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Abstract. The paper is devoted to the analysis of the calmness property for constraint set mappings. After
some general characterizations, specific results are obtained for various types of constraints, e.g., one sin-
gle nonsmooth inequality, differentiable constraints modeled by polyhedral sets, finitely and infinitely many
differentiable inequalities. The obtained conditions enable the detection of calmness in a number of situa-
tions, where the standard criteria (via polyhedrality or the Aubin property) do not work. Their application in
the framework of generalized differential calculus is explained and illustrated by examples associated with
optimization and stability issues in connection with nonlinear complementarity problems or continuity of the
value-at-risk.
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1. Introduction

There are very many possibilities to define Lipschitz-like properties for a multifunc-
tion Z : Y ⇒ X between metric spaces Y and X. For reasons of analogy, it would be
appealing, to require at some ȳ ∈ Y the estimate (for some L, ε > 0)

dH (Z(y1), Z(y2)) ≤ Ld(y1, y2) ∀y1, y2 ∈ B(ȳ, ε).

Here, “dH ” refers to the Hausdorff distance between subsets of X, and “B(ȳ, ε)” means
a closed ball around ȳ with radius ε. Clearly, in the case of a single-valued function Z,
dH reduces to the usual distance in X, and one arrives at the classical local Lipschitz
property of functions. More explicitly, the relation above can be formulated as

dZ(y1)(x) ≤ Ld(y1, y2) ∀x ∈ Z(y2) ∀y1, y2 ∈ B(ȳ, ε), (1)

where, “dA” is the distance of a point to a set A. For many applications in variational anal-
ysis, nonlinear optimization, nonsmooth calculus etc., this notion is too strong and one
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rather considers restricted versions of it. The Aubin property ([35]), for instance, refers to
localized image sets by replacing the expression “Z(y2)” in (1) with “Z(y2)∩B(x̄, ε)”,
where x̄ ∈ Z(ȳ) (originally, this concept was introduced under the name pseudo-Lips-
chitz in [1], and it is closely related to the sub-Lipschitz property in [34]). Another
restriction concerns the degree of freedom for the arguments. When fixing y1 = ȳ in (1),
Z is said to be (locally) upper Lipschitz at ȳ ([31]). When combining both mentioned
(independent) relaxations of (1), one arrives at the so-called calmness property of a mul-
tifunction as introduced in [35] (and in [39] under a different name). More explicitly, Z

is said to be calm at some (ȳ, x̄) ∈ Gph Z (graph of Z), if there exist L, ε > 0 such that

dZ(ȳ)(x) ≤ Ld(y, ȳ) ∀x ∈ Z(y) ∩ B(x̄, ε) ∀y ∈ B(ȳ, ε). (2)

Note that, due to the symmetric role of y1 and y2, (1) as well as the Aubin property are
upper and lower semicontinuity properties at the same time. In contrast, as a consequence
of fixing y1 = ȳ, calmness and local upper Lipschitzness are just upper semicontinu-
ity properties. The corresponding lower counterparts are obtained when exchanging ȳ

and y in the respective definitions. A restricted version of calmness, called calmness
on selections ([10], [19], [22]) substitutes the set Z(ȳ) by the singleton {x̄} in (2). This
stronger condition entails that B(x̄, ε) ∩ Z(ȳ) = {x̄}, i.e., {x̄} is isolated in Z(ȳ).

This paper will focus its attention on the (general) calmness property (2). Of par-
ticular importance is the calmness of constraint set mappings as this becomes the key
for the existence of local error bounds, exact penalty functions, (nonsmooth) necessary
optimality conditions or weak sharp local minimizers. To be more precise, let now Y be
a normed space, � ⊆ Y a closed subset and g : X → Y a continuous mapping. The
multifunction

M(y) := {x ∈ X | g(x)+ y ∈ �} (3)

may be interpreted as a perturbation of the constraint set M(0) = g−1(�). Then, at
some x̄ with g(x̄) ∈ �, the following statements are equivalent:

1. M is calm at (0, x̄).
2. ∃L, ε̃ > 0 : dg−1(�)(x) ≤ Ld�(g(x)) ∀x ∈ B(x̄, ε̃).
3. ∃L, ε̃ > 0 : dM(0)(x) ≤ L ‖y‖ ∀y ∈ Y ∀x ∈ B(x̄, ε̃) ∩M(y).

Indeed, one may choose ε̃ < ε such that ‖g(x)−g(x̄)‖ ≤ ε/2 for all x ∈ B(x̄, ε̃), where
ε refers to (2). Now, for arbitrary x ∈ B(x̄, ε̃) and arbitrary η ∈ (0, ε/2) there is some
λ ∈ � such that

‖g(x)− λ‖ ≤ d�(g(x))+ η ≤ ‖g(x)− g(x̄)‖ + ε/2 ≤ ε.

Since x ∈ M(λ − g(x)) and λ − g(x) ∈ B(0, ε), 1. implies 2. via (2) by taking into
account that η was arbitrary:

dg−1(�)(x) = dM(0)(x) ≤ L ‖λ− g(x)‖ ≤ L (d�(g(x))+ η) ∀x ∈ B(x̄, ε̃).

Next, let y ∈ Y and x ∈ B(x̄, ε̃) ∩M(y) be arbitrary. Then, g(x) + y ∈ �, whence
d�(g(x)) ≤ ‖y‖. Consequently, 2. implies 3. which, in turn, trivially entails 1.

The equivalence between 1. and 3. shows that, for the considered constraint set map-
pings, the localization of the perturbation parameter y may be omitted when dealing with
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calmness (in a slightly different context, this was first observed in [4]; see also Prop.
3.4 in [11] for a more general statement). More importantly, the equivalence between
1. and 2. shows that calmness of M amounts to the existence of a local error bound
(e.g., [28]) of the constraint function g. It is exactly this equivalence which explains
calmness of constraint systems to be the basic condition in the context of penalty func-
tions or constraint qualifications for optimality conditions (see, e.g., [4], [7], [37]). For
a recent discussion of these relations, we refer to [20]. A further observation is that the
value function ϕ of some optimization problem having M(y) as a parametric constraint
satisfies the inequality

ϕ(y) ≥ ϕ(0)− c‖y‖ (c > 0, y close to 0),

provided that the objective of this problem is locally Lipschitz and that M is calm at
solutions. This estimate was the very origin of the calmness concept ([6]). Finally, we
note (e.g., [15], Lemma 4.7) that in an optimization problem

min{f (x) | x ∈ C}
the calmness of the multifunction y 
→ {x ∈ C | f (x) ≤ y} at local solutions amounts
to these solutions being weak sharp local minimizers (see, e.g.,[5], [36]).

A standard way to ensure calmness of a general multifunction Z : Y ⇒ X con-
sists in the application of some suitable criterion ensuring the (stronger) Aubin property.
Alternatively, from [32] we know that, in the finite-dimensional case, Z is calm at each
point of its graph whenever this graph is polyhedral (i.e. a union of finitely many convex
polyhedral sets). In [14] and [15] the authors derived calmness criteria in the nonpoly-
hedral case which do not necessarily imply the Aubin property. They consider, however,
a specific structure

Z(y) = M(y) ∩�, (4)

where X = R
n, Y = R

m, � ⊆ X is closed and g in (3) is locally Lipschitz. Additional
assumptions like semismoothness or regularity are imposed on g, � and �. Multifunc-
tions of the type (4) arise frequently in applications. Moreover, as shown in [21], the
calmness of a multifunction Z̃(y1, y2) = Z1(y1) ∩ Z(y2) can be ensured via the calm-
ness of another map having the form (4). Applying the approach from [14], [15] provides
useful information only in case the point of interest x̄ belongs to the boundary of �.
Otherwise, the two main alternative conditions derived there reduce to

ker D∗g(x̄) ∩N�(g(x̄)) = {0}, (5)

0 ∈ int D∗g(x̄)(N�(g(x̄)) ∩ B), (6)

where the definitions of the coderivative D∗g and of the limiting normal cone N� can
be found in Section 2. Unfortunately, (5) is precisely the standard criterion for the Aubin
property of M around (0, x̄) which can be derived on the basis of the so-called Mor-
dukhovich criterion ([35]). If g is continuously differentiable and � = R

m−, then (5)
amounts to the standard Mangasarian-Fromowitz constraint qualification (MFCQ) in
dual form

0 /∈ conv {∇gi(x̄) | i ∈ I (x̄)},
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where I (x̄) = {i ∈ {1, 2, . . . , m} | gi(x̄) = 0}. Therefore we will use for condition (5)
the name (GMFCQ). Also note that (6) entails not only calmness but even the isolated-
ness of x̄ in M(0), i.e., it is a criterion for the calmness on selections mentioned above
(see Remark 3.7 in [15]). Summarizing, the use of the criteria developed in [14], [15]
shrinks when applied to interior points of � (in particular for � = X).

The aim of this paper is to derive new conditions for calmness of (3) which should
be weaker than (5) and applicable also in case x̄ is not an isolated point of M(0). The
paper is organized as follows: Section 3 contains the main results. They are ordered
according to the assumptions imposed on the problem data and illustrated by a number
of examples. Some of them admit that the spaces X, Y are infinite-dimensional. Section
4 provides applications of the obtained results to generalized differential calculus as well
as to stability of the value-at-risk.

2. Notation

The following notation is employed: B and S denote the unit ball and the unit sphere,
respectively. For a closed cone D with vertex at the origin, D0 denotes its negative
polar cone. T�(x) is the contingent (Bouligand) cone to � at x and ∂̄f (x) is the Clarke
subdifferential of a real-valued function f at x.

For a set 	 ⊆ R
p let a ∈ cl 	. The cone

N̂	(a) :=




ξ ∈ R

p | lim sup
a′ 	−→a

〈ξ, a′ − a〉
‖a′ − a‖ ≤ 0






is called the Fréchet normal cone to 	 at a.
The notions of the limiting normal cone, the limiting subdifferential and the coderiv-

ative are the cornerstones of the generalized differential calculus of B. Mordukhovich,
cf. [24],[25]. The limiting normal cone to 	 at a, denoted N	(a) is defined by

N	(a) = lim sup
a′ cl	−→a

N̂	(a′),

where the “limsup” means the Painlevé-Kuratowski upper (outer) limit. In this
finite-dimensional setting one has N̂	(a) = (T	(a))0. If N	(a) = N̂	(a), we say
that 	 is (normally) regular at a. (In our setting, this regularity concept coincides with
the well-known Clarke-regularity). If 	 is convex, then N	(a) = N̂	(a) at each a ∈ 	

and so we will consequently use only the notation N	(a). Now, let ϕ : R
p → R be an

arbitrary extended real-valued function and a ∈ dom ϕ. The set

∂ϕ(a) := {a∗ ∈ R
p | (a∗,−1) ∈ Nepi ϕ(a, ϕ(a))}

is called the limiting subdifferential of ϕ at a. Finally, let � : R
p ⇒ R

q be an arbitrary
multifunction and (a, b) ∈ cl Gph �. The multifunction D∗�(a, b) : R

q ⇒ R
p, defined

by

D∗�(a, b)(b∗) := {a∗ ∈ R
p | (a∗,−b∗) ∈ NGph �(a, b)},
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is called the coderivative of � at (a, b).
A function f : R

p → R is called semismooth at x̄ ∈ R
p if it is Lipschitz around x̄

and for any sequences tn ↓ 0, dn → d, ξn ∈ ∂f (x̄ + tndn) the limit lim
n→∞〈ξn, d〉 exists

for each d ∈ R
p. The concept of semismoothness plays an important role both in the

numerical methods of nonsmooth analysis ([23]) as well as in the characterization of
calmness provided in [14], [15].

3. Characterization of calmness

Throughout the whole paper, we shall be concerned with a multifunction M : Y ⇒ X

between normed spaces X, Y , which is defined by

M(y) := {x ∈ X|g(x)+ y ∈ �}, (7)

where g : X → Y and � ⊆ Y is a closed subset (recall that (7) has been considered
before in (3) under the additional assumption of continuity for g).

When inspecting (7), one may wonder if the consideration of canonical perturbations
y of g is a serious restriction. The following lemma shows that for Lipschitz data no
difference with a general parameterization arises.

Lemma 1. Let X, U, Y be normed spaces. Consider a multifunction M∗ : U ⇒ X

defined on the basis of some locally Lipschitzian (with respect to the product topology)
function h : U ×X → Y by means of

M∗(u) := {x ∈ X|h(u, x) ∈ �} (� ⊆ Y ).

Assume that h(ū, x̄) ∈ � for some ū ∈ U and x̄ ∈ X. Then, M∗ is calm at (ū, x̄)

provided that M in (7) is calm at (0, x̄) with g(x) := h(ū, x) ∀x ∈ X.

Proof. The local Lipschitz continuity of h and the calmness of M yield constants
K, L, ε > 0 such that

∥
∥h(u′, x)− h(u′′, x)

∥
∥ ≤ K

∥
∥u′ − u′′

∥
∥ ∀u′, u′′ ∈ B(ū, ε)∀x ∈ B(x̄, ε)

dM(0)(x) ≤ L ‖y‖ ∀y ∈ B(0, ε)∀x ∈ B(x̄, ε) ∩M(y).

Choose ε′ such that 0 < ε′ ≤ ε and ‖h(u, x)− h(ū, x)‖ ≤ ε for all (u, x) ∈ B(ū, ε′)×
B(x̄, ε′). Let x ∈ M∗(u)∩B(x̄, ε′) and u ∈ B(ū, ε′) be arbitrary. Then, x ∈ M(h(u, x)−
g(x)) ∩ B(x̄, ε′) by definition of M and M∗. It follows the calmness of M∗ at (ū, x̄):

dM∗(ū)(x) = dM(0)(x) ≤ L ‖h(u, x)− g(x)‖ ≤ LK ‖u− ū‖ .

��
Statements of the above type can be found in connection with various properties of
constraint and variational systems, see e.g., [8]. A general framework for such consid-
erations, based on the notion of strong approximation is provided in [33].

The following lemma allows equivalently to reduce the calmness of system (7) to
the calmness of a single (nonsmooth) inequality where the distance function is involved.
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Lemma 2. With the multifunction M from (7) we associate a multifunction M̃ : R ⇒ X

defined by

M̃(t) = {x ∈ X|d� (g(x)) ≤ t}.
Then, M is calm at some (0, x̄) ∈ Gph M if and only if M̃ is calm at (0, x̄).

Proof. Note that M(0) = M̃(0), hence (0, x̄) ∈ Gph M if and only if (0, x̄) ∈ Gph M̃ .
Assume first that M̃ is calm at (0, x̄). By definition, there exist L, ε > 0 such that

d
M̃(0)

(x) ≤ L|t | ∀t ∈ [−ε, ε]∀x ∈ M̃(t) ∩ B(x̄, ε).

For any y ∈ B(0, ε) and any x ∈ M(y) ∩ B(x̄, ε) one has that d� (g(x)) ≤ ‖y‖ ≤ ε,
hence x ∈ M̃(‖y‖) and it follows the calmness of M at (0, x̄):

dM(0)(x) = d
M̃(0)

(x) ≤ L ‖y‖ ∀y ∈ B(0, ε)∀x ∈ M(y) ∩ B(x̄, ε).

Conversely, let M be calm at (0, x̄). By definition, there exist L, ε > 0 such that

dM(0)(x) ≤ L ‖y‖ ∀y ∈ B(0, ε)∀x ∈ M(y) ∩ B(x̄, ε).

For any t ∈ [−ε/2, ε/2] and any x ∈ M̃(t) ∩ B(x̄, ε) one has that t ≥ 0 (otherwise
M̃(t) = ∅) and d� (g(x)) ≤ t = |t | ≤ ε/2. If t = 0, then dM(0)(x) = 0. Otherwise
(t > 0), choose λ ∈ � such that ‖λ− g(x)‖ ≤ 2t and put y := λ − g(x). Then,
y ∈ B(0, ε) and x ∈ M(y), hence it follows the calmness of M̃ at (0, x̄):

d
M̃(0)

(x) = dM(0)(x) ≤ L ‖y‖ ≤ 2L|t | ∀t ∈ [−ε/2, ε/2]∀x ∈ M̃(t) ∩ B(x̄, ε/2).

��
Obviously, the set M(0) in (7) is the set of global minimizers for the function d� ◦ g.
Referring back to the introduction, Lemma 2 then shows that M is calm at (0, x̄) if and
only if x̄ is a weak sharp local minimizer for d� ◦ g.

Corollary 1. In (7), M fails to be calm at some (0, x̄) ∈ Gph M if and only if there
exists a sequence xl → x̄ such that dM(0)(xl) > ld�(g(xl)). In particular, xl /∈ M(0)

or, equivalently, g(xl) /∈ �.

The next proposition relates the calmness property to the Abadie constraint qualification
(ACQ) which is well-known from mathematical programming, (see [3]).

Proposition 1. In (7), let X = R
n, Y = R

m and g be Lipschitz around x̄ ∈ M(0)

and directionally differentiable at x̄. Let LM(0)(x̄) be the linearized cone to M(0) at x̄,
defined by

LM(0)(x̄) = {h ∈ R
n|g′(x̄;h) ∈ T�(g(x̄))}.

If M is calm at (0, x̄), then

TM(0)(x̄) = LM(0)(x̄). (8)
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Proof. The inclusion TM(0)(x̄) ⊆ LM(0)(x̄) holds generally true (without calmness)
when g is locally Lipschitz and directionally differentiable. For the reverse inclusion,
assume by contradiction the existence of some h ∈ R

n such that g′(x̄;h) ∈ T�(g(x̄))

but h /∈ TM(0)(x̄). This amounts to the existence of some µ > 0 with

lim inf
t↓0

t−1dM(0)(x̄ + th) = µ.

On the other hand, there are sequences ki → g′(x̄;h) and ti ↓ 0 such that g(x̄)+tiki ∈ �

for all i. This means that

d�(g(x̄)+ tig
′(x̄;h)) ≤ ti

∥
∥ki − g′(x̄;h)

∥
∥ ∀i

and, consequently,

t−1
i d�(g(x̄ + tih)) ≤ t−1

i {d�(g(x̄)+ tig
′(x̄;h))+ ∣

∣g(x̄ + tih)− g(x̄)− tig
′(x̄;h)

∣
∣}

→ i→∞0.

For arbitrary l ∈ N set εl := (l+1)−1µ. Choose il ∈ N such that t−1
il

d�(g(x̄+til h)) < εl

and t−1
il

dM(0)(x̄ + til h) > µ − εl . One may assume that il is increasing, hence til is a
subsequence of ti . Putting xl := x̄ + til h, one gets

dM(0)(xl) > til (µ− εl) = til lεl > ld�(g(xl)),

which contradicts the calmness of M at (0, x̄) according to Corollary 1. ��
The classical (ACQ) amounts to the identity (8) in the case of standard nonlinear pro-
gramming, where g is continuously differentiable and � = R

m1− ×{0}m2 , m1+m2 = m.
In the following, we will keep the name (ACQ) for (8) under weaker assumptions on g

and �, specified in Proposition 1.
The following example shows that the converse of Proposition 1 does not apply even

in case of a C1 -function.

Example 1. Put � := R−, x̄ = 0, g(x) := x3 sin x−1 (with g(0) = 0). Then TM(0)

(x̄) = R = LM(0)(x̄), i.e., (ACQ) is satisfied but M fails to be calm at (0, 0). To see this
in a convenient way, we make a forward reference to Proposition 3 and observe that, in
our example, g is continuously differentiable, g′(0) = 0 (which is equivalent with the
failure of the Aubin property) and 0 is not a local maximizer of g.

3.1. Special Cases

In this section, we collect criteria for calmness in certain special cases. For a function
g : R

n → R denote by

g↓(x̄;h) := lim inf
t↓0,h′→h

t−1(g(x̄ + th′)− g(x̄))

g↑(x̄;h) := lim sup
t↓0,h′→h

t−1(g(x̄ + th′)− g(x̄))

the lower and the upper Hadamard derivative at x̄ in direction h. We start with the simple
situation of an inequality defined by a real function.
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Proposition 2. In (7), let X = R, Y = R, � = R− and g be lower semicontinuous at
some x̄ with g(x̄) = 0. Then, M is calm at (0, x̄) if the following two conditions hold
true:

0 ∈
[
g↓(x̄; 1), g↑(x̄; 1)

]
�⇒ ∃ ε > 0 ∃ η > 0 ∀x ∈ [x̄, x̄ + ε] :

g(x) ≤ 0 or g(x) ≥ η(x − x̄). (9)

0 ∈
[
g↓(x̄;−1), g↑(x̄;−1)

]
�⇒ ∃ ε > 0 ∃ η > 0 ∀x ∈ [x̄ − ε, x̄] :

g(x) ≤ 0 or g(x) ≥ η(x̄ − x). (10)

If, moreover, g is semismooth at x̄ (see sect. 2), then the pair of conditions

g′(x̄; 1) = 0 �⇒ ∃ ε > 0 ∀x ∈ [x̄, x̄ + ε] : g(x) ≤> 0 (11)

g′(x̄;−1) = 0 �⇒ ∃ ε > 0 ∀x ∈ [x̄ − ε, x̄] : g(x) ≤> 0 (12)

is equivalent with M being calm at (0, x̄).

Proof. Assuming violation of calmness, Corollary 1 provides a sequence xl → x̄ such
that

0 < g(xl) < l−1dM(0)(xl) ≤ l−1 |xl − x̄| ∀ l ∈ N. (13)

Without loss of generality, we may assume that, upon passing to a subsequence, xl > x̄

or xl < x̄ for all l. Assume first that xl > x̄ for all l. Then, (13) amounts to g↓(x̄; 1) ≤ 0.
On the other hand, since g(xl) > 0, we also have that g↑(x̄; 1) ≥ 0. However, the
inequalities g(xl) > 0 and g(xl) < l−1(xl − x̄) contradict directly condition (9). Sim-
ilarly, in case of xl < x̄ for all l, condition (10) is violated. In this way the first part of
the statement has been established. Now assume that g is semismooth. According to the
previous result, all we have to show now is that violation of one of the conditions (11) or
(12) leads to a violation of calmness. Without loss of generality, let (11) be violated (the
proof running analogously in the second case). Then, g′(x̄; 1) = 0 and there is some
sequence xl ↓ x̄ such that g(xl) > 0. If calmness held true, then dM(0)(xl) ≤ Lg(xl) for
some L > 0 and for l large enough. Choose zl ∈ M(0) such that |zl − xl | = dM(0)(xl).
In particular, zl ≥ x̄, zl �= xl , g(zl) ≤ 0 and, by the mean value theorem for Clarke’s
subdifferential,

L−1 |zl − xl | ≤ g(xl) ≤ g(xl)− g(zl) ≤ |ξl | |zl − xl | , (14)

where ξl ∈ ∂̄g(ul) and ul belongs to the line segment joining xl and zl . Since |zl − xl | ≤
|xl − x̄| → 0, we get ul ↓ x̄ . Now, the semismoothness of g at x̄ entails that ξl →
g′(x̄; 1) = 0. Since zl �= xl , (14) provides the contradiction L−1 ≤ 0. Consequently,
calmness is violated. ��

The importance of the “or”- part in conditions (9),(10) can be illustrated by the function

g(x) =
{−x if x = n−1 for some n ∈ N

x otherwise,
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where the corresponding M is calm at (0, 0), but one also has that

0 ∈
[
g↓(x̄; 1), g↑(x̄; 1)

]

and g fails to be nonpositive on an interval [x̄, x̄ + ε].

Remark 1. The first result of Proposition 2 requires that g(x̄) = 0. Indeed, the example

g(x) =
{

x − 1 if x ≤ 0
x2 if x > 0

shows that calmness of M may be violated for a lower semicontinuous function g which
satisfies conditions (9),(10). The reason is that g(x̄) = −1. However, as soon as g is con-
tinuous, calmness of M holds automatically true at any x̄ with g(x̄) < 0 due to x̄ being
an interior point of M(0) then. Consequently, for investigating calmness of M when g is
continuous (as in the second result of Proposition 2), one may assume g(x̄) = 0 without
loss of generality.

A trivial consequence of the definition is that calmness of M holds true whenever x̄ is a
local maximizer of g. If g is differentiable, this situation even covers the gap between
calmness and the Aubin property in Banach spaces:

Proposition 3. In (7), let X be a Banach space, � = R− and g : X → R be continu-
ously differentiable in a neighborhood of x̄ ∈ X such that g(x̄) = 0. Then, M is calm
at (0, x̄) if and only if either this multifunction has the Aubin property around (0, x̄) or
x̄ is a local maximizer of g.

Proof. The Aubin property being equivalent with ∇g(x̄) �= 0 here, all we have to show
is that calmness is violated in the case when ∇g(x̄) = 0 and there exists a sequence
xl → x̄ with g(xl) > 0. If calmness held true, then, as in the last lines of the proof of
Proposition 2, there would exist a sequence zl such that the following modification of
(14) is valid with ul belonging to the line segment [xl, zl]:

L−1 ‖zl − xl‖ ≤ g(xl) ≤ g(xl)− g(zl) ≤ ‖∇g(ul)‖ ‖zl − xl‖ .

As in the proof of Proposition 2, ul → x̄, whence∇g(ul)→ 0. Again, the contradiction
L−1 ≤ 0 results. ��
Remark 2. The differentiability of g is essential in the statement of Proposition 3, as one
can see from the example X = R, g(x) = max{−x2, x}, and x̄ = 0. Here, M is calm
although neither it has the Aubin property nor x̄ is a local maximizer of g. However,
since g is semismooth, one may apply the second result of Proposition 2 in order to
detect calmness.

3.2. Calmness of a single nonsmooth inequality

According to the previous section, there are simple criteria for calmness in the special
case of a single inequality. In those criteria either the respective constraint function g is
defined on R and then may be rather general or it is defined on a general Banach space



446 R. Henrion, J. V. Outrata

and then has to be continuously differentiable. In many applications, of course, one will
be faced with several differentiable inequalities or with a nondifferentiable inequality
defined on more general spaces than R . As far as calmness is concerned, Lemma 2
indicates, that the former task could be reduced to the latter one via the distance func-
tion. The following theorem provides a sufficient condition for calmness of a single
nonsmooth inequality. This result will be exploited in later sections for the situation of
several smooth constraints (not necessarily inequalities). In the following, for notational
convenience, the expression bd M(0) \ {x̄} is supposed to mean (bd M(0)) \ {x̄}, where
“bd” refers to the topological boundary.

Theorem 1. In (7), let X = R
n, Y = R, � = R− and g be lower semicontinuous. M

is calm at (0, x̄), where g(x̄) = 0, if the following conditions are satisfied:

1. g↓(x̄;h) > 0 ∀h ∈ N̂M(0)(x̄) \ {0};
2. lim inf

(z,h)→(x̄,0)

(z,h)∈ [bd M(0)\{x̄}]×
[
N̂M(0)(z)\{0}

]

g(z+h)
‖h‖ > 0.

Proof. Using the fact that N̂M(0)(x̄) is a closed cone, it is easy to see that the two
conditions of our Theorem imply the relation

lim inf
(z,h)→(x̄,0)

(z,h)∈ bd M(0)×
[
N̂M(0)(z)\{0}

]

g(z+ h)

‖h‖ > 0. (15)

By Corollary 1, violation of calmness entails the existence of some sequence xl→ x̄ such
that xl /∈ M(0) and dM(0)(xl) > lg(xl) for all l ∈ N. Denote by zl the Euclidean projec-
tion of xl onto M(0) and set hl := xl−zl . Then, zl ∈ bd M(0) and hl ∈ N̂M(0)(zl)\{0}.
From xl → x̄ ∈ M(0) and dM(0)(xl) = ‖hl‖, it follows that hl → 0. Since

g(zl + hl)

‖hl‖ = g(xl)

dM(0)(xl)
<

1

l
,

we get a contradiction with (15):

lim inf
l→∞

g(zl + hl)

‖hl‖ ≤ 0.

��
Remark 3. Conditions similar to those of the last Theorem can be found in many refer-
ences on local error bounds or weak sharp minima, respectively (see, e.g., [2], [26], [36],
[38]). The formulation in Theorem 1 appears to be quite favorable for the subsequent
analysis. The reason to keep the conditions of Theorem 1 separate, rather than combining
them to a single one as done in the proof, is to illustrate the addition to (ACQ) (related
to condition 1.) which is necessary in order to obtain the stronger calmness property
(compare Proposition 1 and Example 1). The two conditions of Theorem 1 will figure
in adapted forms in several of the results below.
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3.3. Calmness of differentiable constraints modeled by a finite union of polyhedra

In the following, we consider (7) for a continuously differentiable mapping g between
finite-dimensional spaces and for a set � which is union of p convex polyhedra �j .
This framework allows the modeling of certain equilibrium constraints and incorporates
conventional feasible sets of nonlinear optimization. It is easy to see (cf. [9]) that only
finitely many cones can occur as N�(u), where u ∈ �. This allows to introduce the
following finite family of cones for some fixed x̄ ∈ R

n:

N := {N |∃ xi
bd M(0)\{x̄}−→ x̄ ∃j ∈ {1, 2, . . . , p} :

g(xi) ∈ �j and N = N�j
(g(xi)) for all i ∈ N}.

In the following, ∇g shall refer to the Jacobian of g.

Theorem 2. Consider (1) with X = R
n, Y = R

m, g ∈ C1(Rn, R
m) and � =⋃p

j=1 �j

⊆ R
m, where each �j is a convex polyhedron. Then, M is calm at some (0, x̄) ∈ Gph M

under the following two assumptions:

1. TM(0)(x̄) = {h ∈ R
n | ∇g(x̄)h ∈ T�(g(x̄))} (i. e. (ACQ) holds at x̄);

2. N ∩ ker (∇g(x̄))T = {0} ∀N ∈ N .

Proof. By Lemma 2, it is sufficient to show the calmness of the multifunction

M̃(t) = {x ∈ X | d�(g(x)) ≤ t}
at (0, x̄). This will be done on the basis of Theorem 1 applied to the function b := d�◦g.
Put

I(x) := {j ∈ {1, . . . , p} | g(x) ∈ �j }.
Since d�j

is convex continuous, the composition bj := d�j
◦ g is directionally differ-

entiable, and for all j ∈ I(x) and h ∈ R
n one has

bj
′(x;h) = d ′�j

(g(x); ∇g(x)h) = dT�j
(g(x))(∇g(x)h),

(cf. [35], Example 8.53). Clearly, b = min{bj |j ∈ {1, 2, . . . , p}}. By a continuity argu-
ment one even has the identity

b(x + u) = min
j∈I(x)

bj (x + u) (16)

for all x ∈ M(0) and all u sufficiently close to x. Consequently, for all x ∈ M(0) and
all h,

b′(x;h) = lim
λ↓0

λ−1 (b(x + λh)− b(x)) = lim
λ↓0

λ−1
(

min
j∈I(x)

bj (x + λh)

)

= min
j∈I(x)

lim
λ↓0

λ−1 (bj (x + λh)− bj (x)
) = min

j∈I(x)
bj
′(x;h)

= min
j∈I(x)

dT�j
(g(x))(∇g(x)h) = d∪{T�j

(g(x))| j∈I(x)}(∇g(x)h)

= dT�(g(x))(∇g(x)h).
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Here, we used that b(x) = bj (x) = 0 for all j ∈ I(x). Along with our assumption 1.,
the obtained relation yields that b↓(x̄;h) = b′(x̄;h) > 0 for all h ∈ N̂M(0)(x̄)\{0},
which is the first condition of Theorem 1. To verify the second one, consider an arbitrary
sequence

(zl, hl)→ (x̄, 0), zl ∈ bd M(0)\{x̄}, hl ∈ N̂M(0)(zl)\{0}.

Clearly, g(zl) ∈ �, and, by the finiteness argument, one may pass to a subsequence
(which will not be relabeled) such that I(zl) amounts to a fixed index set I

∗ and, for each
j ∈ I

∗, the normal cones N�j
(g(zl)) reduce to some fixed closed convex cones Nj for all

l ∈ N. By definition, all these cones Nj belong to N . Setting h̃l := ‖hl‖−1hl , one may
pass to another subsequence (again not relabeled) such that h̃l → h̃ with ‖h̃‖ = 1. Since
hl ∈ N̂M(0)(zl) and M(0) = ∪p

j=1g
−1(�j ), it follows that hl ∈ ∩j∈I∗N̂g−1(�j )(zl).

Here, we have used the existence of some open neighbourhood U of zl such that

M(0) ∩ U =
(
∪j∈I∗g

−1(�j )
)
∩ U .

On the other hand, our assuption 2. ensures that Nj ∩ ker (∇g(zl))
T = {0} for l suffi-

ciently large. This constraint qualification allows to apply Theorem 6.14 in [35] and to
derive that N̂g−1(�j )(zl) = (∇g(zl))

T Nj . We show now that

h̃ ∈ (∇g(x̄))T Nj ∩ S ∀j ∈ I
∗. (17)

Indeed, for an arbitrary fixed j ∈ I
∗, one has that h̃l = (∇g(zl))

T kl with kl ∈ Nj

and it suffices to verify that the sequence {kl} is bounded. Taking into account that∥
∥(∇g(zl))

T kl

∥
∥ = 1, this follows, however, immediately from our assumption 2. There-

fore, relation (17) holds true.
Now, since each �j is convex, one has for all j ∈ I

∗ that �j − g(zl) ⊂ T�j
(g(zl)).

Consequently,

bj (zl + hl) = d�j
(g(zl + hl) ≥ dT�j

(g(zl ))(g(zl + hl)− g(zl))

= d ′�j
(g(zl); (g(zl + hl)− g(zl))) = max

ξ∈Nj∩B

〈ξ, g(zl + hl)− g(zl)〉 ,

where the last two equalities follow from Example 8.53 in [35]. Since g is continuously
differentiable, it is strictly differentiable at x̄ and one has

‖hl‖−1 (gi(zl + hl)− gi(zl))→
〈
∇gi(x̄), h̃

〉
,

so that
〈
ξ, ‖hl‖−1 (g(zl + hl)− g(zl))

〉
→

〈
(∇g(x̄))T ξ, h̃

〉
.

From (17), we know that h̃ = (∇g(x̄))T k̃ for some k̃ ∈ Nj\{0}. Recalling, that a func-
tion max

ξ∈K
〈ξ, �(·)〉 with K convex compact and � continuous is continuous, we may
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summarize that, for all j ∈ I
∗,

lim inf
l→∞

‖hl‖−1bj (zl + hl) ≥ lim inf
l→∞

max
ξ∈Nj∩B

〈
ξ, ‖hl‖−1 (g(zl + hl)− g(zl))

〉

= max
ξ∈Nj∩B

〈
(∇g(x̄))T ξ, h̃

〉

≥
〈
(∇g(x̄))T

(
‖k̃‖−1k̃

)
, (∇g(x̄))T k̃

〉

= ‖k̃‖−1‖(∇g(x̄))T k̃ ‖2 > 0

in view of our assumption 2. Referring to (16), it follows that

lim inf
l→∞

‖hl‖−1b(zl + hl) = lim inf
l→∞

min
j∈I∗

‖hl‖−1bj (zl + hl)

= min
j∈I∗

lim inf
l→∞

‖hl‖−1bj (zl + hl) > 0.

This establishes condition 2. of Theorem 1 and completes the proof. ��
Remark 4. From the proof of Theorem 2 it is clear that one may replace condition 1. by
the weaker condition

N̂M(0)(x̄) ∩ {h ∈ R
n|∇g(x̄)h ∈ T�(g(x̄))} = {0}.

This is particularly efficient in situations where N̂M(0)(x̄) = {0} as in Example 3 below.
With this condition, however, there is no real gain in the statement of Theorem 2 because
calmness implies (ACQ) (see Prop. 1).

Three examples shall illustrate the application of Theorem 2.

Example 2. Consider the nonlinear complementarity problem (NCP) governed by the
generalized equation (GE)

0 ∈ f (x)+NR+(x) (18)

with

f (x) =





−x2 for x < 0
0 for x ∈ [0, 1]
(x − 1)2 for x > 1

.

Clearly, this problem can be rewritten as g(x) ∈ � with

g(x) = (x,−f (x))T and � = Gph NR+ = (R+ × {0}) ∪ ({0} × R−) .

Note that � is the union of two convex polyhedra (half lines). It is easily seen that
M(0) = [0, 1] holds true for the multifunction M in (7). We examine calmness of M at
(0, 0) ∈ Gph M . Condition 2. of Theorem 2 is automatically fulfilled because there is
no sequence xi → 0 with xi ∈ bd M(0)\{0}. Condition 1. of Theorem 2 is also satisfied
due to

TM(0)(0) = R+ = {h ∈ R|(h, 0) ∈ �} = {h ∈ R|∇g(0)h ∈ T�(g(0))}.
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x1

x2

x
�

Fig. 1. Illustration of the set M(0) in Example 3

Consequently, M is calm at (0, 0). Observe, however, that M does not possess the Aubin
property at (0, 0). Indeed, one has M(0, ε) = {1 + √ε} for ε > 0 which implies that
M(0, ε) ∩ B(0, 1) = ∅ in contradiction with the Aubin property. Therefore, calmness
cannot be detected here as a consequence of the Aubin property.

Example 3. Let

g(x1, x2) = (−x2
1 + x2,−x2

1 − x2, x1)
T ,

x̄ = 0 and � = �1 ∪ �2 with �1 = R
2 × R− and �2 = R

2− × R+. The set M(0) is
illustrated in Figure 1.

It is easily calculated that (1, 1, 0) ∈ N�(g(x̄)) ∩ ker (∇g(x̄))T . Hence, the calm-
ness of the multifunction M in (7) at (0, 0) cannot be ensured by (GMFCQ) (cf. (5)). On
the other hand, the condition of Remark 4 is trivially fulfilled due to N̂M(0)(x̄) = {0}.
This entails the weakened condition 1. of Theorem 2. As for condition 2. of that theorem,
note that the family N consists of the three cones

N1 = R+ × {0} × {0}, N2 = {0} × R+ × {0}, N3 = {0} × {0} × R+.

Since Ni ∩ ker (∇g(x̄))T = {0} for i = 1, 2, 3, condition 2. holds true as well and
calmness follows.

Example 4. Consider the parameter-dependent NCP governed by the GE 0 ∈ f (x1, x2)

+ NR+(x2) with f (x1, x2) = x2
1 − x2 together with the parameter constraint x1 ≤ 0.

Again, this can be written as g(x) ∈ �, where

g(x) = (x1, x2,−f (x1, x2))
T and � = R− × Gph NR+ .

Now, � is the union of two convex polyhedra. For the multifunction M in (7) one
computes

M(0) = (R− × {0}) ∪ {(x1, x2) ∈ R− × R|x2
1 = x2}.
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Calmness of M shall be examined at (0, 0) ∈ Gph M . First note that

(0,−1, 1)T ∈ N� (g(0, 0)) ∩ ker (∇g(0, 0))T �= {0},
which means that, again, (GMFCQ) is violated and, thus, cannot be applied in order to
detect calmness. On the other hand, condition 1. of Theorem 2 is fulfilled because

TM(0)(0) = R− × {0} = {h ∈ R
2|



1 0
0 1
0 1





(
h1
h2

)

∈ �}

= {h ∈ R
2|∇g(0)h ∈ T�(g(0))}.

Further note that the family N in Theorem 2 consists of the two cones

N1 = {0} × {0} × R, N2 = {0} × R× {0}.
Since

Ni ∩ ker (∇g(0))T = {0} (i = 1, 2),

condition 2. of Theorem 2 is also satisfied and calmness of M at the origin has been
established.

As an application of Theorem 2 consider the special case

g(x) = Ax + c, (19)

for some (m, n)- matrix A and some c ∈ R
m. From Robinson’s well-known theorem in

[32] it follows that the multifunction M in (7) with g defined in (19) is calm at (0, x̄)

for each x̄ ∈ M(0). Next we show, how this result can alternatively be derived from
Theorem 2. We start with a preparatory statement.

Proposition 4. Consider the setting of Theorem 2 with p = 1 (i.e., � itself is a convex
polyhedron). Then M in (7) with g defined in (19) is calm at (0, x̄) for each x̄ ∈ M(0).

Proof. It is well-known that condition 1. of Theorem 2 is satisfied for our data (see [3]).
Concerning condition 2. of Theorem 2 we get back to the sequences {zl}, {h̃l} specified
in the proof of that theorem. Due to the form of g, one has N̂M(0)(zl) = AT N with some
fixed closed convex cone N whenever l is sufficiently large. This implies that h̃ ∈ AT N

as well. Simultaneously, TM(0)(zl) = (AT N)0 = {k ∈ R
n |Ak ∈ N0} and we denote

this fixed convex cone by T . Following the proof of Theorem 2, it remains to show that

max
ξ∈N∩B

〈AT ξ, h̃〉 > 0. (20)

Assume by contradiction that

〈ξ, Ah̃〉 ≤ 0 ∀ ξ ∈ N ∩ B.

This implies, however, that Ah̃ ∈ N0, i.e., h̃ ∈ T . On the other hand, the intersection of
negative polar cones cannot contain a nonzero element. Thus, inequality (20) holds true
and we conclude that condition 2. of Theorem 2 is satisfied. ��
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Consider now the multifunction M with g given by (19) and

� =
p⋃

j=1

�j ,

where the �j are convex polyhedra. With Mj : R
m ⇒ R

n defined by

Mj(y) := {x ∈ R
n|Ax + c + y ∈ �j } (j = 1, . . . , p),

it is easy to see that

Gph M =
p⋃

j=1

Gph Mj .

Now we may use an idea from [35] (Example 9.57): Let (x̄, 0) ∈ Gph M so that (x̄, 0) ∈
Gph Mj for j ∈ I (x̄). By virtue of Proposition 4, there exist lj , εj ≥ 0, such that

dMj (0)(x) ≤ lj ‖y‖ ∀y ∈ B(0, εj )∀x ∈ B(x̄, εj ) ∩Mj(y).

Consequently, with

l := max
j∈I(x̄)

lj , ε := min
j∈I(x̄)

εj ,

one has

dMj (0)(x) ≤ l ‖y‖ ∀y ∈ B(0, ε)∀x ∈ B(x̄, ε) ∩Mj(y)∀j ∈ I (x̄) .

This amounts, however, to the calmness of M at (x̄, 0).

3.4. Calmness of finitely many differentiable inequalities

As a further application of Theorem 2 we characterize calmness of a finite system of
smooth inequalities, i.e., � = R

m−. Let

I (x) := {i ∈ {1, . . . , m} | gi(x) = 0}
be the set of active indices at x. The standard results on characterization of calmness of
M mentioned in the introduction amount to the following conditions:

(MFCQ) 0 /∈ conv {∇gi(x̄)|i ∈ I (x̄)} (21)

(see (6)) 0 ∈ int conv {∇gi(x̄)|i ∈ I (x̄)} . (22)

Simple examples show that in the remaining case 0 ∈ bd conv {∇gi(x̄)|i ∈ I (x̄)} calm-
ness can be violated or satisfied (take g1(x) = x and g2(x) = 0 or g2(x) = x2). The
application of Theorem 2, however, will provide a condition which allows to detect
calmness of M also in this case. Let J be the family of critical index sets I ⊆ I (x̄),
defined by

J := {I |∃ xi
bd M(0)\{x̄}−→ x̄ : I = I (xi)∀ i ∈ N}.
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Theorem 3. Consider (7) with X = R
n, Y = R

m, g ∈ C1(Rn, R
m) and � = R

m−. Then,
M is calm at some (0, x̄) ∈ Gph M under the following two assumptions:

1. TM(0)(x̄) = {h ∈ R
n|∇gi(x̄)h ≤ 0 ∀i ∈ I (x̄)};

2. 0 �∈ conv {∇gi(x̄)|i ∈ I } ∀I ∈ J .

Proof. Condition 1. above is just the classical (ACQ), i. e., the specification of condition
1. in Theorem 2 to the setting considered here. Since for an arbitrary point x ∈ M(0)

N̂R
m−(g(x)) = {k ∈ R

m
+|ki = 0 for i /∈ I (x)},

condition 2. of Theorem 2 reduces to the condition that, for all I ∈ J one has the
implication

(∇g(x̄))T k = 0, k ∈ R
m
+ , ki = 0 if i /∈ I �⇒ k = 0.

This, however, is equivalent to 0 /∈ conv {∇gi(x̄), i ∈ I } ∀I ∈ J . ��
Corollary 2. In the setting of Theorem 3, let x̄ be an isolated point of M(0), i.e., M(0)∩
U = {x̄} for some neighborhood U of x̄. Then, calmness of M at (0, x̄) is equivalent
with (ACQ) at x̄.

Proof. The isolatedness assumption immediately implies that J = ∅, whence condition
2. of Theorem 3 is automatically satisfied. Therefore, condition 1. implies calmness. The
reverse implication follows from Proposition 1. ��
Corollary 2 clarifies, why Example 1 could work as an even smooth counter-example to
Proposition 1: The point x̄ = 0 in that example failed to be isolated in M(0).

In the setting of Theorem 3, one gets the following criterion for calmness on selec-
tions (see Introduction):

Corollary 3. M is calm on selections at (0, x̄)⇐⇒ x̄ is an isolated point of M(0) and
(ACQ) holds at x̄.

Proof. The definition of calmness on selections (see Introduction) implies its equiva-
lence with usual calmness complemented by local isolatedness of x̄ in M(0). This, by
virtue of Corollary 2, is equivalent with (ACQ) complemented by local isolatedness
of x̄. ��

The use of Theorem 3 as a condition for calmness is emphasized by the following
observation:

Proposition 5. Each of the conditions (21) and (22) implies the two conditions of The-
orem 3. Both implications are strict.

Proof. It is well known that (MFCQ) implies (ACQ) (see, e. g., [35, Theorem 6.31]). The
upper semi-continuity of the index set mapping x 
→ I (x) entails that I ⊆ I (x) for all
I ∈ I. Thus condition 2. of Theorem 3 follows from (21) too. As to (22), it implies that x̄
is an isolated point of M(0) (see discussion of (6) in the introduction). Hence, condition
2. of Theorem 3 is trivially satisfied. Moreover, isolatedness means that TM(0)(x̄) = {0}.
Finally, under (22), 0 cannot be separated from the set conv {∇gi(x̄)|i ∈ I (x̄)}. There-
fore, the right-hand side of condition 1. in Theorem 3 reduces to {0}, so this condition is
met as well. The subsequent examples will show that the implications in this proposition
are strict. ��
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The first two of the following examples illustrate the application of Theorem 3. In both
of them, conditions (21) and (22) are violated. In the third example the respective M is
not calm. We always put x̄ = 0.

1. g1(x) = −x2, g2(x) = x: Then,

M(0) = TM(0)(x̄) = {h ∈ R|∇gi(x̄)h ≤ 0 ∀i ∈ I (x̄) = {1, 2}} = R−.

Since bd M(0) = {x̄}, it results that J is an empty family of index sets and, hence,
condition 2. of Theorem 3 is trivially fulfilled. Therefore, M is calm at (0, 0).

2. g1(x1, x2) = x2 − x2
1 , g2(x1, x2) = −x2 − x2

1 , g3(x1, x2) = −x1: Then,

M(0) = {(x1, x2)| |x2| ≤ x2
1 , x1 ≥ 0} and

TM(0)(x̄) = {h ∈ R
2|∇gi(x̄)h ≤ 0 ∀i ∈ I (x̄) = {1, 2, 3}} = R+ × {0}.

Moreover, we have that J = {{1}, {2}} (the third inequality never becomes active at
M(0) \ {x̄}). Since ∇g1(x̄) = (0, 1) �= 0 and ∇g2(x̄) = (0,−1) �= 0, condition 2.
of Theorem 3 is fulfilled. Thus, M is calm at (0, 0).

3. g1(x) = x2, g2(x) = x: One easily verifies that M is not calm at (0, 0). Then, (ACQ)
is violated because M(0) = TM(0)(x̄) = {0} and

{h ∈ R|∇gi(x̄)h ≤ 0 ∀i ∈ I (x̄) = {1, 2}} = R−.

3.5. Calmness of infinitely many differentiable inequalities

The idea developed in Theorem 3 can be also applied to the case of another multifunction
M , where y is an infinite-dimensional parameter. Let T ⊆ R

m be compact and denote
by C(T ) the Banach space of continuous functions on T equipped with the maximum
norm. Let g : R

n × R
m → R be continuously differentiable such that ∇xg is locally

Lipschitzian (which is satisfied, for instance, if g is of class C2 or even C1,1). Consider
the multifunction M : C(T ) ⇒ R

n defined by

M(y) := {x ∈ R
n|g(x, z) ≤ −y(z) ∀z ∈ T }. (23)

Evidently, one may equivalently write (23) as

M(y) := {x ∈ R
n|g̃(x)+ y ∈ �}, (24)

where g̃(x) := g(x, ·) and � refers to the cone of nonpositive, continuous functions on
T . For any x ∈ R

n, the set of active indices will be denoted by

I (x) := {z ∈ T |g(x, z) = G(x)}, where G(x) = max{g(x, z)|z ∈ T }. (25)

It is well known that G is locally Lipschitzian and Clarke-regular. In particular, G is
directionally differentiable and one has

G′(x;h) = max{〈∇xg(x, z), h〉 |z ∈ I (x)} (26)
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(note that writing “max” is justified here due to the compactness of I (x) ). Assume that
x̄ ∈ R

n satisfies G(x̄) = 0, hence (0, x̄) ∈ Gph M . Finally, we introduce the following
family of critical index sets:

J := {S ⊆ T | ∃xi
bd M(0)\{x̄}−→ x̄ : dH (S, I (xi))→ 0}.

Here, dH refers to the Hausdorff distance between compact sets.
We shall need the following auxiliary result:

Lemma 3. Let K ⊂ R
n be a closed convex set such that 0 /∈ K ⊆ LB for some L > 0.

Then,

max
k∈K

〈k, h〉 ≥ L−1‖ξ‖2‖h‖ ∀h ∈ R+K,

where ξ is the norm-minimal element in K .

Proof. Since ξ is a norm-minimal element in K , one has ‖ξ‖2 ≤ 〈ξ, h〉 for all h ∈ K .
Consequently,

max
k∈K

〈k, h〉 ≥ 〈ξ, h〉 ≥ L−1‖ξ‖2‖h‖ ∀h ∈ K.

Since both sides of the last inequality are positively homogeneous in h, the same inequal-
ity holds true for all h ∈ R+K . ��
Theorem 4. Consider (7) with X := R

n, Y := C(T ) and M given by (24) (where g̃

plays the role of g in (7)). Let (0, x̄) ∈ C(T )×R
n such that G(x̄) = 0, i.e., g(x̄, z) ≤ 0

for all z ∈ T , and there exists some z̄ ∈ T with g(x̄, z̄) = 0. Assume that

1. TM(0)(x̄) = {h ∈ R
n| 〈∇xg(x̄, z), h〉 ≤ 0 ∀z ∈ I (x̄)}.

2. There is some ρ > 0 such that dconv {∇xg(x̄,z)|z∈S}(0) ≥ ρ for all S ∈ J .

Then, M is calm at (0, x̄).

Proof. According to Lemma 2, calmness of M at (0, x̄) ∈ C(T )×R
n is equivalent with

the calmness of

M̃(t) := {x ∈ R
n|d�g̃(x) ≤ t} = {x ∈ R

n|max {G(x), 0} ≤ t}
at (0, x̄) ∈ R × R

n. The definition of calmness immediately yields that, another time,
calmness of M̃ at (0, x̄) is equivalent with the calmness at (0, x̄) of

M∗(t) := {x ∈ R
n|G(x) ≤ t}.

Hence, we are going to verify this last property on the basis of Theorem 1 (with the
function g there replaced by our function G here). By our assumption 1. we have that
N̂M(0)(x̄) = (

LM(0)(x̄)
)0. Then, (26) provides condition 1. of Theorem 1:

G↓(x̄;h) = G′(x̄;h) = max{〈∇xg(x̄, z), h〉 |z ∈ I (x̄)} > 0 ∀h ∈ N̂M(0)(x̄)�{0}.
In order to check condition 2. of Theorem 1, consider arbitrary sequences xl → x̄ and
hl → 0 such that xl ∈ bd M(0)�{x̄} and hl ∈ N̂M(0)(x̄)�{0}. Denote by c > 0 a
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Lipschitz modulus of ∇xg on the compact set B(x̄, 1) × T . We verify the following
relation:

∃l0 ∀l ≥ l0 ∃S ∈ J : I (xl) ⊆ S + B(0, (4c)−1ρ), (27)

where ρ > 0 refers to our condition 2. If the relation did not hold true, then there would
be subsequences {xl}, {zl} which we do not relabel, such that zl ∈ I (xl) and dS(zl) >

(4c)−1ρ for all l and all S ∈ J . Since the space of compact subsets of R
m endowed

with the Hausdorff metric is itself compact, there is some compact S̃ ⊆ T along with
another subsequence {xl}, which again we do not relabel, such that dH (S̃, I (xl)) → 0.
By definition, S̃ ∈ J . Finally, after passing yet to another subsequence, we have that
zl → z̄ for some z̄ ∈ T . Consequently, z̄ ∈ S̃, which contradicts d

S̃
(zl) > (4c)−1ρ for

all l. This proves (27).
In addition to (27), we may assume that ‖xl − x̄‖ < (4c)−1ρ for all l ≥ l0. Now, we

fix an arbitrary l ≥ l0 and an arbitrary z ∈ I (xl). By S ∈ J , we denote the set whose
existence is guaranteed in (27) and by z∗ ∈ S the Euclidean projection of z onto S. Then,
due to (27), we get

∥
∥∇xg(xl, z)− ∇xg(x̄, z∗)

∥
∥ ≤ c(‖xl − x̄‖ + ∥

∥z− z∗
∥
∥) ≤ ρ/2.

Our assumption 2., along with a separation argument, ensures the existence of some x∗
with ‖x∗‖ = 1 and

〈
x∗, v

〉 ≥ ρ ≥ 〈
x∗, u

〉 ∀v ∈ conv {∇xg(x̄, z)|z ∈ S} ∀u ∈ B(0, ρ).

Then, since z ∈ I (xl) was arbitrary, one derives

〈
x∗,∇xg(xl, z)

〉 ≥ 〈
x∗,∇xg(x̄, z∗)

〉− ∥
∥∇xg(xl, z)− ∇xg(x̄, z∗)

∥
∥

≥ ρ − ρ/2 = ρ/2 ≥ 〈
x∗, u

〉 ∀z ∈ I (xl)∀u ∈ B(0, ρ/2).

It follows that conv {∇xg(xl, z)|z ∈ I (xl)} ∩ int B(0, ρ/2) = ∅. Since l ≥ l0 was
arbitrary, we have that

dconv {∇xg(xl ,z)|z∈I (xl)}(0) ≥ ρ/2 ∀l ≥ l0. (28)

In particular, 0 /∈ conv {∇xg(xl, z)|z ∈ I (xl)} = ∂G(xl). This constraint qualification
along with the regularity of G ensures that N̂M(0)(xl) = R+∂G(xl) (cf. Prop. 10.3. in
[35]). Accordingly, ‖hl‖−1hl ∈ R+∂G(xl). The continuity of the gradients ∇xg implies
the existence of some L > 0 such that Kl ⊆ LB for l large enough. Now, Lemma 3 and
(28) ensure that

max
k∈∂G(xl)

〈k, ‖hl‖−1hl〉 ≥ L−1 (d∂G(xl)(0)
)2 ≥ L−1ρ2/4 ∀l ≥ l0.

We assume also l0 large enough to meet the condition max{‖xl − x̄‖ , ‖hl‖} ≤ 1/2
whenever l ≥ l0. Now, fix an arbitrary l ≥ l0 and put

α(h, z) := g(xl + h, z)− g(xl, z)− 〈∇xg(xl, z), h〉.
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Clearly, α is continuous and, by the mean value theorem and by ∇xg having Lipschitz
modulus c > 0 on B(x̄, 1)× T , one gets that

|α(h, z)| ≤ | 〈∇xg(xl +�h,zh, z)− ∇xg(xl, z), h
〉 | ≤ c�h,z ‖h‖2

∀(h, z) ∈ B(0, 1/2)× T ,

where �h,z ∈ [0, 1]. This implies

‖h‖−1 |α(h, z)| ≤ c ‖h‖ ∀(h, z) ∈ (B(0, 1/2)�{0})× T .

We note that xl ∈ bd M(0) entails G(xl) = 0 by continuity of G and, hence, g(xl, z) = 0
for all z ∈ I (xl). Then, the following estimation holds true for all l ≥ l0:

G(xl + hl)

‖hl‖ ≥ max
z∈I (xl)

g(xl + hl, z)− g(xl, z)

‖hl‖
= max

z∈I (xl)

{
〈∇xg(xl, z), ‖hl‖−1hl〉 + ‖hl‖−1α(hl, z)

}

≥ max
z∈I (xl)

{
〈∇xg(xl, z), ‖hl‖−1hl〉

}
− max

z∈I (xl)

{
‖hl‖−1|α(hl, z)|

}

≥ L−1ρ2/4− c‖hl‖.

Choosing l0 large enough to satisfy ‖hl‖ ≤ (8cL)−1ρ2 for all l ≥ l0, it follows that

G(xl + hl)

‖hl‖ ≥ L−1ρ2/8 > 0 ∀l ≥ l0.

This last relation eventually entails condition 2. of Theorem 1. ��

4. Applications

4.1. Nonsmooth Calculus

This section is devoted to two applications of the preceding theory in nonsmooth cal-
culus. The first one concerns the computation of the limiting normal cone to the set
M(0) = {x ∈ R

n | g(x) ∈ �}, where g maps R
n into R

m and � ⊂ R
m has a special

structure.

Theorem 5. Let g be continuously differentiable and � = ∪p
j=1�j , where each

�j ⊆ R
m is a convex polyhedron. Suppose that g(x̄) ∈ � and both assumptions of

Theorem 2 are fulfilled. Then one has

NM(0)(x̄) ⊆ (∇g(x̄))T N�(g(x̄)). (29)

If � happens to be regular at g(x̄), then M(0) is regular at x̄ and inclusion (29) becomes
an equality.
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Proof. The first assertion follows immediately from the calmness of the respective map
M at (0, x̄) by virtue of [15, Theorem 4.1]. To prove the second assertion, note that

NM(0)(x̄) ⊇ N̂M(0)(x̄) ⊇ (∇g(x̄))T N̂�(g(x̄)) (30)

without any assumptions. Since N̂�(g(x̄)) = N�(g(x̄)) by the regularity of � at g(x̄),
it suffices to combine (29) and (30) to get

N̂M(0)(x̄) = NM(0)(x̄) = (∇g(x̄))T N�(g(x̄)),

and we are done. ��
The preceding result can be utilized, e.g., in deriving optimality conditions for the

program

min{ϕ(x)|g(x) ∈ �}, (31)

where ϕ : R
n → R is locally Lipschitz and g, � satisfy the assumptions of Theorem

2. Let x̂ be a local solution of (31) and assume that TM(0)(x̂) is not convex. Then, one
usually employs the optimality conditions from [24]

0 ∈ ∂ϕ(x̂)+NM(0)(x̂).

On the basis of Theorem 5 we arrive in this way at the desired relation

0 ∈ ∂ϕ(x̂)+ (∇g(x̂))T N�(g(x̂)) (32)

even in the case when (GMFCQ) does not hold at x̄.
This situation can be illustrated by means of the constraint system analyzed in Exam-

ple 3.

Example 5. Consider the mathematical program (31) with

ϕ(x1, x2) = 2 | x1 − x2 | − (x1 + x2) (33)

and g, � being given in Example 3. On the basis of Figure 1 and the objective (33) one
easily deduces that x̄ = 0 is a local minimizer in this program. From Example 3 we
know that the respective map M is calm at (0, x̄). Therefore, by virtue of Theorem 5, it
follows that

NM(0)(x̄) ⊆
[

0 0 1
1 −1 0

]

N�(0). (34)

One readily computes that

N�(0) =
(
R

2
+ × {0}

)
∪ ({0} × {0} × R+) .

Furthermore,

∂ϕ(x̄) =
[

2
−2

]

B−
[

1
1

]

,

and we observe that the vector (−2, 0)T ∈ ∂ϕ(x̄) and the vector (2, 0)T belong to the
cone on the right-hand side of (34). This implies that the optimality conditions (32) are
fulfilled.
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Calmness plays also a crucial role in the computation of coderivatives of composite
multifunctions. This concerns the general situation considered in [25, Theorem 5.1], but
here we restrict ourselves only to the multifunction

S(u) := {x ∈ � |h(u, x) ∈ �}, (35)

where h : R
p×R

n → R
m is locally Lipschitz and the sets � ⊆ R

n, � ⊆ R
m are closed.

We start with a modification of [25, Theorem 6.10] and introduce for this purpose the
multifunction P : R

m ⇒ R
p × R

n defined by

P(y) := {(u, x) ∈ R
p ×� |h(u, x)+ y ∈ �}. (36)

Clearly, x ∈ S(u) iff (u, x) ∈ P(0), i.e., Gph S = P(0).

Theorem 6. Let (ū, x̄) ∈ Gph S and assume that P is calm at (0, ū, x̄). Then one has
for all x∗ ∈ R

n the inclusion

D∗S(ū, x̄)(x∗) ⊆
{

u∗ ∈ R
p |

[
u∗

−x∗
]

∈ D∗h(ū, x̄) ◦N�(h(ū, x̄))+
[

0
N�(x̄)

]}

.

(37)

Proof. According to the definition,

D∗S(ū, x̄)(x∗) =
{

u∗ ∈ R
p |

[
u∗
−x∗

]

∈ NP(0)(ū, x̄)

}

.

Due to the required calmness of P we can invoke [15, Theorem 4.1 ] which yields the
inclusion

NP(0)(ū, x̄) ⊆ D∗h(ū, x̄) ◦N�(h(ū, x̄))+
[

0
N�(x̄)

]

and completes the proof. ��
Formula (37) is useful, e.g., for testing the Aubin property of S around (ū, x̄) via

the Mordukhovich criterion D∗S(ū, x̄)(0) = {0}. If we connect this criterion with the
qualification conditions from [25, Theorem 6.10], ensuring the validity of inclusion (37),
we arrive at the condition

[
u∗
0

]

∈ D∗h(ū, x̄)(v)+
[

0
N�(x̄)

]

v ∈ N�(h(ū, x̄))





⇒

{
u∗ = 0
v = 0.

(38)

If we, however, ensure the validity of (37) via the calmness of P at (0, ū, x̄), then S

possesses the Aubin property around (ū, x̄) provided
[

u∗
0

]

∈ D∗h(ū, x̄)(v)+
[

0
N�(x̄)

]

v ∈ N�(h(ū, x̄))





⇒ u∗ = 0. (39)

The importance of the difference between (38) and (39) is strikingly illustrated by the
following NCP.
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Example 6. Let S : R → R
2 be the map which assigns to the parameter u the set of

solutions to the complementarity problem, governed by the GE

0 ∈
[

0 1
−2 3

] [
x1
x2

]

+
[

0
u+ 2

]

+N
R

2+(x).

We want to examine the Aubin property of S at (ū, x̄) = (0, 1, 0). This problem can
be converted to the form (35) in the same way as it was done in Example 2; thereby
� = R

2 and the corresponding map h is affine. We easily realize that condition (38 ) is
not fulfilled (each vector (v1, v2) ∈ R×{0} belongs to N�(h(ū, x̄))∩ker (∇h(ū, x̄))T ).
On the other hand, since h is affine, the corresponding map P is calm and condition (39)
is fulfilled. This implies that S has the Aubin property around (ū, x̄), which could not
be detected by the standard technique.

The theory, developed in Section 2, does not allow one to establish the calmness of
P in the above general setting in a new way. If, however, � = R

n, � is as in Theorem
2 and h happens to be continuously differentiable, then one can try to apply Theorem 6
whenever the qualification conditions of [25, Theorem 6.10] are not fulfilled.

4.2. Continuity of the Value-at-Risk

A prominent risk measure used in mathematics of finance or in stochastic optimization is
the value at risk. For a given random variable X and a given probability level p ∈ (0, 1],
this value at risk is defined as

VaRp(X) := inf{r ∈ R|P(X ≤ r) ≥ p} = inf{r ∈ R|FX(r) ≥ p}.
Here, P denotes some probability measure and FX is the distribution function of X. It is
well known, and sometimes stated as a shortcoming of this risk measure, that, in general,
VaRp does not depend continuously on X. The fact that a suitable growth condition has
to be imposed on the distribution function in order to obtain a Lipschitz-like property
for the value-at-risk, has already been observed in [29] (Proposition 8). The following
theorem uses Proposition 2 in order to derive the analogous result under the assumption
that X has a density fX, i.e., FX(x) = ∫ x

−∞ fX(t)dt . The deviation between two random
variables X and Y shall be measured by

�(X, Y ) := sup
t∈R

|FX(t)− FY (t)|

which is the Kolmogorov distance between the distributions induced by X and Y , respec-
tively. For convenience of notation, we put x̄ := VaRp(X). Furthermore, denoting by λ

the Lebesgue measure in R, we introduce the quantities

ϕ↑(ε, α) := λ{x ∈ [x̄, x̄ + ε] |fX(x) ≥ α}
ϕ↓(ε, α) := λ{x ∈ [x̄ − ε, x̄] |fX(x) ≥ α}.

Theorem 7. Let X be a fixed random variable. Assume that p ∈ (0, 1) and that

lim inf
α,ε↓0

ε−1ϕ↑(ε, α) > 0 and lim inf
α,ε↓0

ε−1ϕ↓(ε, α) > 0. (40)
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Then, there exist constants L, δ > 0, such that
∣
∣VaRp(X)− VaRp(Y )

∣
∣ ≤ L�(X, Y ) for all Y with �(X, Y ) < δ.

Proof. As a distribution function with density,FX is continuous and satisfies lim
x→−∞FX(x) =

0. From here, it follows immediately that, under our assumption p ∈ (0, 1), one has that
FX(x̄) = p. The second condition in (40) provides the existence of α, γ, δ > 0 such
that

ϕ↓(ε, α) ≥ γ ε ∀ε ∈ (0, δ) .

Consequently,

FX(x̄)− FX(x̄ − ε) =
∫ x̄

x̄−ε

fX(t)dt ≥ αϕ↓(ε, α) ≥ αγ ε ∀ε ∈ (0, δ) , (41)

With g(x) := p−FX(x), this yields in the notation of Proposition 2 that g↓(x̄;−1) > 0.
Consequently, 0 /∈ [g↓(x̄;−1), g↑(x̄;−1)

]
and the implication (10) holds trivially true.

On the other hand, because FX is nondecreasing as a distribution function, one has that

g(x) = p − FX(x) ≤ p − FX(x̄) = 0 ∀x ≥ x̄.

Thus, (the conclusion of) the implication (9) holds true. Summarizing, Proposition 2
may be applied to derive calmness of the mapping

t 
→ {x|g(x) ≤ −t}
at (0, x̄) which amounts to the calmness of the mapping

t 
→ {x|FX(x) ≥ t}
at (p, x̄). By definition, there are constants L, δ1 > 0 such that

d[x̄,∞)(r) ≤ L|t − p| ∀r ∈ [x̄ − δ1, x̄ + δ1] : FX(r) ≥ t ∀t ∈ [p − δ1, p + δ1] .

Next we exploit that FX(x̄ − δ1) < FX(x̄) (otherwise the fact that FX is nondecreasing
implies the contradiction FX(r) = FX(x̄) for all r ∈ [x̄ − δ1, x̄] with (41)). Therefore,
taking into account once more that FX is nondecreasing and observing that d[x̄,∞)(r) = 0
for r ≥ x̄, the above relation can be extended to

d[x̄,∞)(r) ≤ L|t − p| ∀r ∈ R : FX(r) ≥ t ∀t ∈ [p − δ2, p + δ2] , (42)

where δ2 := min{δ1, (FX(x̄)−FX(x̄− δ1))/2} > 0. Now, consider an arbitrary random
variable Y and an arbitrary r ∈ R with FY (r) ≥ p. By definition, FX(r) ≥ p−�(X, Y ).
If Y is such that �(X, Y ) ≤ δ2, then we may put t := p−�(X, Y ) in (42) and get that
d[x̄,∞)(r) ≤ L�(X, Y ). Consequently,

x̄ ≤ r + d[x̄,∞)(r) ≤ r + L�(X, Y ) ∀r : FY (r) ≥ p ∀Y : �(X, Y ) ≤ δ2.
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Passing to the infimum over all r with FY (r) ≥ p, yields

VaRp(X) ≤ VaRp(Y )+ L�(X, Y ) ∀Y : �(X, Y ) ≤ δ2. (43)

Repeating the analogous argumentation, but now based on the first condition in (40),
one deduces calmness of the mapping

t 
→ {x|FX(x) ≤ t}
at (p, x̄) and arrives at a relation similar to (42):

d(−∞,x̄](r) ≤ L|t − p| ∀r ∈ R : FX(r) ≤ t ∀t ∈ [p − δ2, p + δ2],

Now, we put ȳ := VaRp(Y ). Since, in contrast to the given variable X, we do not assume
that the perturbed variable Y has a density, we cannot except FY to be continuous.
Therefore, FY (ȳ) > p is possible (note that FY is always upper semicontinuous as a
distribution function, whence the relation FY (ȳ) < p is excluded by the definition of
VaRp). However, a simple argument shows that, due to continuity of FX, one always
has that �(X, Y ) ≥ (FY (ȳ)− p)/2. Hence,

FX(ȳ) ≤ FY (ȳ)+�(X, Y ) ≤ p + 3�(X, Y )

Now, if Y is such that �(X, Y ) ≤ δ2/3, then we may put t := p+3�(X, Y ) and r := ȳ

in (44) to derive that d(−∞,x̄](ȳ) ≥ 3L�(X, Y ). Therefore

VaRp(X) = x̄ ≥ ȳ − d(−∞,x̄](ȳ) ≥ VaRp(Y )− 3L�(X, Y )

for all Y with �(X, Y ) ≤ δ2/3. This Combines with (43) to the assertion of the
theorem. ��
Remark 5. Using Theorem 1 in [13], the conclusion of the last theorem could be obtained
without condition (40) but under the assumption that the density fX is log-concave,
i.e., log fX is concave (this holds true, for instance, for the normal, Gamma, Dirichlet,
uniform, lognormal and many other distributions, see [30]).

Remark 6. Instead of (40) one might consider the simpler condition

∃ε > 0 : fX(x) ≥ ε for almost all x ∈ [x̄ − ε, x̄ + ε],

which obviously implies that

lim inf
α,ε↓0

ε−1ϕ↑(ε, α) = lim inf
α,ε↓0

ε−1ϕ↓(ε, α) = 1,

and, hence is stronger than (40). Indeed, this condition was shown in [12, Theorem 6]
to imply the Aubin property of the mapping

t 
→ {x|FX(x) ≥ t}
around (p, x̄). From here, one might expect now a stronger Lipschitz result as compared
to Theorem 7, e.g.:

∣
∣VaRp(Y1)− VaRp(Y2)

∣
∣ ≤ L�(Y1, Y2) ∀Y1, Y2 : �(X, Y1), �(X, Y2) < δ.

This, however, does not hold true as is confirmed by an example in [16] (Example 1),
which is easily translated to the “value-at-risk”- setting considered here.



Calmness of constraint systems with applications 463

The following example demonstrates the use of condition (40) in Theorem 7 as compared
to the condition in the last remark:

Example 7. Consider a random variable X with its distribution having density

fX(x) := Ke−x2
max{sin x−2, 0},

where we put fX(0) := 0, p := 0.5 and K is a normalizing constant such that∫
fX(x)dx = 1. Due to symmetry of f , it follows that x̄ := VaRp(X) = 0. Some

calculation shows that

lim inf
α,ε↓0

ε−1ϕ↑(ε, α) = lim inf
α,ε↓0

ε−1ϕ↓(ε, α) = 0.5,

so that (40) is satisfied and the result of Theorem 7 may be derived, but the condition of
Remark 6 is violated.

Acknowledgements. The authors are indebted to J. Jarušek (Czech Academy of Sciences, Prague) and A.
Kruger (University of Ballarat, Australia) for helpful advice and numerous discussions on the subject of this
paper. They would also like to express their gratitude to two anonymous referees for many useful suggestions.

References

1. Aubin, J.-P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9, 87–111
(1984)
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