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Abstract We investigate the convexity of chance constraints with independent ran-
dom variables. It will be shown, how concavity properties of the mapping related
to the decision vector have to be combined with a suitable property of decrease for
the marginal densities in order to arrive at convexity of the feasible set for large
enough probability levels. It turns out that the required decrease can be verified for
most prominent density functions. The results are applied then, to derive convexity
of linear chance constraints with normally distributed stochastic coefficients when
assuming independence of the rows of the coefficient matrix.

Keywords Chance constraints · Probabilistic constraints · Stochastic
programming · Convexity · Random matrix

1 Introduction

Many optimization problems in engineering or finance contain so-called chance con-
straints or probabilistic constraints of the form

P(h(x, ξ) ≥ 0) ≥ p, (1)

where x ∈ R
n is a decision vector, ξ : � → R

m is an m-dimensional random vector
defined on some probability space (�, A,P), h : R

n × R
m → R

s is a vector-valued
mapping and p ∈ [0,1] is some probability level. A compilation of practical appli-
cations in which constraints of the type (1) play a crucial role, may be found in the
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standard references [9, 10]. Not surprisingly, one of the most important theoretical
questions related to such constraints is that of convexity of the set of decisions x

satisfying (1). It is well known ([9], Theorem 10.2.1) that this set is convex pro-
vided that the law P ◦ ξ−1 of ξ is a log-concave probability measure on R

m and
that the components hi of h are quasi-concave. The power of this result becomes
evident in combination with a celebrated theorem by Prékopa stating that the law
of ξ is log-concave whenever ξ has a log-concave density. As this is easily verified
to hold true for many prominent multivariate distributions, this classical result guar-
antees convexity of the set of feasible decisions for a broad class of applications.
The required quasi-concavity of the hi is satisfied, for instance in the linear model
h(x, ξ) = Ax − Bξ , where actually concavity of the hi holds true.

In this paper, we shall be interested in chance constraints where random vectors
appear separated from decision vectors, and which come as a special case of (1) by
putting h(x, ξ) = g(x) − ξ . More precisely, we want to study convexity of a set of
feasible decisions defined by

M(p) = {x ∈ R
n | P(ξ ≤ g(x)) ≥ p}, (2)

where g : R
n → R

m is some vector-valued mapping. With F : R
m → R denoting the

distribution function of ξ , the same set can be rewritten as

M(p) = {x ∈ R
n | F(g(x)) ≥ p}. (3)

We are interested in conditions on F and g such that M(p) becomes a convex set
for all p ≥ p∗, where p∗ < 1. Note that convexity for large enough p is a relevant
feature because p is typically chosen to be close to one.

When trying to link the previously mentioned classical result to the special case
of (2), in addition to the log-concavity of the law of ξ , we would have to impose
quasi-concavity of the functions gi(x) − ξi . Unfortunately, unlike concavity, quasi-
concavity is not preserved under addition, so quasi-concavity of the components gi

is not sufficient here to ensure convexity of M(p). To illustrate this fact consider the
following example:

Example 1.1 In (2), let ξ have a bivariate standard normal distribution with inde-
pendent components, and let g(x, y) := (ex, ey). Then, the components gi are quasi-
concave (as functions of x and y simultaneously). However, the set M(0.5) fails to
be convex (e.g., for u := (1,−3) and v = (−3,1) one has that u,v ∈ M(0.5) but
(u + v)/2 /∈ M(0.5)).

On the other hand, concavity of the components gi would do because then,
gi(x) − ξi is a concave, hence quasi-concave function of the two variables x and
ξ , simultaneously. In particular, convexity of M(p) would hold true for all p ∈ [0,1]
in Example 1.1 upon passing from g to −g. Therefore, the question arises, whether
one can still derive convexity results for M(p) in (2) when relaxing the strong re-
quirement of concave components gi . It turns out that this will be possible under the
additional assumption of ξ having independent components. Then, roughly speak-
ing, convexity can be derived for so-called r-concave gi , a concept providing a para-
metrization of concavity properties between true concavity and quasi-concavity (see
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Sect. 2). As an application, we show that joint chance constraints defined by a nor-
mally distributed random matrix yield a convex set of feasible decisions provided
the probability level is large enough and the rows of the random matrix are indepen-
dently distributed. To the best of our knowledge, this result is new and may have an
impact on solution procedures for problems of such kind by making available tools
from convex optimization. We emphasize that the independence assumption is essen-
tial for our approach. For other work on convexity properties of chance constraints
where independence has been successfully exploited, we refer to [1, 4, 7]. A theorem
by Bawa [1], for instance, provides a condition to ensure concavity of the product
function

H(t) = F(t1) · · ·F(tm),

where F is a one-dimensional distribution function. This would be of interest in the
context of (3) if all components ξi of the random vector had identical independent dis-
tributions. However, the interplay with relaxations of concavity of the gi in (3) is not
clear. The conditions we are going to impose on the distribution function F (or better:
on the marginal distribution functions Fi ) are related to the degree at which the cor-
responding densities fi decrease asymptotically. This will ensure that the mappings
t �→ Fi(1/tα) become concave for an appropriate α > 0.

2 Notation

We recall the definition of an r-concave function.

Definition 2.1 A function f : R
s → (0,∞) is called r-concave for some r ∈

[−∞,∞], if

f (λx + (1 − λ)y) ≥ [λf r(x) + (1 − λ)f r(y)]1/r ∀x, y ∈ R
s , ∀λ ∈ [0,1]. (4)

In this definition, the cases r ∈ {−∞,0,∞} are to be interpreted by continuity.
In particular, 1-concavity amounts to classical concavity, 0-concavity equals log-
concavity (i.e., concavity of logf ), and −∞-concavity identifies quasi-concavity
(this means that the right-hand side of the inequality in the definition becomes
min{f (x), f (y)}). We recall, that an equivalent way to express log-concavity is the
inequality

f (λx + (1 − λ)y) ≥ f λ(x)f 1−λ(y) ∀x, y ∈ R
s , ∀λ ∈ [0,1]. (5)

For r < 0, one may raise (4) to the negative power r and recognize, upon reversing
the inequality sign, that this reduces to convexity of f r . If f is r∗-concave, then f is
r-concave for all r ≤ r∗. We shall be mainly interested in the case r ≤ 1.

The following property is crucial in the context of this paper.

Definition 2.2 We call a function f : R → R r-decreasing for some r ∈ R, if it is
continuous on (0,∞) and if there exists some t∗ > 0 such that the function t rf (t) is
strictly decreasing for all t > t∗.
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Evidently, 0-decreasing means strictly decreasing in the classical sense. If f is a
nonnegative function like the density of some random variable, then r-decreasing
implies r ′-decreasing whenever r ′ ≤ r . Therefore, one gets narrower families of
r-decreasing density functions with r → ∞. If f is not just continuous on (0,∞)

but happens even to be differentiable there, then the property of being r-decreasing
amounts to the condition

tf ′(t) + rf (t) < 0 for all t > t∗. (6)

3 A convexity result

Lemma 3.1 Let F : R → [0,1] be a distribution function with (r + 1)-decreasing
density f for some r > 0. Then, the function z �→ F(z−1/r ) is concave on (0, (t∗)−r ),
where t∗ refers to Definition 2.2. Moreover, F(t) < 1 for all t ∈ R.

Proof Let h : R → R be defined by h(z) = F(z−1/r ), for all z > 0. By definition, it
holds that

h(z) = F(0) +
∫ z−1/r

0
f (t)dt ∀z > 0.

With the change of variables t = u−1/r , the last equation rereads

h(z) = F(0) + r−1
∫ +∞

z

u−(1+1/r)f (u−1/r )du.

Since f is continuous on (0,∞) by the very definition of r-decreasing functions,
F and h are differentiable on the same interval. Consequently,

h′(z) = −r−1z−(1+1/r)f (z−1/r ).

Since, by assumption, t �→ t r+1f (t) is strictly decreasing on (t∗,+∞), one gets
that z �→ z−(1+1/r)f (z−1/r ) is strictly increasing on (0, (t∗)−r ). Summarizing, h′ is
strictly decreasing on (0, (t∗)−r ), whence h is concave on this interval.

Concerning the second statement, assume that F(t) = 1 for all t ≥ τ . Therefore,
with F being a distribution function, it follows the contradiction F ′(t) = f (t) = 0
for all t > τ to f being (r + 1)-decreasing. �

Theorem 3.1 For (2), we make the following assumptions for i = 1, . . . ,m:

1. There exist ri > 0 such that the components gi are (−ri)-concave.
2. The components ξi of ξ are independently distributed with (ri + 1)-decreasing

densities fi .

Then, M(p) is convex for all p > p∗ := max{Fi(t
∗
i ) | 1 ≤ i ≤ m}, where Fi denotes

the distribution function of ξi and the t∗i refer to Definition 2.2 in the context of fi

being (ri + 1)-decreasing.
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Proof Let p > p∗, λ ∈ [0,1] and x, y ∈ M(p) be arbitrary. We have to show that
λx + (1 − λ)y ∈ M(p). Referring to the distribution functions Fi of ξi , we put

qx
i := Fi(gi(x)) < 1, q

y
i := Fi(gi(y)) < 1 (i = 1, . . . ,m), (7)

where the strict inequalities rely on the second statement of Lemma 3.1. By assump-
tion 2., the components of ξ are independent, hence the feasible set in (2) or (3),
respectively, may be rewritten as

M(p) =
{

w ∈ R
n

∣∣∣
m∏

i=1

Fi(gi(w)) ≥ p

}
. (8)

In particular, by (7), the inclusions x, y ∈ M(p) mean that

m∏
i=1

qx
i ≥ p,

m∏
i=1

q
y
i ≥ p. (9)

Now, (7, 9) and the definition of p∗ entail that

1 > qx
i ≥ p > Fi(t

∗
i ) ≥ 0, 1 > q

y
i ≥ p > Fi(t

∗
i ) ≥ 0 (i = 1, . . . ,m). (10)

For τ ∈ [0,1], we denote the τ -quantile of Fi by

F̃i(τ ) := inf{z ∈ R | Fi(z) ≥ τ }.
Note that, for τ ∈ (0,1), F̃i(τ ) is a real number. Having a density, by assumption 2,
the Fi are continuous distribution functions. As a consequence, the quantile functions
F̃i(τ ) satisfy the implication

q > Fi(z) �⇒ F̃i(q) > z ∀q ∈ (0,1), ∀z ∈ R.

Now, (7) and (10) provide the relations

gi(x) ≥ F̃i(q
x
i ) > t∗i > 0, gi(y) ≥ F̃i(q

y
i ) > t∗i > 0 (i = 1, . . . ,m). (11)

In particular, for all i = 1, . . . ,m, it holds that
[
min{F̃−ri

i (qx
i ), F̃

−ri
i (q

y
i )},max{F̃−ri

i (qx
i ), F̃

−ri
i (q

y
i )}] ⊆ (0, (t∗i )−ri ). (12)

Along with assumption 1 of theorem, (11) yields for i = 1, . . . ,m:

gi(λx + (1 − λ)y) ≥ (λg
−ri
i (x) + (1 − λ)g

−ri
i (y))−1/ri

≥ (λF̃
−ri
i (qx

i ) + (1 − λ)F̃
−ri
i (q

y
i ))−1/ri . (13)

The monotonicity of distribution functions allows to continue by

Fi(gi(λx + (1 − λ)y)) ≥ Fi

(
(λF̃

−ri
i (qx

i )+ (1 − λ)F̃
−ri
i (q

y
i ))−1/ri

)
(i = 1, . . . ,m).

(14)
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Owing to assumption 2, Lemma 3.1 guarantees that the functions z �→ Fi(z
−1/ri ) are

concave on (0, (t∗i )−ri ). In particular, these functions are log-concave on the indicated
interval, as this is a weaker property than concavity (see Sect. 2). By virtue of (12, 5),
this allows to continue (14) as

Fi(gi(λx + (1 − λ)y)) ≥ [
Fi(F̃i(q

x
i ))

]λ[
Fi(F̃i(q

y
i ))

]1−λ
(i = 1, . . . ,m).

Exploiting the fact that the Fi as continuous distribution functions satisfy the relation
Fi(F̃i(q)) = q for all q ∈ (0,1), and recalling that qx

i , q
y
i ∈ (0,1) by (10), we may

deduce that

Fi(gi(λx + (1 − λ)y)) ≥ [qx
i ]λ[qy

i ]1−λ (i = 1, . . . ,m).

Passing to the product, it follows together with (9) that

m∏
i=1

Fi(gi(λx + (1 − λ)y)) ≥
m∏

i=1

[qx
i ]λ[qy

i ]1−λ =
[

m∏
i=1

qx
i

]λ[ m∏
i=1

q
y
i

]1−λ

≥ pλp1−λ = p.

Referring to (8), this shows that λx + (1 − λ)y ∈ M(p). �

Remark 3.1 The critical probability level p∗ beyond which convexity can be guar-
anteed in Theorem 3.1, is completely independent of the mapping g, it just depends
on the distribution functions Fi . In other words, for given distribution functions Fi ,
the convexity of M(p) in (2) for p > p∗ can be guaranteed for a whole class of map-
pings g satisfying the first assumption of Theorem 3.1. Therefore, it should come at
no surprise that, for specific mappings g even smaller critical values p∗ may apply
(see Example 4.1 below).

In the following proposition, we establish the relation between log-concave dis-
tributions and distributions having an r-decreasing density. We recall that the class
of log-concave distributions having a density coincides with the class of distributions
having a log-concave density ([2], Theorem 3.1). We also mention that most of the
prominent distributions fall into this class.

Proposition 3.1 Let f : R → [0,1] be a log-concave and continuous density having
an unbounded support in positive direction. Then, f is r-decreasing for all r > 0.

Proof By assumption, φ := logf is a concave, possibly extended-valued function.
As a consequence of concavity, there exists some τ > 0 such that either φ(t) = −∞
for all t > τ or φ(t) > −∞ for all t > τ . The first case amounts to f (t) = 0 for
all t > τ , which is a contradiction with our assumption of f having an unbounded
support in positive direction. Consequently, φ is concave and real-valued on [τ,∞).
Moreover, as a continuous and log-concave density function, f must tend to zero at
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infinity, hence limt→∞ φ(t) = −∞. Along with the concavity of φ, this implies the
existence of α < 0 and β ∈ R such that

φ(t) ≤ αt + β ∀t ≥ τ. (15)

Now, let r > 0 be arbitrary and put h(t) := t rf (t) for t > 0. Then, logh = r log(·)+φ

is also concave and real-valued on [τ,∞). Assume there exists some τ ∗ > τ such
that logh(τ ∗) < logh(τ). By concavity of logh, this function and, thus, h itself must
then be strictly decreasing on [τ ∗,∞). In other words, f is r-decreasing as was to
be shown. Therefore, we are done if we can lead to a contradiction the opposite case,
namely logh(t) ≥ logh(τ) for all t ≥ τ . This is equivalent to

φ(t) ≥ logh(τ) − r log t ∀t ≥ τ. (16)

We apply the general relation

−r log t ≥ −r log s − rt/s − r ∀t ≥ s > 0

to s := −2r/α > 0, where α refers to (15):

−r log t ≥ −r log(−2r/α) + αt/2 − r ∀t ≥ s.

Combining this with (15, 16), we arrive at the contradiction

K := logh(τ) − r log(−2r/α) − r − β ≤ αt/2 ∀t ≥ max{τ, s}
to the fact that K is a constant and α/2 < 0. �

Recalling that normal densities are log-concave, continuous and have unbounded
support, we may combine Theorem 3.1 and Proposition 3.1, in order to obtain a useful
characterization of convexity under normally distributed data:

Corollary 3.2 In (2), let ξ have a regular multivariate normal distribution with in-
dependent components. Moreover, let each component gi of g be (−ri)-concave for
some ri > 0. Then, there exists some p∗ < 1 such that M(p) is convex for all p > p∗.

4 Examples

The Cauchy distribution has a density

f (t) = a

π(a2 + t2)
(a > 0)

which is r-decreasing for any r < 2 but fails to be so for any r ≥ 2. Most of the promi-
nent one-dimensional distributions, however, have a density which is r-decreasing for
any r > 0. Next, we want to calculate for some well-known one-dimensional distri-
butions the t∗- and F(t∗)-values needed in Theorem 3.1 for the computation of the
critical probability level p∗. We start with the corresponding derivation of the normal
distribution and collect the others in Table 1. To emphasize the dependence on the
order r , we shall write t∗r rather than just t∗.
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Table 1 t∗r -Values in the definition of r-decreasing densities for a set of common distributions

Law Density t∗r

Normal
1√

2πσ
exp

(− (t − μ)2

2σ 2

) μ +
√

μ2 + 4rσ 2

2

Exponential λ exp(−λt) (t > 0)
r

λ

Weibull abtb−1 exp(−atb) (t > 0)
( b + r − 1

ab

)1/b

Gamma
ba

�(a)
exp(−b)ta−1 (t > 0)

a + r − 1

b

χ
1

2n/2−1�(n/2)
tn−1 exp

(− t2

2

)
(t > 0)

√
n + r − 1

χ2 1

2n/2�(n/2)
tn/2−1 exp

(− t

2

)
(t > 0) n + 2r − 2

Log-normal
1√

2πσ t
exp

(− (log t − μ)2

2σ 2

)
(t > 0) eμ+(r−1)σ2

Maxwell
2t2

√
2πσ 3

exp
(− t2

2σ 2

)
(t > 0) σ

√
r + 2

Rayleigh 2t
λ exp

(− t2

λ

)
(t > 0)

√
r+1

2 λ

Proposition 4.1 Let ξ have a normal distribution with scalar parameters μ and
σ > 0. Moreover, let r > 0 be arbitrarily given. Then, the corresponding density is
r-decreasing with

t∗r =
√

μ2 + 4rσ 2 + μ

2
and F(t∗r ) = 

(√
r + 1

4

(
μ

σ

)2

− 1

2

μ

σ

)
,

where  denotes the distribution function of the standard normal distribution.

Proof The calculation of the (optimal) t∗r -value is straightforward from the represen-
tation of the normal density and (6). By definition,

F(t∗r ) = P(ξ ≤ t∗r ) = P

(
ξ − μ

σ
≤ t∗r − μ

σ

)
.

Since σ−1(ξ − μ) has a standard normal distribution, one may continue as

F(t∗r ) = 

(
t∗r − μ

σ

)
= 

(√
r + 1

4

(
μ

σ

)2

− 1

2

μ

σ

)
.

�

For the special case of a standard normal distribution (μ = 0, σ = 1), one gets
t∗r = √

r and F(t∗r ) = (
√

r). As an illustration, we consider the following example:
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Fig. 1 Illustration of the
feasible set M(p) for different
levels p in an example

Example 4.1 In (2) let ξ have a bivariate standard normal distribution: ξ ∼ N (0, I2).
Moreover, put

g1(x, y) = 1

x2 + y2 + 0.1
, g2(x, y) = 1

(x + y)2 + 0.1
.

Then, clearly, the components gi are (−1)-concave (i.e. 1/gi is convex). By as-
sumption, the components of ξ have a one-dimensional standard normal distribution
which, by Proposition 4.1, has a 2-decreasing density with t∗ = √

2. Now, Theo-
rem 3.1 may be applied and we may derive convexity of the feasible set M(p) in (2)
beyond a critical probability level p∗ = (

√
2) ≈ 0.921. According to Remark 3.1,

possibly some much smaller level could do with respect to convexity. This is con-
firmed for the example by Fig. 1: obviously, the feasible set is convex for proba-
bilities higher than 0.7 and nonconvex for probabilities lower than 0.6, so the true
critical level in this example is somewhere in between 0.6 and 0.7. Note that the clas-
sical convexity theory could not be applied to this example because the components
gi are not concave (see Introduction). This is also supported by the observation that
convexity fails for small probabilities.

In the example, convexity of the feasible set M(p) could be guaranteed for all
probability levels larger than 0.921. This may sound a strong requirement, but note
that, in chance constraint programming, these levels are typically high, say 0.95 or
0.99. Moreover, the result of Proposition 4.1 strongly depends on the parameters μ

and σ , and, more precisely, on their ratio. If this ratio becomes large, then F(t∗r ) con-
verges towards (0). Hence, for the case of normal distributions with small relative
standard deviations, the critical level p∗ tends to 0.5.

Table 1 shows, how the t∗r -value depends on r and on the parameters of the dif-
ferent distributions. For two distributions, a closed formula is available for the corre-
sponding value F(t∗r ) of the distribution function: First, for the exponential distribu-
tion, one gets F(t∗r ) = 1 − e−r . Hence, reconsidering Example 4.1 with independent
exponential rather than normal distributions, one could derive convexity of the set
M(p) for probabilities larger than 1 − e−2 ≈ 0.864 which is a slightly better value
than in the normal case. It is interesting to observe that the critical probability level for
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the exponential distribution does not depend on the parameter of this distribution. The
second case with a closed formula is the Weibull distribution, where one calculates
F(t∗) = 1 − e−(b+r−1)/b (see Table 1 for the meaning of parameters). In general, no
closed formula is available, but in concrete applications, the critical probability levels
are easily read off from usual data tables or numerical routines.

5 Chance constraints with normally distributed stochastic matrices

In this section, we want to apply Theorem 3.1 in order to derive a convexity result for
a more complicated chance constraint than (2). More precisely, consider the feasible
set

M(p) = {x ∈ R
n | P(�x ≤ a) ≥ p}, (17)

where the rows ξi of the stochastic matrix � have multivariate normal distributions
according to ξi ∼ N (μi,�i). Linear chance constraints of this type, having random
coefficients, are of importance in many engineering applications (e.g., mixture prob-
lems). Note that, in contrast to (2), the random parameter and the decision vector are
no longer separated but coupled in a multiplicative way. This makes the convexity
analysis more involved. A classical result due to Kataoka [6] and Van de Panne and
Popp [11] states that M(p) is convex for p ≥ 0.5 in the simple case where � reduces
to single row (m = 1). A much more precise characterization not only of convexity
but also of compactness and nontriviality of M(p) in this elementary situation was
provided in [5]. Moreover, compactness of M(p) could even be characterized there
in the general case (m arbitrary). However, convexity in the general case remains an
open question. Below, we shall provide a positive result under the assumption of �

having independent rows. This yields a complementary characterization to results by
Prékopa and Burkauskas, who derived convexity under the assumption that all co-
variance and cross-covariance matrices of the columns or rows of �, respectively, are
proportional to each other (see [3, 8]).

A direct application of Theorem 3.1 to (17) is not possible, since this type of
chance constraint is different from (2). However, there exists a useful transformation
of the one into the other. First, we need an auxiliary result:

Lemma 5.1 For μ ∈ R
n and positive definite matrix � of order (n,n), we put

f (x) := 〈x,�x〉
(a − 〈μ,x〉)2

defined on the domain �1 := {x | a − 〈μ,x〉 > 0}. Then, f is convex on the following
open subset of �1:

�2 := {
x | a − 〈μ,x〉 > 4λmaxλ

−3/2
min ‖μ‖√〈x,�x〉}.

Here, λmax and λmin denote the largest and smallest eigenvalues of �.
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Proof On �1, the Hessian of f calculates as

D2f (x) = 2(a − 〈μ,x〉)−4[(a − 〈μ,x〉)2�

+ 4(a − 〈μ,x〉)�xμT + 3〈x,�x〉μμT
]
.

In order to verify the positive definiteness of D2f on �2, it is evidently sufficient to
show this property for the matrix

(a − 〈μ,x〉)� + 4�xμT .

If z �= 0 and x ∈ �2 are arbitrarily given, then, by definition of �2,
〈
z,

[
(a − 〈μ,x〉)� + 4�xμT

]
z
〉 = (a − 〈μ,x〉)〈z,�z〉 + 4〈z,�x〉〈μ,z〉
≥ λmin‖z‖2(a − 〈μ,x〉) − 4‖�x‖‖μ‖‖z‖2

> 4‖z‖2‖μ‖(λmaxλ
−1/2
min

√〈x,�x〉 − ‖�x‖)
≥ 0.

Here, we exploited the relations

〈x,�2x〉 ≤ λ2
max‖x‖2, λmin‖x‖2 ≤ 〈x,�x〉. �

The next simple proposition will be needed later on but is of independent interest
as well because it makes no restrictions on the probability level p:

Proposition 5.1 If a ≥ 0 (componentwise) in (17), then M(p) is star-shaped with
respect to the origin. In particular, M(p) is a connected set.

Proof Since a ≥ 0 by assumption, one immediately derives that 0 ∈ M(p). We have
to show that, for arbitrary x ∈ M(p) and arbitrary λ ∈ [0,1], it follows that λx ∈
M(p). This is evident for λ = 0. If λ ∈ (0,1], then

P(�(λx) ≤ a) = P(�x ≤ λ−1a) ≥ P(�x ≤ a) ≥ p.

Here we used that λ−1a ≥ a (componentwise) due to a ≥ 0 and λ ≤ 1. In other words,
λx ∈ M(p). �

Theorem 5.1 In (17) we assume that the rows ξi of � are pairwise independently
distributed. Then, M(p) is convex for

p > 
(
max

{√
3, u∗}), (18)

where  is the one-dimensional standard normal distribution function,

u∗ = max
i=1,...,m

4λ(i)
max

[
λ

(i)
min

]−3/2‖μi‖

and λ
(i)
max and λ

(i)
min refer to the largest and smallest eigenvalue of �i .
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Proof The assumption of independent rows allows to rewrite the feasible set as

M(p) =
{

x ∈ R
n

∣∣∣
m∏

i=1

P(〈ξi, x〉 ≤ ai) ≥ p
}
.

For x �= 0 and i = 1, . . . ,m, we put

ηi(x) := 〈ξi − μi, x〉√〈x,�ix〉 ∼ N (0,1); gi(x) := ai − 〈μi, x〉√〈x,�ix〉 .

Evidently, for x �= 0, one has that 〈ξi, x〉 ≤ ai holds true if and only if ηi(x) ≤ gi(x).
Since the ηi(x) have a standard normal distribution, one obtains

P(〈ξi, x〉 ≤ ai) = (gi(x)) (for x �= 0 and i = 1, . . . ,m). (19)

We introduce the following sets for i = 1, . . . ,m:

�
(i)
1 := {x ∈ R

n|ai − 〈μi, x〉 > 0}
�

(i)
2 := {

x ∈ R
n|ai − 〈μi, x〉 > 4λ(i)

max

[
λ

(i)
min

]−3/2‖μi‖
√〈x,�ix〉}.

The following inclusions hold true whenever p satisfies (18):

M(p)\{0} ⊆ �
(i)
2 ⊆ �

(i)
1 (i = 1, . . . ,m).

The second inclusion is trivial. To verify the first one, let x ∈ M(p)\{0} be arbitrary.
Since  ≤ 1, one derives from (19) that

(gi(x)) ≥
m∏

j=1

(gj (x)) =
m∏

j=1

P(〈ξj , x〉 ≤ aj ) ≥ p > (u∗) (i = 1, . . . ,m).

With  being strictly increasing, this amounts to gi(x) > u∗ and thus x ∈ �
(i)
2 for

i = 1, . . . ,m by definition of u∗.
Next, on �

(i)
1 define

fi(w) := 〈w,�iw〉
(ai − 〈μi,w〉)2

(i = 1, . . . ,m).

Note that the fi are finite-valued on �
(i)
1 . By Lemma 5.1, the fi are convex on �

(i)
2 .

On the other hand, the gi are finite-valued and positive on �
(i)
1 \{0} and so in par-

ticular on �
(i)
2 \{0}. From the respective definitions, it follows then that fi = g−2

i on

�
(i)
2 \{0}.
Recalling that p > 0, by assumption, one gets that 0 ∈ M(p) if and only if ai ≥ 0

for all i = 1, . . . ,m. We proceed by case distinction:
Case 1: mini=1,...,m ai < 0. Then, 0 /∈ M(p) and, by (19), M(p) = {x ∈ R

n |∏m
i=1 (gi(x)) ≥ p}. Hence, we are in the setting of (8) in Theorem 3.1 with Fi := 
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for i = 1, . . . ,m. From the remark below Proposition 4.1, we know that  has
a 3-decreasing density with critical value t∗ = √

3. Therefore, condition 2 of The-
orem 3.1 is satisfied with ri := 2 for i = 1, . . . ,m, and the statement of the Theorem
will allow to derive convexity of M(p) for all p > (

√
3) under the condition that

the first assumption of Theorem 3.1 be fulfilled, i.e., the gi are (−2)-concave. This
point, however, deserves some attention because in contrast to the setting required
in Theorem 3.1 and in Definition 2.1, our gi are not defined on the whole space and
may be not (−2)-concave on all of their domain. We shall proceed as follows: as in
Theorem 3.1 we consider arbitrary x, y ∈ M(p) and λ ∈ [0,1], and we show that

xλ := λx + (1 − λ)y ∈ M(p).

We have two options to do so. The first one is to check the relation of (−2)-concavity
of the gi for the concrete triple (x, y, xλ):

gi(xλ) ≥ (
λg−2

i (x) + (1 − λ)g−2
i (y)

)−1/2
. (20)

Indeed, this last relation corresponds to the first inequality in (13). A brief rein-
spection of the proof of Theorem 3.1 shows that, given all the necessary assump-
tions on the distribution functions, this inequality is all what is needed to derive that
xλ ∈ M(p). However, it may happen, that (20) cannot be verified, for instance due to
xλ = 0, so that xλ does not belong to the domain of the gi . Then, we might be able to
show xλ ∈ M(p) by a direct argument.

In a first step, we show that xλ �= 0. Assuming to the contrary, that xλ = 0 and
recalling that 0 /∈ M(p) (so x, y �= 0), it follows the existence of some α < 0 such
that x = αy. Since, x, y ∈ M(p) = M(p)\{0} ⊆ �

(i)
1 for i = 1, . . . ,m, one derives

from here the relation

|〈μi, y〉| < min
{
ai,−α−1ai

}
(i = 1, . . . ,m).

On the other hand, in the present first situation of case distinction, there exists at least
one ai < 0. Then, however, the right hand side of the last inequality becomes negative
which yields a contradiction.

With x, y ∈ M(p) = M(p)\{0} ⊆ �
(i)
2 and the �

(i)
2 being convex sets for i =

1, . . . ,m, it results that xλ ∈ �
(i)
2 . The convexity of the fi on �

(i)
2 allows to continue

as

fi(xλ) ≤ λfi(x) + (1 − λ)fi(y) (i = 1, . . . ,m).

On the other hand, we know that x, y, xλ �= 0, whence the fi -values may be replaced
by those of the g−2

i (see above):

g−2
i (xλ) ≤ λg−2

i (x) + (1 − λ)g−2
i (y) (i = 1, . . . ,m).

Moreover, as the gi are finite-valued and positive on �
(i)
2 \{0} (see above), so are

the g−2
i . This allows to raise the last inequality to the power −1/2 in order to derive

at (20) as desired.
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Case 2: mini=1,...,m ai ≥ 0. Then, 0 ∈ M(p). Consequently, we may assume that
xλ �= 0. This already excludes the case x = y = 0. Next suppose that, say, x �= 0
and y = 0. Then, we may apply Proposition 5.1, to derive that xλ = λx ∈ M(p).
The case y �= 0 and x = 0 follows by symmetry. Summarizing, we may assume that
x, y, xλ �= 0 which allows to repeat the argumentation from the first case and then to
invoke again (20) in order to verify that xλ ∈ M(p). �

We note that the assumption of independent rows ξi in Theorem 5.1 does not mean
independence of all entries of �. Rather, the cross-covariance matrices cov (ξi, ξj ) are
required to be zero for i �= j whereas there are no restrictions for i = j .

Remark 5.1 If the value u∗ in Theorem 5.1 happens to be smaller than
√

3, (e.g.,
for mean vectors ‖μi‖ close to zero), then convexity of M(p) can be derived for
p > (

√
3) ≈ 0.958.
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