence of some
point y3 ∈ [y0; y2] such that g(y3) = 0. This means that y3 is a feasible point
of the constraint g(x) > 0, x ∈ C and g is active at y3. On the other hand the
deviation of ∂cg(y3) from ∂cf(y3) = (2, 1); (1, 2) will be small, too (in the sense
of Hausdorff distance) so, keeping in mind that Clarke’s subdifferential is always
convex, the condition ∂cg(y3)∩Nc(C; y3) = ∅ – which is condition (16) for g –
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is violated at y3. Note that Nc(C; y3) is the positive span of (1, 1) again, since
y3−y1 is a multiple of d = (−1, 1). Summarizing, validity of (16) at all feasible
points of the constraint g(x) > 0, x ∈ C is violated for locally Lipschitzian g
from a whole open neighborhood of the nondecreasing function f . 2

The results obtained so far suggest that genericity of global metric regularity of
nondecreasing constraint functions hinges on presence or absence as well as the
structure of additional unperturbed constraints. In the remainder, we re-address
the chance constraint (1) in terms of global metric regularity. Now, both Fµ and
h are assumed to be locally Lipschitzian. Let us first disregard the subset C. By
Corollary 3.10, global metric regularity of (1) holds, provided that

(1) 0 /∈ ∂cFµ(y) for all y ∈ Rm with Fµ(y) = p0.

(2) 0 /∈
m∑
i=1

λi∂hi(x) ∀λ 6 0 (λ 6= 0) for all x ∈ Rn with Fµ(h(x)) = p0

(note, that the condition 0 /∈ ∂c(−Fµ)(h(x̄)) in Corollary 3.10 is equivalent to
0 /∈ ∂cFµ(h(x̄)) due to the rule ∂c(−f) = −∂cf of Clarke’s subdifferential).
From Theorem 3.15(2) we see, that the first condition is generic in the class
F(Rm) of locally Lipschitzian distribution functions over Rm as well as in the
subclass D(Rm) of those distribution functions having a density. The separate
genericity of the second condition in terms of h (with a given Fµ) cannot be
derived in general. Indeed, it is easy to construct a counterexample on the basis
of Example 3.12. However, under the restriction h ∈ M(Rn,Rm), which might
be reasonable since h is a kind of production function, the second condition is
implied by 0 /∈ ∂chi(x), i = 1, . . . ,m, ∀x ∈ Rn (cf. Corollary 3.10), which,
again by Theorem 3.15(2), is a generic property (see proof of (17)).

Now, we include an additional deterministic constraint C into the consid-
erations. For the case of C having a simple box structure, Lemma 3.17 has
shown that global metric regularity is satisfied for an open and dense subset of
nondecreasing mappings. But note that, in the concrete context of the chance
constraint (1), the constraint mapping has a composite structure, so genericity
has to be formulated in terms of Fµ and h. This is done in the next theorem.

THEOREM 3.20. In the chance constraint (1) assume that C = [a, b] (a, b ∈
Rn, a 6 b). Denote by P the set of functions (Fµ, h) ∈ F(Rm)×M(Rn,Rm) (or
∈ D(Rm) ×M(Rn,Rm), respectively), such that the constraint Fµ(h(x)) > p
is globally metrically regular with respect to C. Then, P contains a subset W
which is open and dense in F(Rm)×M(Rn,Rm) (or in D(Rm)×M(Rn,Rm),
respectively) with the topology induced by the metric (11).

Proof. The proof for the case Fµ ∈ D(Rm) runs exactly along the same lines
as for Fµ ∈ F(Rm), hence we restrict considerations to the latter case. Define
the set
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W = {(F, g) ∈ F(Rm)×M(Rn,Rm) | 1. ∂cF (y) ⊆ intRm+ ∀y ∈ g([a, b]),
2. ∂cgi(x) ⊆ intRn+ ∀x ∈ [a, b]

(i = 1, . . . ,m),

3. F (g(b)) 6= p}.

First we show that W is open and dense in F(Rm) ×M(Rn,Rm). To veri-
fy openness, let (F , ḡ) ∈ W be arbitrarily given. Due to the compactness of
ḡ([a, b]) and because of the upper semicontinuity of ∂cF , there exists a compact
neighborhood O of ḡ([a, b]), such that ∂cF (y) ⊆ intRm+ ∀y ∈ O. Denote by
T an open neighborhood of ḡ in M(Rn,Rm) such that g([a, b]) ⊆ O ∀g ∈ T .
Introducing the sets

V = {g ∈ T | ∂cgi(x) ⊆ intRn+ ∀x ∈ [a, b] (i = 1, . . . ,m)}
U = {F ∈ F(Rm) | ∂cF (y) ⊆ intRm+ ∀y ∈ O}
S = {(F, g) ∈ F(Rm)×M(Rn,Rm) | F (g(b)) 6= p},

we see that (F, ḡ) ∈ (U × V ) ∩ S. From Lemma 3.13 we know that U is
open in F(Rm) and V is open in M(Rn,Rm) and, obviously, S is open in
F(Rm)×M(Rn,Rm). From the very definitions it follows that (U×V )∩S ⊆W ,
hence (F , ḡ) is an interior point of W , which means that W is open.

To check the density of W , consider an arbitrary pair (F , ḡ) ∈ F(Rm) ×
M(Rn,Rm). By Theorem 3.15(1), a small perturbation of ḡ in M(Rn,Rm)
suffices to provide some g1 ∈M(Rn,Rm) with property (2) in the definition of
W . Again, Theorem 3.15(1) yields the existence of some F 1 ∈ F(Rm) which
is arbitrarily close to F and satisfies ∂cF 1(y) ⊆ intRm+ ∀y ∈ g1([a, b]), which is
property (1) for the pair (F 1, g1) in the definition of W .

Now, suppose that F 1(g1(b)) = p. For some c ∈ intRm+ , put g2(x) = g1(x) +
c ∀x ∈ Rn. Obviously, g2 ∈ M(Rn,Rm) and g2 is close to g1 if ‖c‖ is chosen
to be small. Furthermore, for small ‖c‖, the pair (F 1, g2) satisfies the first two
properties of the definition of W (the openness of these two properties was
implicitly shown already in the verification of the openness of W itself). Finally,
exploiting the upper semicontinuity of ∂cF 1 and the first property of W , let ‖c‖
be small enough to meet

0 /∈ ∂cF 1(g1(b) + tc) ∀t ∈ [0, 1].

On the other hand, ∂cF 1(y) ⊆ Rm+ ∀y ∈ Rm (see Corollary 3.2) due to F 1 being
nondecreasing. But then, the mean value theorem for Clarke’s subdifferential
provides (for some t′ ∈ [0, 1]):

F 1(g2(b))− p
= F 1(g2(b))− F 1(g1(b)) ∈ 〈∂cF 1(g1(b) + t′c), c〉 ∈ R+ \ {0},

hence F 1(g2(b)) > p. Summarizing, (F 1, g2) ∈ W , and (F 1, g2) is arbitrarily
close to (F , ḡ), which means the density of W .
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To finish the proof, we have to show that W is contained in the set P defined
in the theorem, so let some pair (F , ḡ) ∈W be arbitrarily given. From the chain
rule of Clarke’s subdifferential along with the definition of W , it follows that

∂c(F ◦ ḡ − p)(x)

= ∂c(F ◦ ḡ)(x) ⊆ conv

{
m∑
i=1

λi∂cḡi(x) | λ ∈ ∂cF (ḡ(x))

}
⊆ intRn+ ∀x ∈ [a, b].

The last inclusion follows from the fact that the occurring subdifferentials are
compact, that λi > 0 (first property of W ) and that ∂cḡi(x) ⊆ intRn+ (second
property of W ). Now, the specific structure of box constraints givesNc([a, b];x)∩
intRn+ = ∅ ∀x ∈ [a, b] \ {b}, and, exploiting F (ḡ(b)) 6= p (third property of W ),
we see that the sufficient criterion (16) for metric regularity is satisfied, thus
(F̄ , ḡ) ∈ P . 2
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