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Abstract In this paper a condition number for linear-quadratic two-stage stochastic
optimization problems is introduced as the Lipschitz modulus of the multifunction
assigning to a (discrete) probability distribution the solution set of the problem. Being
the outer norm of the Mordukhovich coderivative of this multifunction, the condition
number can be estimated from above explicitly in terms of the problem data by applying
appropriate calculus rules. Here, a chain rule for the extended partial second-order
subdifferential recently proved by Mordukhovich and Rockafellar plays a crucial role.
The obtained results are illustrated for the example of two-stage stochastic optimization
problems with simple recourse.
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1 Introduction

In numerical analysis, a condition number of a given mathematical problem represents
an upper bound on the ratio of the (relative) solution error to the (relative) data error.
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202 K. Emich et al.

Its size provides information on the difficulty of solving the problem and its reciprocal
is often proportional to the perturbation distance of the problem from ill-posedness. In
[2] an increasing interest in conditioning of various optimization models is detected
(see, for example, [3,8,10,14,23]) and general concepts are developed for deriving
condition numbers of generalized equations.

In this paper, we consider convex stochastic optimization models of the form

min

⎧
⎨

⎩

∫

Rs

g(x, ξ)P(dξ) : x ∈ X

⎫
⎬

⎭
, (1)

where X is a nonempty closed convex subset of R
m, P a probability distribution on

R
s and g is an extended real-valued measurable function on R

m ×R
s such that g(·, ξ)

is convex for all ξ in the support of P . Particular cases of (1) are two-stage linear or
linear-quadratic stochastic programs. Our aim is to derive results on the conditioning
of such optimization models.

So far the only paper studying conditioning of such stochastic optimization models
is [21]. There, the authors assumed for (1) that in addition X is polyhedral, P has
finite support, g(·, ξ) is piecewise linear for all ξ in the support of P and that (1) has a
unique solution x0. Their approach consists in considering empirical or Monte Carlo
sampling methods for solving (1) and in studying the required sample size N such
that the unique (random) solution x̂N of the empirical approximation

min

{

N−1
N∑

i=1

g(x, ξ i ) : x ∈ X

}

, (2)

satisfies problem (1) with high probability. The ξ i , i ∈ N, in (2) are independent
and identically distributed R

s-valued random samples with common distribution P .
Motivated by large deviation techniques they consider the number β > 0 such that

lim
N→∞ N−1 log (1 − P(x̂N = x0)) = −β

as a condition measure of problem (1). More precisely, the number (2β)−1 is called
condition number of (1). Moreover, the authors derived an approximate formula for
the condition number.

In this paper, we study linear-quadratic two-stage stochastic optimization problems
(see [17]) and their conditioning. Such problems may be introduced by considering
the Lagrangian (see also [16])

L(x, z) = 〈c, x〉+ 1
2 〈x,Cx〉 + E

(〈z, h(ξ)− T (ξ)x〉 − 1
2 〈z, Bz〉) (x ∈ X, z ∈ Z),

where X and Z are nonempty convex polyhedra in R
m and R

k , respectively, B and
C are symmetric and positive semidefinite matrices, c ∈ R

m, h(ξ) is a random vector
in R

k, T (ξ) is a stochastic k × m-matrix, and E denotes expectation with respect to
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Conditioning of linear-quadratic two-stage 203

a probability distribution P . Primal and dual problems are then associated by general
duality and given by

min
x∈X

max
z∈Z

L(x, z) and max
z∈Z

min
x∈X

L(x, z).

The primal problem is of the form

min

{

〈c, x〉 + 1

2
〈x,Cx〉 + E (�(x, ξ)) |x ∈ X

}

, (3)

where x is the first-stage decision and

�(x, ξ) = max
z∈Z

{

〈z, h(ξ)− T (ξ)x〉 − 1

2
〈z, Bz〉

}

. (4)

We assume that a (k, r)-matrix W and a vector q ∈ R
r are given and consider the

following explicit description of the polyhedron Z :

Z = {z ∈ R
k : W �z ≤ q}. (5)

As shown in the “Appendix”, if B is positive definite then (4) may be reformulated as

�(x, ξ)= inf
y≥0

{

〈q, y〉+ 1

2

〈
h(ξ)−T (ξ)x−W y, B−1(h(ξ)−T (ξ)x−W y)

〉
}

. (6)

Hence, �(x, ξ) corresponds to minimal second stage (random) costs associated with
a recourse decision y ∈ R

r taken upon observing ξ ∈ R
s and penalizing the violation

of the equality

W y = h(ξ)− T (ξ)x (7)

by means of a quadratic penalty term instead of meeting (7) exactly as in classical
two-stage linear stochastic optimization. The latter would require to assume relative
complete recourse. In the context of two-stage linear-quadratic stochastic optimization
we do not insist on this assumption.

As shown in [19, Theorems 9 and 23], solutions of two-stage stochastic programs
do not depend in a Lipschitzian way on the underlying probability distribution in
general. More precisely, the behaviour of the growth function

ψP (τ ) = inf

⎧
⎨

⎩

∫

Rs

g(x, ξ)P(dξ)− v(P)|d(x, S(P)) ≥ τ, x ∈ X

⎫
⎬

⎭
(τ ≥ 0) (8)

near τ = 0 has to be studied. Here, v(P) and S(P) are the optimal value and the
solution set of (1), respectively, and d(x, S(P)) refers to the distance of x ∈ X to
S(P). Lipschitzian dependence can be concluded if the functionψP has linear growth
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204 K. Emich et al.

close to τ = 0 or ifψP has quadratic growth and a Lipschitz stability argument due to
[20] (see also [1, Section 4.4.1]) is employed. If the support of P is finite, two-stage
linear stochastic programs satisfy a linear growth condition and two-stage linear-
quadratic stochastic programs a quadratic growth condition, respectively. Indeed, we
provide a calmness result for solutions in the latter case (see Proposition 3.2).

Therefore, we assume that the random vector ξ has a discrete uniform probability
distribution with atoms or scenarios ξ1, . . . , ξ N . Then the optimization problem (3)
can be written as

min

{

〈c, x〉 + 1

2
〈x,Cx〉 + N−1

N∑

i=1

�(x, ξ i )|x ∈ X

}

. (9)

In order to study the dependence of solutions to (9) on the probability distribution
we consider the vector p := (

ξ1, . . . , ξ N
)

of scenarios and introduce the solution set
mapping S : R

Ns ⇒ R
m as

S(p) := {x ∈ X |x solves (9)}. (10)

Our aim is to apply concepts from [2] in order to associate a condition number with
the two-stage stochastic optimization problem (9).

2 Basic concepts and notation

As usual, we denote by ‘gr M’ the graph of some multifunction M . Denote by Bδ(y)
the closed ball of radius δ around some y in a metric space. We recall the following
two basic properties of multifunctions M : X ⇒ Y between metric spaces X,Y :

Definition 2.1 M has the Aubin property at a point (x̄, ȳ) ∈ gr M if there exist
L , δ > 0 such that

d (y,M (x1)) ≤ Ld (x1, x2) ∀x1, x2 ∈ Bδ(x̄), ∀y ∈ [M (x2) ∩ Bδ(ȳ)] . (11)

As a weaker condition, M is said to be calm at (x̄, ȳ) ∈ gr M if there exist L , δ > 0
such that

d (y,M (x̄)) ≤ Ld (x, x̄) ∀x ∈ Bδ(x̄), ∀y ∈ [M (x) ∩ Bδ(ȳ)] .

The constant

lip M(x̄, ȳ) := inf {L|∃δ > 0 : (11)} (12)

is called the graphical modulus of M at (x̄, ȳ) [18, p. 377]. It can be interpreted as the
Lipschitz modulus of the multifunction M . For the following definitions and properties
we refer the reader to [12] and [18].
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Conditioning of linear-quadratic two-stage 205

Definition 2.2 Let C ⊆ R
m be a closed subset and x̄ ∈ C . The Mordukhovich normal

cone to C at x̄ is defined by

NC (x̄) :=
{

x∗|∃ (
xn, x∗

n

) → (
x̄, x∗) : xn ∈ C, x∗

n ∈ [TC (xn)]
0
}
.

Here, [TC (xn)]0 refers to the Fréchet normal cone to C at xn , which is the negative
polar of the contingent cone

TC (x) := {
d ∈ R

m |∃tk ↓ 0, dk → d : x + tkdk ∈ C,∀k
}
. (13)

to C at xn . For an extended-real-valued, lower semicontinuous function f : R
m → R̄

with | f (x̄)| < ∞, the Mordukhovich normal cone induces a subdifferential via

∂ f (x̄) := {
x∗| (x∗,−1

) ∈ Nepi f (x̄, f (x̄))
}
.

If f : R
m → R is locally Lipschitz around x̄ and g : R

m → R̄ is proper and lower
semicontinuous with |g(x̄)| < ∞, then the following sum rule applies:

∂ ( f + g) (x̄) ⊆ ∂ f (x̄)+ ∂g(x̄). (14)

Definition 2.3 Let M : R
n ⇒ R

m be a multifunction with closed graph. The Mor-
dukhovich coderivative D∗M(x̄, ȳ) : R

m ⇒ R
n of M at some (x̄, ȳ) ∈ gr M is

defined as

D∗M(x̄, ȳ)(y∗) := {
x∗ ∈ R

n| (x∗,−y∗) ∈ Ngr M (x̄, ȳ)
}

When M is single-valued, i.e., ȳ = M(x̄), we simply write D∗M(x̄) instead of
D∗M(x̄,M(x̄)).

If f : R
m → R is locally Lipschitz around x̄ , then the following scalarization formula

holds true:

D∗ f (x̄)(y∗) = ∂
〈
y∗, f

〉
(x̄). (15)

Definition 2.4 Let f : R
n → R ∪ {∞} be a lower semicontinuous function which is

finite at x ∈ R
n . For an element u ∈ ∂ f (x), the second-order subdifferential of f at

(x, u) is a multifunction ∂2 f (x, u) : R
n ⇒ R

n defined by

∂2 f (x, u) (w) := (
D∗∂ f

)
(x, u) (w) ∀w ∈ R

n .

If ∂ f (x) is single-valued, then, similar to Definition 2.3, we simply write ∂2 f (x).

Definition 2.5 Let f : R
n × R

m → R ∪ {∞} be a lower semicontinuous func-
tion which is finite at (x, z) ∈ R

n × R
m . The partial subdifferential is defined

as ∂x f (x, z) := ∂ f (·, z) (x). Following [13], for (x, z) ∈ R
n × R

m and any

123

Author's personal copy



206 K. Emich et al.

u ∈ ∂x f (x, z), the (extended) partial second-order subdifferential of f is a multi-
function ∂2

x f (x, z, u) : R
n ⇒ R

n × R
m defined by

∂2
x f (x, z, u) (w) := (

D∗∂x f
)
(x, z, u) (w) ∀w ∈ R

n .

If ∂x f (x, z) is single-valued, then, similar to Definition 2.3, we simply write ∂2
x f (x, z).

3 A condition number for linear-quadratic two-stage stochastic optimization
problems

We consider the representation (4) of the optimal second-stage costs with the polyhe-
dron Z defined in (5):

�(x, ξ) = sup
z

{

〈h(ξ)− T (ξ)x, z〉 − 1

2
〈z, Bz〉 |W �z ≤ q

}

Throughout the rest of the paper we shall make the following assumptions for �:

• B is symmetric and positive definite.
• The polyhedron Z is nonempty and its description (5) satisfies the Linear Indepen-

dence Constraint Qualification (i.e., at each point of Z the active rows of the matrix
W T are linearly independent).

• T and h are continuously differentiable.

As a consequence of these assumptions, � is finite-valued and �(·, ξ) is convex for
any ξ ∈ R

s . Now, the solution set to our optimization problem (9) is equivalently
characterized by the generalized equation

0 ∈ ∂x	(x, p)+ NX (x), (16)

where ∂x and N denote the partial subdifferential and the normal cone, respectively,
in the sense of convex analysis and

	(x, p) := 〈c, x〉 + 1

2
〈x,Cx〉 + N−1

N∑

i=1

�(x, ξ i )

×
(

x ∈ R
m, p =

(
ξ1, . . . , ξ N

)
∈ R

Ns
)
. (17)

Consequently, the solution set mapping S defined in (10) can also be written as

S(p) = {x ∈ R
m | (16) is satisfied}. (18)

Following [2], we call lip S ( p̄, x̄) as defined in (12) the condition number of problem
(9) at a point ( p̄, x̄) ∈ gr S. By definition, lip S ( p̄, x̄) < ∞ if and only if S has
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Conditioning of linear-quadratic two-stage 207

the Aubin property at ( p̄, x̄) (see Definition 2.1). Moreover [18, Theorem 9.40], the
condition number can be calculated as

lip S ( p̄, x̄) = sup
x∗∈B

sup
p∗∈D∗S( p̄,x̄)(x∗)

∥
∥p∗∥∥ , (19)

where D∗S ( p̄, x̄) refers to the Mordukhovich coderivative of S at ( p̄, x̄) (see Defini-
tion 2.3). We also recall the well-known Mordukhovich criterion [11, Theorem 5.7]
stating that S has the Aubin property at ( p̄, x̄) if and only if D∗S ( p̄, x̄) (0) = 0.

The following observation follows from standard results of parametric nonlinear
programming (see, e.g., [1, Remark 4.14]) via the positive definiteness of B and the
Linear Independence Constraint Qualification for Z :

Proposition 3.1 Let (x̄, ξ̄ ) ∈ R
m × R

s be arbitrary. Then, the function � is Fréchet
differentiable with ∇x�(x̄, ξ̄ ) = −T �(ξ̄ )z(h(ξ̄ )− T (ξ̄ )x̄), where z(v) is the unique
element of

argmax
W�z≤q

〈v, z〉 − 1
2 〈z, Bz〉. (20)

Moreover, since z(·) is locally Lipschitz, ∇x� is locally Lipschitz too around (x̄, ξ̄ ).

Corollary 3.1 Let x̄ ∈ R
m and p̄ = (

ξ̄1, . . . , ξ̄ N
) ∈ R

Ns. Then, the partial gradient
∇x	(x̄, p̄) of the function 	 defined in (17) exists, is Lipschitz continuous around
(x̄, p̄) and is given by

∇x	(x̄, p̄) = c + Cx̄ + N−1
N∑

i=1

∇x�(x̄, ξ̄
i ).

In other words, (9) is a C1,1 optimization problem. Using Corollary 3.1 we are able to
show that the assumptions on � imply upper Lipschitz continuity and, in particular,
calmness of S (see Definition 2.1).

Proposition 3.2 Let X be bounded. The solution set mapping S defined in (18) is
upper Lipschitz continuous at any p̄ ∈ dom S, i.e., it holds

sup
x∈S(p)

d(x, S( p̄)) ≤ L

c
‖p − p̄‖ (p ∈ V ), (21)

where the constant c > 0 appears in the quadratic growth condition

	(x, p̄)−	(x̄, p̄) ≥ c d(x, S( p̄))2 (x ∈ X ∩ U ), (22)

U and V are bounded neighborhoods of x̄ and p̄, respectively and L > 0 a local
Lipschitz constant of ∇x	(·, ·) on U × V .
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208 K. Emich et al.

Proof Let (x̄, p̄) ∈ gr S. The objective function 	(·, p̄) is convex piecewise linear-
quadratic and, hence, satisfies a quadratic growth condition due to [9, Theorem 2.7].
Hence, there exist a bounded neighborhood U of S( p̄) and a constant c > 0 such that
(22) holds. Since	 is continuous and X is compact, the solution set mapping is upper
semicontinuous at P̄ (see, for example, [1, Proposition 4.4]). Hence, there exists a
bounded neighborhood V ′ of p̄ such that S(p) ⊆ U if p ∈ V ′. Next we make use of
the results in [1, Section 4.4.1] on Lipschitz stability of nonlinear programs in case of
a fixed feasible set and obtain

d(x, S( p̄)) ≤ 1

c
sup
y∈U

‖∇x	(y, p)− ∇x	(y, p̄)‖

for any x ∈ S(p) and p in some neighborhood V contained in V ′. From Corollary 3.1
we conclude that (21) is true. ��
For more general results on the stability of solutions to C1,1 problems we refer, e.g.,
to [6,7].

Now we are in a position to formulate an upper estimate for the coderivative of
our solution mapping S in (18) as it will be required in an upper estimation of the
condition number (19):

Proposition 3.3 Let ( p̄, x̄) ∈ gr S, where x̄ ∈ X and p̄ := (
ξ̄1, . . . , ξ̄ N

) ∈ R
Ns.

Assume that the multifunction

M(w) := {(p, x) |w ∈ ∇x	(x, p)+ NX (x)} (23)

is calm at (0, p̄, x̄) (see Definition 2.1). Then,

D∗S ( p̄, x̄)
(
x∗) ⊆

{
p∗|∃v∗ : (−x∗, p∗) ∈ ∂2

x	 (x̄, p̄)
(
v∗)

+D∗NX (x̄,−∇x	 (x̄, p̄))
(
v∗) × {0}

}
. (24)

Proof By Corollary 3.1, there exists a neighbourhood U of (x̄, p̄) such that the solution
mapping S is locally described by

S(p) = {x |0 ∈ f (x, p)+ NX (x)} ∀(x, p) ∈ U ,

where f (x, p) := ∇x	(x, p) is Lipschitz on U . From the equivalence

(p, x) ∈ gr S ⇐⇒ g(p, x) := (x,− f (x, p)) ∈ gr NX (25)

we see that gr S = g−1 (gr NX ) for a locally Lipschitzian mapping g. As observed in
[22, Proposition 5.2] , our calmness assumption implies calmness of the multifunction

w := (w1, w2) �→ {(p, x) |w2 − ∇x	(x, p) ∈ NX (x + w1)}
= {(p, x) |g(p, x)+ w ∈ gr NX }
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Conditioning of linear-quadratic two-stage 209

at (0, 0, p̄, x̄). This allows us to invoke [4, Theorem 4.1], in order to derive from (25)
the inclusion

Ngr S ( p̄, x̄) ⊆
⋃{

D∗g ( p̄, x̄)
(
w∗) |w∗ ∈ Ngr NX (g ( p̄, x̄))

}
. (26)

With the partition w∗ = (u∗, v∗) and defining the functions π (p, x) := x and

f̃ (p, x) := − f (x, p) we obtain that g =
(
π, f̃

)
and, thus,

D∗g ( p̄, x̄)
(
u∗, v∗) = ∂

〈
w∗, g

〉
( p̄, x̄) = ∂

(〈
u∗, π

〉 +
〈
v∗, f̃

〉)
( p̄, x̄)

⊆ ∂
〈
u∗, π

〉
( p̄, x̄)+ ∂

〈
v∗, f̃

〉
( p̄, x̄)

= (
0, u∗) + D∗ f̃ ( p̄, x̄)

(
v∗).

Here we exploited the sum rule (14) and the scalarization formula (15). Moreover,
using the definition of the coderivative it is easy to see by virtue of [18, Exercise 6.7]
that

(
x∗, p∗) ∈ D∗ f (x̄, p̄)

(−v∗) ⇐⇒ (
p∗, x∗) ∈ D∗ f̃ ( p̄, x̄)

(
v∗).

As a consequence,

D∗g ( p̄, x̄)
(
u∗, v∗) ⊆ {(

p∗, x∗) | (x∗ − u∗, p∗) ∈ D∗ f (x̄, p̄)
(−v∗)}.

Combining this with (26) yields

D∗S ( p̄, x̄)
(
x∗) ⊆ {

p∗|∃ (
u∗, v∗) ∈ Ngr NX (g ( p̄, x̄)) : (−x∗ − u∗, p∗)

∈ D∗ f (x̄, p̄)
(−v∗)}

which leads to (24) upon recalling the definitions of g and f as well as the fact that
D∗∇x	 (x̄, p̄) = ∂2

x	 (x̄, p̄) (see Definition 2.5). ��

4 Computation of ∂2
x�

In order to apply Proposition 3.3, we have to compute explicitly the partial second-
order subdifferential ∂2

x	 (explicit formulae for the other term D∗NX are available
from the literature, see, e.g., [5]). As a first step, we reduce the computation of ∂2

x	

to that of ∂2
x�:

Proposition 4.1 Under the assumption of Proposition 3.3 holding at some ( p̄, x̄) ∈
gr S, where x̄ ∈ X and p̄ := (

ξ̄1, . . . , ξ̄ N
) ∈ R

Ns one gets that, for all v∗ ∈ R
m,
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210 K. Emich et al.

∂2
x	 (x̄, p̄)

(
v∗) ⊆

{(

C�v∗ + N−1
N∑

i=1

x∗
i , N−1 p∗

)

| (x∗
i , p∗

i

) ∈ ∂2
x�

×
(

x̄, ξ̄ i
) (
v∗) (i = 1, . . . , N )

}

.

Proof Defining p := (
ξ1, . . . , ξ N

)
and �̃i (x, p) := �

(
x, ξ i

)
for i = 1, . . . , N and

(x, p) in a neighbourhood of (x̄, p̄), we may write �̃i = � ◦ ϑi , where ϑi (x, p) =(
x, ξ i

)
and infer that ∇x�̃i = (∇x�) ◦ Ai with a surjective matrix

Ai :=
(

I 0
0 Bi

)

; Bi :=
(

0, . . . , 0, I
i
, 0, . . . , 0

)

.

Now, the coderivative chain rule in [12, Theorem 1.66] yields that

D∗∇x�̃i (x̄, p̄) =
[

Ai
]�

D∗∇x�
(

x̄, ξ̄ i
)

=
[

Ai
]�
∂2

x�
(

x̄, ξ̄ i
)

(i = 1, . . . , N ) .

On the other hand, ∇x	 (x, p) = c+Cx+N−1 ∑N
i=1 ∇x�̃i (x, p) by (17). Therefore,

exploiting Definition 2.5 and the calculus rules (14) and (15), one ends up with

∂2
x	 (x̄, p̄)

(
v∗) = D∗∇x	(x̄, p̄)

(
v∗) = ∂

〈
v∗,∇x	

〉
(x̄, p̄) ⊆

(
C�v∗, 0

)

+ N−1
N∑

i=1

∂
〈
v∗,∇x�̃i

〉
(x̄, p̄)

=
(

C�v∗, 0
)

+ N−1
N∑

i=1

D∗∇x�̃i (x̄, p̄)
(
v∗) =

(
C�v∗, 0

)

+ N−1
N∑

i=1

[
Ai

]�
∂2

x�
(

x̄, ξ̄ i
) (
v∗) .

Consequently, we arrive at the assertion of our Proposition via the inclusion

∂2
x	 (x̄, p̄)

(
v∗) ⊆

{
(

C�v∗, 0
)

+ N−1
N∑

i=1

(
x∗

i , B�
i p∗

i

)
| (x∗

i , p∗
i

)

∈ ∂2
x�

(
x̄, ξ̄ i

) (
v∗) (i = 1, . . . , N )

}

.

��
After reducing ∂2

x	 to ∂2
x� we are now faced with the computation of the latter. In

order to do so, it will be convenient to write � in (4) as a composition
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Conditioning of linear-quadratic two-stage 211

�(x, ξ)=θ (α(x, ξ)) , α(x, ξ) :=h(ξ)− T (ξ)x, θ (v) := sup
W�z≤q

〈v, z〉− 1
2 〈z, Bz〉

(27)

Now, a chain rule for partial second-order subdifferentials recently proved by Mor-
dukhovich and Rockafellar [13, Theorem 3.1] allows us to derive the following further
reduction:

Lemma 4.1 Let x̄ ∈ R
m and ξ̄ ∈ R

s be such that T (ξ̄ ) is surjective. Then, for all
v∗ ∈ R

m, it holds that

∂2
x�

(
x̄, ξ̄

) (
v∗) = −

(
0,∇� 〈

z
(
α(x̄, ξ̄ )

)
, T (·) v∗〉 (ξ̄

))

+ (−T (ξ̄ ),∇h
(
ξ̄
) − ∇ (T (·) x̄)

(
ξ̄
))�

∂2θ
(
α(x̄, ξ̄ )

) (−T (ξ̄ )v∗),

where z (v) was introduced in Proposition 3.1.

Proof The surjectivity of ∇xα(x̄, ξ̄ ) = −T (ξ̄ ) allows us to apply the above-mentioned
chain rule in order to derive that

∂2
x�

(
x̄, ξ̄

) (
v∗) =

(
∇2

xx 〈z̄, α〉 (x̄, ξ̄
)
v∗,∇2

xξ 〈z̄, α〉 (x̄, ξ̄
)
v∗)

+ (∇xα
(
x̄, ξ̄

)
,∇ξ α

(
x̄, ξ̄

))�
∂2θ

(
α
(
x̄, ξ̄

)
, z̄

) (∇xα
(
x̄, ξ̄

)
v∗),

where z̄ is uniquely defined by the equation

∇x�
(
x̄, ξ̄

) = [∇xα
(
x̄, ξ̄

)]�
z̄ = −T �(ξ̄ )z̄.

Hence, z̄ = z
(
α(x̄, ξ̄ )

)
, where z (v) was introduced in Proposition 3.1 as unique

element of (20). Since also

∇x�
(
x̄, ξ̄

) = −T �(ξ̄ )∇θ (α (
x̄, ξ̄

))

by (27), the injectivity of −T �(ξ̄ ) yields that z̄ = ∇θ (α (
x̄, ξ̄

))
which allows us to

omit the argument z̄ in the expression ∂2θ
(
α
(
x̄, ξ̄

)
, z̄

)
. Taking into account that

∇2
xx 〈z̄, α〉 (x̄, ξ̄

)
v∗ = 0

∇2
xξ 〈z̄, α〉 (x̄, ξ̄

)
v∗ = − [∇ 〈

z̄, T (·) v∗〉 (ξ̄
)]�

∇ξα
(
x̄, ξ̄

) = ∇h
(
ξ̄
) − ∇ (T (·) x̄)

(
ξ̄
)
,

we arrive at the asserted formula. ��
Now, it remains to provide an explicit formula for the second order subdifferential
∂2θ . Before doing so, we recall the following
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Proposition 4.2 [5, Corollary 3.5] Consider a polyhedron P := {u|Au ≤ b}. Fix
arbitrary ū ∈ P and w̄ ∈ NP (ū). Denote by I := {i | 〈ai , ū〉 = bi } the index set
of active rows of A at ū. Assume that these active rows are linearly independent.
Moreoever, let J := {i ∈ I |λi > 0} be the index set of strictly positive multipliers,
where λ is the unique solution of

∑
i∈I λi ai = w̄. Then,

D∗NP (ū, w̄)
(
s∗)

=
{

pos {ai |i ∈ I : 〈ai , s∗〉 > 0} + span {ai |i ∈ I : 〈ai , s∗〉 = 0} if s∗ ∈ ⋂

i∈J
a⊥

i

∅ else
.

Here, ‘pos’ and ‘span’ refer to the convex cone and linear subspace, respectively,
generated by the elements in the corresponding set.

Proposition 4.3 For any v̄, w∗ ∈ R
r , the second-order subdifferential of the function

θ in (27) calculates as

∂2θ (v̄)
(
w∗) = {

z∗|Bz∗ − w∗ ∈ D∗NZ (z (v̄) , v̄ − B z (v̄))
(−z∗)}

=

⎧
⎪⎪⎨

⎪⎪⎩

{z∗|Bz∗ − w∗ ∈ pos {wi |i ∈ I : 〈wi , z∗〉 < 0}
+ span {wi |i ∈ I : 〈wi , z∗〉 = 0}} if z∗ ∈ ⋂

i∈J
w⊥

i

∅ else

where z (v̄) refers to the unique element of (20) and—with respect to the nota-
tion introduced in (5)—the wi represent the columns of the matrix W . Moreover
I := {i | 〈wi , z (v̄)〉 = qi } is the index set of active rows of W � at z (v̄) and
J := {i ∈ I |λi > 0} is the index set of strictly positive multipliers, where λ denotes
the unique solution of

∑
i∈I λiwi = v̄ − B z (v̄).

Proof Given the definition of θ in (27) and applying Proposition 3.1 to the special
case h(ξ) = 0 and T (ξ) = −I for all ξ , we see that θ is strictly differentiable with
∇θ(v) being the unique element of (20), i.e., ∇θ(v) = z(v). Moreover, ∇θ is locally
Lipschitz. With Z defined in (5), we deduce from (20) the equivalence

(v, z) ∈ gr ∇θ ⇐⇒ v − Bz ∈ NZ (z) ⇐⇒ (z, v − Bz) ∈ gr NZ .

Hence gr ∇θ = L−1gr NZ , where L(v, z) = (z, v − Bz) is a surjective linear map-
ping. Then, recalling the symmetry of B, [18, Exercise 6.7] yields that

Ngr ∇θ (v̄,∇θ (v̄)) =
(

0 I
I −B

)

Ngr NZ (∇θ (v̄) , v̄ − B ∇θ (v̄)).

Exploiting the corresponding definitions, this last relation entails the first equal-
ity asserted in this proposition. Now, with Z defined in (5) satisfying the Lin-
ear Independence Constraint Qualification (see basic assumptions imposed at the
beginning of Sect. 3), the assertion of the proposition follows immediately from
Proposition 4.2. ��
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5 An upper estimate for the condition number

5.1 An upper estimate for D∗S

Collecting the results of Propositions 3.3, 4.1 and Lemma 4.1, we arrive at the following
upper estimate for the coderivative of the solution mapping S in (18):

Theorem 5.1 Let ( p̄, x̄) ∈ gr S, where x̄ ∈ X and p̄ := (
ξ̄1, . . . , ξ̄ N

) ∈ R
Ns.

Assume that the multifunction (23) is calm at (0, p̄, x̄) and that the matrices T (ξ̄ i )

are surjective for i = 1, . . . , N. Then,

D∗S ( p̄, x̄)
(
x∗)

⊆

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∗

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃v∗∃u∗ ∈ D∗NX (x̄,−∇x	 (x̄, p̄))
(
v∗),

∃z∗
i ∈ ∂2θ

(
h(ξ̄ i )− T (ξ̄ i )x̄

) (
−T (ξ̄ i )v∗) (i = 1, . . . , N ) :

N−1
N∑

i=1

[
T (ξ̄ i )

]�
z∗

i = C�v∗ + x∗ + u∗,

p∗
i = N−1

(

−∇�〈z̄i , T (·)v∗〉(ξ̄ i
)

+
[
∇h

(
ξ̄ i
)

− ∇(T (·)x̄)
(
ξ̄ i
)]�

z∗
i

)

(i = 1, . . . , N ) ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where the z̄i are the unique elements of

argmax
W�z≤q

〈
h(ξ̄ i )− T (ξ̄ i )x̄, z

〉
− 1

2
〈z, Bz〉 (i = 1, . . . , N ).

Proof Proposition 3.3 yields that

D∗S ( p̄, x̄)
(
x∗) ⊆

{

p∗|∃v∗, ∃u∗ ∈ D∗NX (x̄,−∇x	 (x̄, p̄))
(
v∗) :

(−x∗ − u∗
p∗

)

∈ ∂2
x	 (x̄, p̄)

(
v∗)

}

.

Next, Proposition 4.1 implies that for i = 1, . . . , N there exist
(
α∗

i , β
∗
i

) ∈
∂2

x�
(
x̄, ξ̄ i

)
(v∗) such that

C�v∗ + x∗ + u∗ = −N−1
N∑

i=1

α∗
i

p∗
i = N−1β∗

i (i = 1, . . . , N ) .
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Finally, by Lemma 4.1, for i = 1, . . . , N there exist z∗
i ∈ ∂2θ

(
h(ξ̄ i )− T (ξ̄ i )x̄

)

(−T (ξ̄ i )v∗) with

α∗
i = −

[
T (ξ̄ i )

]T
z∗

i

β∗
i = −∇T 〈

z̄i , T (·) v∗〉 (ξ̄ i )+
[
∇h(ξ̄ i )− ∇ (T (·) x̄)

]T
z∗

i .

Combining all the obtained relations, one ends up at the asserted inclusion. ��
In the following Proposition we provide an instance under which the calmness assump-
tion of the previous Theorem is satisfied:

Proposition 5.1 If T is a constant mapping, i.e. T (ξ) ≡ T , and h is an affine linear
mapping, i.e. h (ξ) = Aξ + b, then the calmness condition of Proposition 3.3 is
satisfied.

Proof Putting z = (
z1, . . . , zN

)
and, as before, p = (

ξ1, . . . , ξ N
)
, we introduce the

sets

�1 :=
{

(y, p, x, z) |
(

x, y − c − Cx − N−1T �
N∑

i=1

zi

)

∈ gr NX

}

�i
2 :=

{
(y, p, x, z) |

(
Aξ i + b − T x, zi

)
∈ gr ∇θ

}
(i = 1, . . . , N ).

Then, with M defined in (23), one has that gr M = π
(
�1 ∩�1

2 ∩ · · · ∩�N
2

)
, where

π denotes the projection onto the first three coordinates. Indeed, by definition of M
and by Corollary 3.1,

(y, p, x) ∈ gr M ⇐⇒ y − c − Cx − N−1
N∑

i=1

∇x�(x, ξ
i ) ∈ NX (x).

Since ∇x�(x, ξ i ) = −T �∇θ (h (
ξ i
) − T x

)
for i = 1, . . . , N by (27), it follows that

(y, p, x) ∈ gr M ⇐⇒ ∃z : (y, p, x, z) ∈ �1 ∩�1
2 ∩ · · · ∩�N

2 ,

which amounts to the asserted identity. Now, the graph of the normal cone mapping to
a polyhedron such as gr NX can be represented as a finite union of polyhedra. Hence
�1 as a preimage of such a set under an affine linear mapping is a finite union of
polyhedra itself. Moreover, with the same argument, the relation gr ∇θ = L−1gr NZ

used in the proof of Proposition 4.3 reveals that gr ∇θ too is a finite union of polyhedra
and, hence, so are the sets �1

2, . . . , �
N
2 as preimages of gr ∇θ under affine linear

mappings. It follows that the intersection�1 ∩�1
2 ∩ · · · ∩�N

2 is also a finite union of
polyhedra. Consequently, gr M is a finite union of polyhedra (recall that the projection
of a polyhedron is a polyhedron). Now, calmness (actually: upper Lipschitz continuity)
of M at any point of its graph is a result of Robinson’s Theorem [15]. ��
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Combining Proposition 5.1 with Theorem 5.1 and Proposition 4.3, we may draw the
following conclusion for a simplified setting:

Corollary 5.1 Let ( p̄, x̄) ∈ gr S, where x̄ ∈ X and p̄ := (
ξ̄1, . . . , ξ̄ N

) ∈ R
Ns.

Assume that T (ξ) ≡ T , and h (ξ) = Aξ + b. Moreover, let T be surjective. Then,

D∗S ( p̄, x̄)
(
x∗)

⊆

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∗

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃v∗, ∃u∗ ∈ D∗NX (x̄,−c − Cx̄ + N−1T �
N∑

i=1

z(v̄i ))
(
v∗)

∃z∗
i : Bz∗

i + T v∗ ∈ D∗NZ (z(v̄i ), v̄i − Bz(v̄i ))(−z∗
i ) (i = 1, . . . , N )

N−1T �
N∑

i=1

z∗
i = C�v∗ + x∗ + u∗

p∗
i = N−1 A�z∗

i , v̄i = Aξ̄ i + b − T x̄ (i = 1, . . . , N )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

where z(v) is defined in (20).

Hence, D∗S ( p̄, x̄) (x∗) is contained in a set which is given in terms of the data of
the stochastic program and of the Mordukhovich coderivative of the normal cone
mappings to the polyhedra X and Z , respectively. The latter may be computed by
Proposition 4.2.

5.2 Application to conditioning in the case of simple recourse

We apply the result of the previous section to the special setting of so-called sim-
ple recourse. More precisely, we assume that our two-stage stochastic optimization
problem has the following (primal) form:

min
x∈X

〈c, x〉 + σ

2
‖x‖2 + N−1

N∑

i=1

�(x, ξ i ),

where ξ i ∈ R
s (i = 1, . . . , N ) are realizations of the random vector ξ and where

X := {
x ∈ R

m |Dx ≤ f
}

�(x, ξ) := sup
−q−≤z≤q+

〈Aξ + b − T x, z〉 − τ

2
‖z‖2 .

We assume that τ, σ > 0. Note that this problem differs from a standard problem
of simple recourse type as much as our general problem (9) differs from a standard
two-stage problem by admitting violation of recourse at the cost of a penalty. The
reason to use the term ’simple recourse’ here, is the rectangular shape of the set Z in
(5). Clearly, this problem fits the model (9) with
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q := (
q+, q−) , W := (I | − I ) , B := τ I, C := σ I, h(ξ) := Aξ + b,

T (ξ) ≡ T . (29)

in (6). As mentioned in the introduction, the matrix B−1 = τ−1 I induces a penalty on
violating the constraint (7), hence we may interpret τ−1 as a penalty parameter. We
assume that the second stage costs are strictly positive (q+

j , q−
j > 0 for all j) implying

that the rectangle
[−q−, q+] satisfies our basic assumption of nondegeneracy imposed

on the polyhedron Z in the beginning of Sect. 3. Our first observation relates to the
elements z∗

i in (28):

Lemma 5.1 Let T be surjective and let ξ, z∗ ∈ R
r , x, v∗ ∈ R

m be such that

Bz∗ + T v∗ ∈ D∗NZ (z (v) , v − B z(v))
(−z∗).

Here, v := Aξ + b − T x and z(v) is the unique element of (20). Then,

∣
∣
∣z∗

j

∣
∣
∣ ≤ τ−1

∥
∥t j

∥
∥ ‖v∗‖ if j ∈ {1, . . . , r}

z∗
j = 0 if j ∈ J1 ∪ J2

where, t j denotes the j th row of T and

J1 :=
{

j ∈ {1, . . . , r} |z j (v) = q+
j ,

〈
a j , ξ

〉 + b j − 〈
t j , x

〉
> τq+

j

}

J2 :=
{

j ∈ {1, . . . , r} |z j (v) = −q−
j ,

〈
a j , ξ

〉 + b j − 〈
t j , x

〉
< −τq−

j

}
,

with a j referring to the j th row of A.

Proof Specifying the matrix W in Proposition 4.3 to our setting, we have that its
columns are given by w j = e j and w j+r = −e j for j = 1, . . . , r , where e j refers to
the j th canonical vector in R

r . Therefore, the index set I introduced in Proposition
4.3 takes in our setting the form

I =
{

j ∈ {1, . . . , r} |z j (v) = q+
j

}
∪
{

j ∈ {r + 1, . . . , 2r} |z j−r (v) = −q−
j−r

}
.

Similarly, the index set J introduced in Proposition 4.3 takes the form

J = {
j ∈ I |λ j > 0

}
,

where λ is the unique solution of

∑

j∈I∩{1,...,r}
λ j e j −

∑

j∈I∩{r+1,...,2r}
λ j e j−r = v − B z (v). (30)

Observe that one cannot have j ∈ I and j + r ∈ I simultaneously for the same index
j ∈ {1, . . . , r} due to q+

j > 0 > −q−
j−r . Consequently, recalling that B = τ I , (30)

yields
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λ j = v j − τ z j (v) = v j − τq+
j if j ∈ I ∩ {1, . . . , r}

−λ j = v j−r − τ z j−r (v) = v j−r + τq−
j−r if j ∈ I ∩ {r + 1, . . . , 2r}

It follows that

J =
{

j ∈ {1, . . . , r} |z j (v) = q+
j ,

〈
a j , ξ

〉 + b j − 〈
t j , x

〉
> τq+

j

}

∪
{

j ∈ {r + 1, . . . , 2r} |z j−r (v) = −q−
j−r ,

〈
a j−r , ξ

〉 + b j−r − 〈
t j−r , x

〉
< −τq−

j−r

}

Now, by Proposition 4.3,
〈
z∗, w j

〉 = 0 for all j ∈ J . With respect to the index
sets J1, J2 introduced in the statement of this Lemma, the following holds true: If
j ∈ J1, then j belongs to the first set in the union above, hence j ∈ J . Then,
0 = 〈

z∗, w j
〉 = z∗

j . Similarly, if j ∈ J2, then j + r belongs to the second set in the

union above, hence j + r ∈ J . Then, 0 = 〈
z∗, w j+r

〉 = −z∗
j . This proves the second

statement in the assertion of this Lemma. Next, let j ∈ {1, . . . , r} be arbitrary. The
relation Bz∗ + T v∗ ∈ D∗NZ (z (v) , v − B z(v) (−z∗) translates by Proposition 4.3
in our setting to

τ z∗ + T v∗ ∈ pos
{
w j | j ∈ I : 〈w j , z∗〉 < 0

} + span
{
w j | j ∈ I : 〈w j , z∗〉 = 0

}

or to

τ z∗ + T v∗ =
∑

k≤r,k∈I,z∗
k<0

λa
k ek −

∑

k≤r,k+r∈I,z∗
k>0

λb
kek +

∑

k≤r,k∈I,z∗
k =0

μa
k ek

+
∑

k≤r,k+r∈I,z∗
k =0

μb
kek (31)

for certain coefficients λa
k , λ

b
k ≥ 0 and μa

k , μ
b
k ∈ R. Now, if z∗

j = 0, then the estimate
in the first statement in the assertion of our Lemma is trivially satisfied. Otherwise, if
z∗

j �= 0, then by (31),

τ z∗
j + 〈

t j , v
∗〉 =

⎧
⎨

⎩

λa
j ≥ 0 if j ∈ I, z∗

j < 0
−λb

j ≤ 0 if j + r ∈ I, z∗
j > 0

0 else
.

In the first case, one has that 0 > z∗
j ≥ −τ−1

〈
t j , v

∗〉 which directly implies the

asserted estimate
∣
∣
∣z∗

j

∣
∣
∣ ≤ τ−1

∥
∥t j

∥
∥ ‖v∗‖. The second case follows analogously. The

third case is evident as well. This proves the first statement in the assertion of this
Lemma. ��
Observe that the index sets J1, J2 introduced in Lemma 5.1 represent those components
j of the solution z (v) of problem (20) for v := Aξ+b−T x which are strongly active
(i.e., which are active with respect to the constraints −q− ≤ z ≤ q+ and for which
the associated Lagrange multiplier is strictly positive). This Lemma eventually allows
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us to calculate an upper estimate for the condition number in case of simple recourse.
To this aim, we fix some x̄ ∈ X and p̄ := (

ξ̄1, . . . , ξ̄ N
) ∈ R

Ns such that x̄ ∈ S ( p̄),
i.e., 0 ∈ ∇x	(x̄, p̄) + NX (x̄) for 	 defined in (17). With di referring to the rows of
D in the description Dx ≤ f of the polyhedron X , this implies that

∇x	(x̄, p̄) =
∑

i∈ Ĩ

λi di

(
Ĩ := {i | 〈di , x̄〉 = fi }

)
(32)

for certain λi ≤ 0
(

i ∈ Ĩ
)

. For each i = 1, . . . , N we put v̄i := Aξ̄ i + b − T x̄ and

introduce the index sets

J1(i) :=
{

j ∈ {1, . . . , r} |z j

(
v̄i
)

= q+
j ,

〈
a j , ξ̄

i
〉
+ b j − 〈

t j , x̄
〉
> τq+

j

}

J2(i) :=
{

j ∈ {1, . . . , r} |z j

(
v̄i
)

= −q−
j ,

〈
a j , ξ̄

i
〉
+ b j − 〈

t j , x̄
〉
< −τq−

j

}
,

i.e., the same index sets characterizing strongly active components in the solution of
problem (20) as in Lemma 5.1 but now related to the different scenarios ξ̄ i . This allows
us to define the following quantity

�(T ) :=
N∑

i=1

�i (T ), �i (T ) :=
⎛

⎝
∑

j∈{1,...,r}\(J1(i)∪J2(i))

∥
∥t j

∥
∥2

⎞

⎠

1/2

(i = 1, . . . , N ) .

Observe that �(T ) increases not only with increasing elements of the matrix T but
also with decreasing number of strongly active components in the scenario-dependent
solutions z (v̄i ) of the problems

max
−q−≤z≤q+ 〈v̄i , z〉 − τ

2
‖z‖2 . (33)

Clearly, 0 ≤ �i (T ) ≤ ‖T ‖F , where ‖·‖F refers to the Frobenius norm. Here, the
minimum is attained if all components of z (v̄i ) are strongly active (i.e., z (v̄i ) equals a
corner of the rectangle

[−q−, q+] and all Lagrange multipliers are strictly positive).
In contrast, the maximum is attained if no component is strongly active (e.g., z (v̄i ) lies
in the interior of the rectangle

[−q−, q+] or it lies on the boundary of this rectangle
but all Lagrange multipliers equal zero). We have the following upper estimate for the
condition number:

Theorem 5.2 In the setting specified above, assume that even λi < 0
(

i ∈ Ĩ
)

in (32),

i.e., strict complementarity holds at x̄ . Moreover, let T be surjective. Finally, let the
parameters σ and τ in (29) satisfy the relation

τσ > N−1 ‖T ‖�(T ). (34)
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Then, the condition number lip S ( p̄, x̄) as introduced in (19), can be estimated by

lip S ( p̄, x̄) ≤ ‖A‖
(
[�(T )]−1 Nστ − ‖T ‖) .

Proof In order to estimate lip S ( p̄, x̄), fix an arbitrary x∗ with ‖x∗‖ ≤ 1 and
an arbitrary p∗ ∈ D∗S ( p̄, x̄) (x∗). Our assumptions allow us to apply Corollary
5.1. Accordingly, there exist u∗, v∗ and z∗

i satisfying the relations in (28). In par-

ticular, u∗ ∈ D∗NX

(
x̄,−c − Cx̄ + N−1T � ∑N

i=1 z(v̄i )
)
(v∗). The assumption of

strict complementarity yields that v∗ ∈ Ker DI and u∗ ∈ Im D�
I , where DI is

the reduction of D to its active rows (see, e.g., [5, Corollary 3.7]). This entails
that 〈u∗, v∗〉 = 0 which may be exploited in order to reduce the first equation in
(28) to

N−1T �
N∑

i=1

〈
z∗

i , v
∗〉 = σ

∥
∥v∗∥∥2 + 〈

x∗, v∗〉 ,

where z∗
i is such that

Bz∗
i + T v∗ ∈ D∗NZ (z(v̄i ), v̄i − Bz(v̄i ))(−z∗

i ) (i = 1, . . . , N ) .

From here, we get the estimate

σ
∥
∥v∗∥∥ ≤ 1 + N−1 ‖T ‖

N∑

i=1

∥
∥z∗

i

∥
∥ . (35)

Now, for each such z∗
i with components z∗

i, j we have by Lemma 5.1, that

∥
∥z∗

i

∥
∥2 =

∑

j∈{1,...,r}\(J1(i)∪J2(i))

(
z∗

i, j

)2 ≤ τ−2
∥
∥v∗∥∥2 ∑

j∈{1,...,r}\(J1(i)∪J2(i))

∥
∥t j

∥
∥2
,

whence, with �i (T ) as introduced in the statement of this Theorem,

∥
∥z∗

i

∥
∥ ≤ τ−1

∥
∥v∗∥∥�i (T ) and

N∑

i=1

∥
∥z∗

i

∥
∥ ≤ τ−1

∥
∥v∗∥∥

N∑

i=1

�i (T ) = τ−1
∥
∥v∗∥∥�(T ).

Combining this with (35) leads along with (34) to ‖v∗‖≤(
σ−N−1τ−1 ‖T ‖�(T ))−1

.
Now, the second equation in (28) may be exploited to derive

∥
∥p∗

i

∥
∥ ≤ N−1 ‖A‖ ∥∥z∗

i

∥
∥ ≤ N−1τ−1�i (T ) ‖A‖ ∥∥v∗∥∥

≤ N−1τ−1�i (T ) ‖A‖
(
σ − N−1τ−1 ‖T ‖�(T )

)−1
.
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Hence,

∥
∥p∗∥∥ =

(
N∑

i=1

∥
∥p∗

i

∥
∥2

)1/2

≤ ‖A‖
(Nστ − ‖T ‖�(T ))

(
N∑

i=1

�2
i (T )

)1/2

≤ ‖A‖�(T )
(Nστ − ‖T ‖�(T )) .

Since x∗ with ‖x∗‖ ≤ 1 and p∗ ∈ D∗S ( p̄, x̄) (x∗)were arbitrarily chosen, the asserted
estimate for the condition number follows. ��

The result of the Theorem can be roughly interpreted as follows: the condition
number decreases with σ but increases with the norms ‖T ‖ , ‖A‖, with the penalty
parameter τ−1 and with�(T ) [i.e., with a decreasing number of strongly active com-
ponents in the solutions of problems (33)]. At the first glance one might have the
impression that the condition number decreases also with an increasing number N
of scenarios. One has to take into account, however, that the quantity �(T ) itself
depends on N (the number of terms in the sum), hence it is a better idea to interpret
the expression [�(T )]−1 N = [�(T )/N ]−1 as a mean number of non strongly active
components in the solutions of problems (33).
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Appendix

Equivalence between (4) and (6): We consider the second-stage costs as given in (4)
with Z = {z ∈ R

k : W �z ≤ q}. From [18, Example 11.43], one derives by duality
that

�(x, ξ) = sup
W�z≤q

{

〈h(ξ)− T (ξ)x, z〉 − 1

2
〈z, Bz〉

}

= sup
z

{

〈h(ξ)− T (ξ)x, v〉 − 1

2
〈z, Bz〉 − {

supy≥0
〈
W �z − q, y

〉}
}

Consequently, we may rewrite �(x, ξ) as

�(x, ξ) = inf
y≥0

{

〈q, y〉 + sup
z

{

〈h(ξ)− T (ξ)x − W y, z〉 − 1

2
〈z, Bz〉

}}

.

If one assumes that B is positive definite, it follows that

sup
z

{

〈h(ξ)− T ξ)x − W y, v〉 − 1

2
〈z, Bz〉

}

= 1

2

〈
h(ξ)− T (ξ)x − W y, B−1

(h(ξ)− T (ξ)x − W y)〉
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and, hence,

�(x, ξ) = inf
y≥0

{

〈q, y〉 + 1

2

〈
h(ξ)− T (ξ)x − W y, B−1(h(ξ)− T (ξ)x − W y)

〉
}

.
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