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A condition ensuring calmness of a class of multifunctions between finite-dimen-
sional spaces is derived in terms of subdifferential concepts developed by Mor-
dukhovich. The considered class comprises general constraint set mappings as they
occur in optimization or mappings associated with a certain type of variational
system. The condition ensuring calmness is obtained as an appropriate reduction of
Mordukhovich’s well-known characterization of the stronger Aubin property.
ŽRoughly spoken, one may pass to the boundaries of normal cones or subdifferen-

.tials when aiming at calmness. It allows one to derive dual constraint qualifica-
tions in nonlinear optimization that are weaker than conventional ones
Ž .e.g., Mangasarian�Fromovitz but still sufficient for the existence of Lagrange
multipliers. � 2001 Academic Press
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1. INTRODUCTION

Frequently, the stability analysis of multifunctions M : Y � X between
metric spaces X, Y, relies on the Aubin property, which is said to hold at
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Ž . Ž .some y, x � Gph M � graph of M , if there exist neighborhoods VV , UU

of y, x, as well as some L � 0 such that

d x , M y � Ld y , y for all y , y � VV , for all x � M y � UU .Ž . Ž . Ž .Ž .2 1 2 1 2 1

This property is well known to be equivalent with the metric regularity of
�1 Ž � 	 .the inverse multifunction M cf., e.g., 9 , Theorem 9.43 . In case of

finite-dimensional spaces X, Y, it is possible to characterize equivalently
Žthe Aubin property of closed multifunctions by the algebraic criterion see

� 	.6

� 4D*M y , x 0 � 0 , 1Ž . Ž .Ž .

where D*M refers to Mordukhovich’s coderivative. A weaker concept of
Lipschitz-like behavior of multifunctions is calmness, which is satisfied at

Ž .some y, x � Gph M, if there exist neighborhoods VV , UU of y, x, as well
as some L � 0 such that

d x , M y � Ld y , y for all y � VV , for all x � M y � UU .Ž . Ž . Ž .Ž .

It is easy to see that this property is equivalent to a ‘‘nonparametric’’ form
�1 Ž .of the metric regularity of M at x, y , introduced in the special case of

�M y � x � � f x � y� 4Ž . Ž .

Ž . � 	with a closed set � and a single-valued map f in 3 . This weakened form
�1Ž Ž . .of metric regularity implies that d M x , y is a Lipschitzian error

bound for the constraint

x � M y ,Ž .
�1Ž Ž . .provided that x is close to x and d M x , y is sufficiently small.

The concept of calmness, applied to value functions of optimization
� 	problems, goes back to Clarke 1 and Rockafellar, who pointed out its

relevance as a constraint qualification for obtaining nondegenerate La-
grange multipliers in optimization problems. To illustrate the analogous
role that calmness of multifunctions plays in the same context, assume that
M is a closed multifunction and that x is a local minimizer of some locally

Ž .Lipschitzian function � on M y . Then there is some K � 0 such that
Ž . Ž . Ž Ž .. Ž� x � � x 
 Kd x, M y for all x in a neighborhood of x see Proposi-

� 	. Ž .tion 2.4.3 in 2 . Now if M is calm at y, x , then the last inequality may be
Ž . Ž . Ž . Ž .extended to � x � � x 
 KLd y, y , which holds true for all x � M y

with x close to x and y close to y. This, however, is exactly the calmness
� 	 Žcondition shown in 2, Proposition 6.4.4 to yield a nonsmooth nondegen-

.erate multiplier rule for finite-dimensional optimization problems with
Lipschitzian data.
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For the derivation of multiplier rules, it is usual to indicate appropriate
constraint qualifications that have a chance to be verified for the given
data. Frequently, such constraint qualifications are associated with the
Aubin property rather than calmness of the underlying constraint set
mapping. But this may result in too-strong conditions, as is most easily

Ž .seen from the convex example, in which � x � x is minimized subject to
Ž . � �g x � x � 0. Here the Aubin property of the constraint set mapping

Ž .which is equivalent to Slater’s condition fails to hold for the minimizer
Ž . � 	because 0 � � g 0 � �1, 1 . On the other hand, calmness is fulfilled, and

Ž . Ž . �consequently, one has the multiplier rule 0 � �� 0 
 �� g 0 � 1 � �, 1
	
 � for some � � 0. An appropriate constraint qualification in this

Ž .example would be the condition 0 � bd � g 0 , where bd refers to the
topological boundary. This can be considered to be a weak Slater’s condi-
tion, which is actually satisfied in the foregoing example.

To put this idea into a more general context, we consider the following
class of finite-dimensional multifunctions:

�M y � x � � g x 
 y � � ,� 4Ž . Ž .

where � � � p, � � � m are closed subsets and g : � p � � m is locally
Lipschitz. This class covers constraint sets of nonsmooth, finite-dimen-
sional optimization but also some generalized equations�in particular,

Ž .nonlinear complementarity problems. Applying the criterion 1 for the
Ž .Aubin property to this structure gives at some 0, x � Gph M

D*g x y* � �N x � �, 2Ž . Ž . Ž . Ž .Ž .� �

Ž Ž .. � 4y*�N g x 
 0�

where N refers to Mordukhovich’s normal cone. Now the main result of
this paper states that under mild assumptions on � and g, the weaker
calmness property can be guaranteed under the weaker condition

D*g x y* � �bd N x � �.Ž . Ž . Ž .Ž .� �

Ž Ž .. � 4y*�N g x 
 0�

Indeed, this criterion applies without any further assumptions on g given
Ž .that the abstract constraint set � which typically has a simple structure is

convex or defined as an intersection or union of a finite number of smooth
inequalities under the usual regularity condition. The result is no longer
true for arbitrary closed sets �, but at least for those that are Clarke
regular it can be saved under the additional assumption that either g or �
is semismooth. Moreover, if g is Clarke regular in the special case

m Ž .� � � modeling a finite number of inequalities , one can even sharpen�
the foregoing condition by passing to the boundary on the left side as well.
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In this way, the simple convex example mentioned earlier will be covered,
and more generally, new constraint qualifications ensuring Lagrange mul-
tipliers can be derived. Finally, the obtained condition is applied to the
case of nonlinear complementarity problems.

2. BASIC CONCEPTS AND NOTATION

� �The following notation is used throughout this paper: � is the2
n � �Euclidean norm in � , � is the respective unit ball, � is an arbitrary2

n � �norm in � , � * is the corresponding dual norm, and �* is the unit ball
� � eassociated with � *. For a set �, 	 and d denote the indicator and the� �

Euclidean distance function, respectively. Finally, � refers to the cardinal-
ity of sets.

Next we recall some basic concepts from nonsmooth analysis needed in
this paper. For a closed subset A � � k, the contingent and Clarke’s
tangent cone, respectively, to A at some point x � A are defined by

k �K x � d � � 
 t �0, d � d : x 
 t d � AŽ . � 4A n n n n

c k �T x � d � � � t �0, x � x x � A 
d � d : x 
 t d � A .Ž . Ž .� 4A n n n n n n n

The respective normal cones are obtained as

c k cˆ �² :N x N x � d* � � d*, d � 0 �d � K x T x .Ž . Ž . Ž . Ž .� 4Ž . Ž .A A A A

In contrast, the Mordukhovich normal cone is defined as a generally
nonconvex object via

� �k ˆ�N x � d* � � 
d � d*, x � x x � A : d � N x .Ž . Ž . Ž .� 4A n n n n A n

cŽ . Ž . Ž .A is called Clarke- regular at x if K x � T x or, equivalently,A A
c k
1ˆŽ . Ž . Ž . �Ž . � Ž . 4N x � N x � N x . We let epi � � x, � � � � x � � de-A A A

knote the epigraph of a lower semicontinuous function � : � � �. Now
the normal cones induce subdifferentials of � via

c k c��� x � � x � x* � � x*, �1 � N x N x ,Ž . Ž . Ž . Ž . Ž .Ž . � 4Ž .epi � epi �

where � and � c refer to Mordukhovich and Clarke subdifferentials,
respectively. A more general construction is the Mordukhovich coderiva-

l k k lŽ .tive D*Z x, y : � � � of some multifunction Z : � � � at some
Ž .point x, y � cl Gph Z,

k �D*Z x , y y* � x* � � x*, �y* � N x , y ,Ž . Ž .Ž . Ž .� 4Gph Z
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where the argument y is omitted if Z is single-valued. For single-valued,
Ž . k llocally Lipschitzian mappings g � g , . . . , g : � � � , the basic relation1 l

between a coderivative and subdifferential of its components is
�lŽ .Ž . Ž .Ž .D*g x y* � � Ý y g x . For a detailed treatment of the objectsi�1 i i

� 	 � 	 � 	mentioned here, see 9 , 2 , and 7 .
For technical reasons, we use the concept of semismooth functions

� 	introduced by Mifflin in 4 .
k kDEFINITION 2.1. A function 
 : � � � is called semismooth at x � �

if it is locally Lipschitz at x and the following property holds true: For
�k c Ž .each d � � and for any sequences t �0, d � d, x � � 
 x 
 t d ,n n n n n

² � :the limit lim x , d exists.n�� n

� 	The following statement was shown in 4, Lemma 2 .
k kLEMMA 2.2. If 
 : � � � is semismooth at x � � , then the directional

�kŽ . ² :deri�ati�e 
 � x; d exists for all d � � and equals the limit lim x , d ,n�� n
where x� is any of the sequences from Definition 2.1.n

The concept of semismoothness may be carried over to sets via the
Euclidean distance function d e.

kDEFINITION 2.3. A set A � � is called semismooth at x � cl A if for
�1� � Ž .any sequence x � x with x � A and x � x x � x � d it holdsn n n n

² � : � c e Ž .that x , d � 0 for all selections x � � d x .n n A n

k ePROPOSITION 2.4. If A � � is closed and d is semismooth at x � A,A
then A is semismooth at x.

Proof. Let x , x� be arbitrary sequences in Definition 2.3. Takingn n
�1� � Ž .t � x � x and d � t x � x in Definition 2.1, we derive fromn n n n n

e Ž .Lemma 2.2 the existence of the directional derivative d � x; d as well asA

� e �1 e e² :x , d � d � x ; d � lim t d x 
 td� � d xŽ . Ž . Ž .Ž .n A A A
t�0, d��d

�1 e e� lim t d x � d x � 0,Ž . Ž .Ž .n A n A
n��

where the representation of the directional derivative relies on d e beingA
Lipschitz.

3. CHARACTERIZATION OF CALMNESS

We start with the main result of this paper.

THEOREM 3.1. Consider the multifunction M : � m � � p gi�en by

�M y � x � � g x 
 y � � , 3� 4Ž . Ž . Ž .
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where � � � p and � � � m are closed subsets and g : � p � � m is locally
Ž .Lipschitz near some x with 0, x � Gph M. Let the following assumptions

hold:

1. � is regular at x.
2. One of the following two conditions holds true:

� � ma. There is some norm � on � such that the �alue function

Ž . � Ž .�� x � min z � g x is semismooth at x.
z � �

b. � is semismooth at x.
3. The constraint qualification

D*g x y* � �bd N x � �, 4Ž . Ž . Ž . Ž .Ž .� �

Ž Ž .. � 4y*�N g x 
 0�

holds true.

Ž .Then M is calm at 0, x .

Ž .REMARK 3.2. Alternatively, Eq. 4 can be written as

D*g x y* � �bd N x � �Ž . Ž . Ž .� � y* � 0.5y* � N g xŽ .Ž .�

Ž .Proof. Assume by contradiction that M is not calm at 0, x . By
Ž .definition, there exist sequences x � x, x � M y , y � 0, such thatn n n n

Ž Ž .. Ž .d x , M 0 � nd 0, y , where the distance on the right side is generatedn n
� �by � . Hence


d x , M 0 � nd 0, M�1 x . 5Ž . Ž . Ž .Ž . Ž .n n

Ž . Ž Ž ..In particular, x � M y implies that x � �. Clearly, d x , M 0 � 0n n n n
Ž .for all n because of 5 . Further, for the function defined in assumption 2

in Theorem 3.1, we have

� x � d g x , � � d 0, �g x 
 � � d 0, M�1 x � x � � .Ž . Ž . Ž . Ž .Ž . Ž . Ž .
6Ž .

Ž . Ž .We observe that � x � 0, because otherwise x � M 0 , in contrast ton n
the foregoing statement. Consequently, each x is an �-minimizer of then

Ž . � Ž .function � 
 	 with � � � x . Recall that x � M 0 , hence x � �� n
Ž . Ž . 	and inf � 
 	 � � x � 0. Because � 
 	 is a proper lower-semicon-� �

Žtinuous function, the application of Ekeland’s variational principle with �
Ž . Ž ..as earlier and � � n�2 � x yields for each n � � the existence of an
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point x such that˜n

� x 
 	 x � � x 
 	 x 7Ž . Ž . Ž .Ž . Ž .˜ ˜n � n n � n

� �x � x � n�2 � x 8Ž . Ž . Ž .˜n n n

� � �x � arg min � x 
 2�n x � x x � � . 9Ž . Ž . Ž .� 4˜ ˜n n

Ž . Ž . Ž . Ž .Note that 7 implies that � x 
 	 x � � x because x � �, and˜ ˜n � n n n
Ž . Ž .hence 	 x � 0. Consequently, x � �, and the formulation of 9 is˜ ˜� n n

Ž . Ž . Ž . Ž .justified. From 8 , 6 , and 5 , we infer that x � x and � x � 0.˜ ˜n n
Ž . Ž .Indeed, � x � 0 would imply the contradiction to 5 ,˜n

� � �1d x , M 0 � x � x � n�2 � x � n�2 d 0, M x .Ž . Ž . Ž . Ž . Ž .Ž . ˜ Ž .n n n n n

Ž .Applying the necessary optimality conditions to 9 , we deduce that

0 � �� x 
 N x 
 2�n �*.Ž .Ž . Ž .˜ ˜n � n

� Ž . � Ž .Hence there exist sequences u � �� x and � � �N x such that˜ ˜n n n � n
� �� �u � � * � 2�n for all n � �. Because � is Lipschitz near x, then n

� �4 � �4sequence u is bounded. Consequently, because of the last relation, �n n
must be bounded too. By extracting appropriate subsequences, one arrives
at

� �u � u* � �� x and � � u* � �N x 10Ž . Ž . Ž .n� n� �

Ž . Ž .by virtue of the multifunctions �� � and N � having closed graphs.�

Next, we verify the relation

� � 4u* � D*g x y* y* � N g x 
 0 . 11� 4Ž . Ž . Ž . Ž .Ž .�

Ž . � Ž . � Ž . �Toward this aim, denote � x, z � g x � z and A x � z �

� Ž . Ž .4 � Ž . 	 Ž .� � x � � x, z . Because � � � because g x � � , A x � � for

each x � � p. Furthermore, well-known results from parametric optimiza-
Ž � 	.tion e.g., 9, Corollary 7.42 imply that Gph A is closed and A is

uniformly bounded around each x � � p. This, along with the fact that �
� 	is locally Lipschitz, allows to apply Theorem 4.1 in 5 to the function � .

One gets the inclusion

� � p � ��� x � x 
 x � � x � D*Q x , z y* ,� Ž .Ž . Ž .˜ ˜�n 1 2 1 n
m Ž .y*�� , z�A x̃n

x� , y* � �� x , z ,4Ž . Ž .˜2 n
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p m Ž .where Q : � � � denotes the constant multifunction Q x � � � x �
p p Ž . � 4 Ž .� . Clearly Gph Q � � � �, N x , z � 0 � N z , and the defi-˜Gph Q n �

nition of the coderivative implies that

0 if y* � �N zŽ .�D*Q x , z y* � .Ž .Ž .˜n ½ � else

Consequently,

p ��� x � x* � � x*, y* � �� x , z . 12� 4Ž . Ž .Ž . Ž .˜ ˜�n n
Ž . Ž .y*��N z , z�A x̃� n

Ž . Ž . � �Putting f x, z � g x � z, we have that � � � � f , and the chain rule

� 	for Lipschitz mappings in 7, Corollary 5.8 yields that

² :�� x , z � � s, f x , z . 13Ž .Ž . Ž .˜ ˜�n n
� � Ž Ž . .s�� � g x �z˜
 n

² :Ž . T Ž . T � 	Because s, f x, z � s g x � s z, the sum rule in 7, Corollary 4.6
provides that

² : ² : � 4 � 4 � 4� s, f x , z � � s, g x � 0 
 0 � �sŽ . Ž .˜ ˜n n

² : � 4� � s, g x � �s .Ž .˜n

Ž . Ž .Furthermore, because � x � 0 implies that f x , z � 0 for all z �˜ ˜n n
Ž .A x , we derive from convex analysis that˜n

� � �² :� � g x � z � s � �* s, g x � z � g x � z� 4Ž . Ž . Ž .˜ ˜ ˜Ž .
 n n n 


z � A x ,Ž .˜Ž .n

where �* denotes the unit sphere in � m equipped with the dual norm of
� � Ž .� . Combining the previous relations with 13 gives


�� 4�� x , z � D*g x s � �s s � �* z � A x ,� 4Ž .Ž . Ž . Ž .˜ ˜ ˜Ž .n n n

Ž .Ž . ² :Ž .where we used the relation D*g x s � � s, g x which is valid for˜ ˜n n
Ž � 	Lipschitzian mappings cf. 7, Proposition 4.6 . Inserting the last inclusion

Ž .into 12 gives

��� x � D*g x s s � �* � N z ,� 4Ž . Ž .Ž . Ž .˜ ˜�n n �

Ž .z�A x̃n
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which holds for all n � �, because n was arbitrarily fixed. Therefore,
� Ž .along with the sequence u defined in 10 , we have sequences s and zn� n� n�

such that

u� � D*g x s , s � �* � N z , and z � A x .Ž . Ž .Ž . Ž .˜ ˜n� n� n� n� � n� n� n�

Because x � x and A is uniformly bounded around x, we may extract˜n�
� �� 4 � 4subsequences s and z such that s � s � �* and z � z. Byn n n� n�

Ž . Ž . � Ž .4closedness of Gph A see remark above , it follows that z � A x � g x ,
�Ž . Ž . Ž Ž ..because g x � �. Furthermore, u , �s � N x , g x accord-˜n� n� Gph g n� n�

ing to the definition of the coderivative. Because the graph of the normal
Ž Ž .. Ž .cone mapping, N , is closed, we infer that s � N g x and, by 10 ,Gph g �

� �u , �s � u , �s � N x , g x .Ž . Ž . Ž .Ž .n� n� Gph g

Ž .Ž . Ž Ž ..Consequently, u* � D*g x s with s � �* � N g x , which eventually�

Ž .implies 11 .
Ž . Ž . Ž . � � Ž . Ž . Ž . �Now 5 , 6 , and 8 yield x � x � n� x � n�2 � x � x �˜n n n n

� Ž . Ž .x . Taking into account the already obtained relations � x � 0 	 � x̃n n
Ž . � Ž .	� � x see 7 , we arrive atn

� x � � x � x 2Ž . Ž .Ž .˜n n
0 	 � � . 14Ž .

� � � � � � nx � x x � x � x � x˜ ˜n n n n

� � Ž .	From the sequence x corresponding to u in 10 , we extract a˜n� n�

Ž .subsequence x recall that x � x such that˜ ˜n* n�

x � x˜n* p � �lim � h for some h � � , with h � 1. 15Ž .
� �n*�� x � x˜n*

cŽ . Ž .Clearly, h � K x � T x by assumption 1 in Theorem 3.1. Because� �
� Ž . � Ž . � Ž .	u � �� x and � � �N x see the derivation on top of 10 , the˜ ˜n* n* n* � n*

trivial representation

x � x 
 � h ,˜n* n* n*

x � x˜n*
� �with � � x � x �0 and h � � h ,˜n* n* n* � �x � x˜n*

� �Ž . Ž .provides that u � �� x 
 � h and � � �N x 
 � h . Undern* n* n* n* � n* n*
assumption 2a in Theorem 3.1, Lemma 2.2 gives

�² : ² :u*, h � lim u , h � � � x ; h . 16Ž . Ž .n*
n*��
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Ž .With � being locally Lipschitz and using 14 , we can write its directional
derivative as

� x 
 th� � � xŽ . Ž .
� � x ; h � limŽ .

tt�0, h��h

� x 
 � h � � xŽ .Ž .n* n*� lim � 0, 17Ž .
�n*�� n*

² :whence u*, h � 0. We verify the same relation under assumption 2b; it
Ž .is evident in the case where u* � 0, so let u* � 0. From 10 , it follows

that �� � 0 for n* large enough. Next, we refer to the identityn*

N x � � � � d e x 18Ž .Ž . Ž .˜ ˜� n* 2 � n*

Ž � 	. � � � � �see Ex. 8.53 in 9 . Consequently, with � � �� � � , we obtain˜ 2n* n* n*
� e Ž . c e Ž .� � � d x � � d x . Assumption 2b then yields˜ ˜ ˜n* � n* � n*

� ��1² : ² � :u* u*, h � � lim � , h � 0,ñ*
n*��

² :whence again u*, h � 0.
² :Using that u*, h � 0 under either assumption 2a or 2b, we get for

c² : Ž .arbitrarily small � � 0 that u* � � h, h � �� 	 0. Because h � T x ,�
c cŽ . Ž .this implies that u* � � h � �N x . On the other hand, u* � �N x ,� �

c cŽ . Ž Ž .. Ž .according to 10 . Consequently, u* � bd �N x � �bd N x �� �

Ž . Ž .�bd N x by the regularity assumption 1, which together with 11�

Ž .provides a contradiction to 4 .

Note that as a result of the regularity assumption 1, we may replace N c
�

Ž .by N in the constraint qualification 4 . The obtained result may be�

illustrated in one dimension as follows.

Ž .EXAMPLE 3.3. In Theorem 3.1, let � � � , g x � x and � � � .� 

Ž .Then the multifunction M in 3 is easily verified to be calm at the point

Ž . Ž .0, 0 of its graph. Clearly, assumptions 1 and 2 actually both, 2a and 2b
Ž .are satisfied. Furthermore, the constraint qualification 4 reduces to the

Ž .Ž . cŽ .Ž � 4.condition �g 0 � 1 � �bd N 0 � 0 , which is certainly satisfied. On�

Ž . Ž .Ž cŽ . .the other hand, we have �g 0 � �N 0 � �N 0 � � , so that the� � 

Ž .criterion 2 , designed for the stronger Aubin property, does not apply.

The following example illustrates that the regularity of � in assumption
1 and Corollary 4.1 cannot be dispensed with in general, so the constraint

Ž .qualification 4 is not sufficient for calmness in case of arbitrary closed
sets �.
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Ž .EXAMPLE 3.4. In the context of Theorem 3.1, define � � � , g x ��
2 � �1�2 � 4 � 4x , and � � n n � � � 0 . Then � is closed but is not regular at

Ž . � 4 Ž .x � 0. Obviously, M 0 � 0 ; hence 0, x � Gph M. Furthermore, as-
sumption 2a is satisfied, because

� x � min z � g x � max g x , 0� 4Ž . Ž . Ž .
z�0

�is semismooth as the maximum of two semismooth functions 4, Theorem
c c	 Ž . � 4 Ž .5 . Finally, we can easily verify that T x � 0 ; hence N x � �. Conse-� �

cŽ .quently, �bd N x � �, so assumption 3 is trivially fulfilled. On the�
�1�2Ž . Žother hand, M is not calm at 0, x . Take sequences x � n andn

�1 .y � �n for establishing a contradiction to the definition of calmness.n

Recall that regularity and semismoothness of a set � are completely
Ž .independent properties assumptions 1 and 2b .

Ž � �. 2EXAMPLE 3.5. Let � � epi � x � � . Then

e ' 'd x , y � max 0, min x � y � 2 , � x 
 y � 2Ž . Ž . Ž .� 4� 4�

Ž � 	.is semismooth as a min-max composition of semismooth functions cf. 4 .
Invoking Proposition 2.4, we see that � is a semismooth set that clearly

Ž .fails to be regular at 0, 0 . Conversely, define

2 � �1 �2� � x , y � � x � �n , 0 � y � n .� 4Ž .�
n��

cŽ . Ž . Ž .Calculating K 0, 0 � T 0, 0 � � , we verify that � is regular at x, y� � �
Ž . Ž . Ž �1 �2 .� 0, 0 . On the other hand, taking the sequence x , y � �n , n ,n n

Ž .we get x , y � � andn n

�1
x , y � x , y x , y � x , y � d � �1, 0 .Ž . Ž . Ž .Ž . Ž .Ž .n n n n

Ž . c e Ž . ² � :Because 1, 0 � � d x , y , the contradiction z , d � �1 to Defini-� n n n
� Ž . Ž .tion 2.3 follows with z 
 1, 0 . Hence � is not semismooth at x, y .n

In the rest of this section we identify structures of the abstract con-
straint set � that render superfluous all technical assumptions of Theorem

Ž .3.1 such that the constraint qualification 4 becomes the only condition of
calmness for M. First, we indicate a situation where � satisfies assump-
tions 1 and 2b. Toward this aim, let a set A be described by the following
system of inequalities:

k �A � x � � f x � 0, i � 1, . . . , l . 19Ž . Ž .� 4i

Ž .Further, for x � A, let I x denote the standard set of active inequalities,

�� 4I x � i � 1, 2, . . . , l f x � 0 .� 4Ž . Ž .i



SUBDIFFERENTIAL CONDITION FOR CALMNESS OF MULTIFUNCTIONS 121

Ž . kLEMMA 3.6. Let A be gi�en as in 19 , where the f : R � R are continu-i
Ž Ž ..ous. If at some x � A, the f i � I x are locally Lipschitzian, regular, andi

semismooth, and if moreo�er, the constraint qualification

c �0 � conv � f x i � I x 20� 4Ž . Ž . Ž .i

is satisfied, then A is regular and semismooth at x.

Ž .Proof. We may assume that I x � �, because otherwise the assertion
is trivial. Defining

�f x � max f x i � I x ,� 4Ž . Ž . Ž .i

we have that, because of the continuity of the f , the set A is locallyi
Ž . Ž .described around x by the inequality f x � 0, where also f x � 0.

Obviously, f is locally Lipschitzian, regular and semismooth as a maximum
Ž � 	of functions with these properties see Proposition 2.3.12 in 2 for regular-

ity and the beginning of the proof of Corollary 4.1 for semismoothness of
.the maximum of semismooth functions . Consequently, A is regular at x

Ž � 	 .see 2 , Corollary 2, p. 56 . Concerning the semismoothness, consider
�arbitrary x , x , and d as in Definition 2.3, hence x � x, x � A,n n n n�1� � Ž .x � x x � x � d, andn n

x� � � cd e x � N c x � � , 21Ž . Ž . Ž .n A n A n 2

Ž .as a consequence of 18 , where the index ‘‘c’’ can be appended to the
subdifferential and normal cone in view of the regularity of A. Clearly, if
Ž . cŽ . � 4 Ž .f x 	 0, then N x � 0 . Hence if f x 	 0 for all n large enough,n A n n

� ² � :then x � 0 and x , d � 0 trivially implies the condition of semi-n n
Ž .smoothness. Therefore, we may assume that f x � 0 for some subse-nk

quence. In virtue of the mean value theorem for the Clarke subdifferential
Ž � 	. � 	see Theorem 2.3.7 in 2 , there exists a sequence � � 0, 1 such thatnk

�² :0 � f x � f x � z , x � xŽ . Ž .n n nk k k

�1� c c � �z � � f x 
 � x � x � � f x 
 t x � x x � xŽ . Ž .Ž . ž /n n n n n nk k k k k k
22Ž .

� �t � � x � x .n n nk k k

�On noting that t � 0 due to boundedness of � and that x �n n nk k k�1� Ž .x x � x � d, the semismoothness f at x guarantees according tonk
Ž .Lemma 2.2 that the directional derivative f � x; d exists and equals zero:

�1� �² : ² � � :f � x ; d � lim z , d � lim z , x � x x � x � 0. 23Ž . Ž .Ž .n n n nk k k kk k
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Here the second equality relies on f being locally Lipschitzian�which
implies boundedness of the sequence z� �while the last equality is fromnk
Ž . cŽ . c Ž . �22 . On the other hand, it generally holds that N x � � � f x 2,A n ��0 n

	 Ž .Corollary 1 , hence, according to 21 , there exist sequences � � 0 andn
� c Ž . � � Ž .u � � f x such that x � � u . Now our constraint qualification 20 isn n n n n

c Ž . Ž � 	.equivalent to the condition 0 � � f x see Theorem 2.8.2 in 2 . Because
the Clarke subdifferential is convex, it can be strictly separated from 0, and

c cŽ . Ž .the half-space containing � f x will contain all subdifferentials � f xn
for n large enough because of uppersemicontinuity of the subdifferential

� � �mapping. This implies the existence of some c � 0 such that u � c forn
Ž .n large enough. Then from 21 we get the boundedness of � ,n

� � ��1 � � � �1� � u x � c .n n n

Ž �Exploiting the semismoothness of f at x a second time now with t � xn n�1� � � Ž . . Ž .� x and d � x � x x � x � d , we deduce from 16 thatn n n
�² : Ž .u , d � f � x; d � 0 and finally arrive atn

² � : ² � :x , d � � u , d � 0n n n

by virtue of boundedness of the � . Summarizing, A is semismooth at x.n

Consequently, the result of Theorem 3.1 simplifies as follows for com-
mon structures of the abstract constraints.

COROLLARY 3.7. In the setting of Theorem 3.1, let � be con�ex or
described by a finite number of regular and semismooth Lipschitz inequalities

Ž . Ž .as in 19 that satisfy the regularity condition 20 . Then the constraint
Ž . Ž .qualification 4 implies calmness of M at 0, x .

Proof. In both cases, � is a regular and semismooth set. For the
second case, this was shown in Lemma 3.6. For convex �, regularity is
clear, and semismoothness follows from semismoothness of the convex

e � 	distance function d 4, Proposition 3 via Proposition 2.4.�

Another relevant instance of abstract sets � that allow direct applica-
Ž .tion of the criterion 4 without further technical assumptions is given by

� Ž .	unions of smooth inequalities in contrast to intersections as in 19 . At
Ž .the same time, this structure reflects a situation where our criterion 4

Ž .coincides with condition 2 ensuring the Aubin property. Note that in
general, as pointed out by Example 3.3, both conditions differ significantly.

DEFINITION 3.8. We call A � � k a ‘‘disjunctive set’’ if there exists a
continuously differentiable mapping f : � k � � l for some l � � such that

k � � 4A � x � � 
 i � 1, . . . l : f x � 0 andŽ .� 4i

�rank �f x i � J x � �J x � x � A ,� 4Ž . Ž . Ž .i
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Ž . � � 4 � Ž . Ž . 4where J x � i � 1, . . . l f x � min f x � 0 denotes a mod-i j� �1, . . . , l4 j
ified set of active indices.

Similar to conventional sets of active indices, the continuity of f implies
Ž . Ž . Ž .that J x � J x for x close to x x, x � A .

PROPOSITION 3.9. Let A � � k be a disjuncti�e set. Then

N x � � � �f x 24� 4Ž . Ž . Ž .�A 
 i
Ž .i�J x

for all x � A.

Ž .Proof. The assertion is obvious for the cases �J x � 1, because then
Ž . Ž Ž . � 4. Ž . � 4either J x � � hence x � int A and N x � 0 or J x � i* forA

� 4some i* � 1, . . . l . Then, locally around x, the set A is described by the
Ž .single continuously differentiable inequality f x � 0 with, according toi*

Ž . Ž . Ž . Ž .Definition 3.8, �f x � 0; hence N x � � � �f x . Now let �J x � 2i* A 
 i*
� 4 Ž . Ž .and, without loss of generality, assume that 1, 2 � J x ; hence f x �1

Ž . Ž . Ž .f x � 0. Because �f x and �f x are linearly independent according2 1 2
² Ž . :to Definition 3.8, there exists some d with �f x , d � 0 and2

² Ž . :�f x , d � 0. Clearly, for the polar to the contingent cone introduced1
ˆ Ž . Ž . � � Ž . 4in Section 2, it holds that N x � � � �f x because x f x � 0 � A.A 
 1 1

On the other hand, the first of the preceding inequalities ensures that d
� � Ž . 4belongs to the contingent cone of the set x f x � 0 � A at x; hence d2

Ž .belongs to K x . Then, by the second of the preceding inequalities,A
ˆ ˆŽ . Ž . Ž . � 4�f x � N x . Summarizing, we arrive at N x � 0 .1 A A

Now let x � A be close to but different from x. In each of the cases
ˆ ˆŽ . Ž . Ž . Ž . � 4�J x � 0, 1, the cones N x , N x coincide, and we have N x � 0 orA A A

ˆ Ž . Ž . Ž .N x � � � �f x , respectively, for some i* � J x according to theA 
 i*
Ž .foregoing remarks related to x rather than x. If instead �J x � 2, then

ˆ Ž . � 4 ŽN x � 0 again according to the foregoing remarks related to x ratherA
ˆ. Ž .than x . Recalling how N is generated from N see Sec. 2 , thisA A

Ž .altogether yields the inclusion ‘‘� ’’ in 24 . For the reverse inclusion, it
Ž . Ž . Ž .suffices to show that �f x � N x for all i � J x . This, however,i A

follows again from the full rank condition in Definition 3.8, which ensures
Ž .for each i � J x the existence of some sequence x � x such thatn

Ž . Ž . Ž . � 4 Ž . � 4 Žf x � 0 and f x � 0 for j � J x 
 i . Then J x � i and seei n j n n
ˆ ˆ. Ž . Ž . Ž . Ž .above N x � � � �f x , so 0 � �f x � N x . Passing to the limitA 
 i n i n A

Ž . Ž .n � �, we obtain the desired relation �f x � N x by continuous differ-i A
entiability of f.

COROLLARY 3.10. Let A � � k be a disjuncti�e set and k � 1. Then
Ž . Ž .N x � bd N x for all x � A.A A

This corollary confirms the coincidence of Mordukhovich’s criterion and
�Ž . Ž . 	our criterion 2 and 4 , respectively for disjunctive sets �, so there is no
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chance to distinguish algebraically between calmness and Aubin property
Ž � �.in this situation. As a simple example, take x � 0 and � � epi � x ,

Ž . Ž .which is a disjunctive set with f x � x, f x � �x. Then, formally,1 2
Theorem 3.1 cannot be applied because assumption 1 is violated. Never-

Ž . Ž .theless, 4 can be invoked by virtue of its coincidence with 2 according to
Corollary 3.10.

4. APPLICATION TO OPTIMIZATION AND NONLINEAR
COMPLEMENTARITY PROBLEMS

With particular choices of �, we can specialize the results of Section 3
for various constraint mappings arising in applications. The simplest case
corresponds to standard mathematical programs with inequality con-
straints, where � � � m and, consequently,�

� �m �N g x � y* � � y � 0 for i � I x and y � 0 otherwise , 25� 4Ž . Ž . Ž .Ž .� i i

Ž . � � 4 � Ž . 4with I x � i � 1, . . . , m g x � 0 being the set of active indices.i

Ž . mCOROLLARY 4.1. Consider the multifunction M in 3 with � � � at a�
Ž .point 0, x � Gph M. Assume that

1. � is regular at x.
2. One of the following two conditions holds true:

a All components g of g are semismooth at x.i

b � is semismooth at x.
3. The following constraint qualification holds true:

� � g x � �bd N x � � for all � � 0 with � � 1.Ž . Ž .Ž .Ý Ýi i � i i
Ž . Ž .i�I x i�I x

26Ž .

Ž .Then M is calm at 0, x .

� � mProof. Choosing � as the l norm, the specific structure � � �
 � �
considered here provides for � in Theorem 3.1

1 m� x � max g x � max g x , . . . , g x , 0 . 27� 4Ž . Ž . Ž . Ž . Ž .i 

1, . . . , m

Now the last expression is a composition of the semismooth function
� 4max �, . . . , � with a mapping with semismooth components under assump-

� 	tion 2a. Applying Theorem 5 in 4 , we derive the semismoothness of � at
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x. Obviously, it suffices now to check assumption 3 of Theorem 3.1.
Assuming its violation, there would exist some u* with

u* � D*g x �* � �bd N x .Ž . Ž . Ž .Ž .� �

Ž Ž .. � 4� *�N g x 
 0�

Ž . m � 4In particular, according to 25 , there exists some �* � � 
 0 such that

� Ž .� � 0 for i � I x andi

� �u* � D*g x �* � � � g x � � � g x ,Ž . Ž . Ž . Ž .Ý Ýi i i iž /
Ž . Ž .i�I x i�I x

Ž . Ž . Ž .where we used that � � f � �� f for � � 0 and the sum rule � f 
 f1 2
Ž . Ž .� � f 
 � f for locally Lipschitzian functions. Because �* � 0 and1 2

�c �1 cŽ . Ž .�bd N x is a cone, we have c u* � �bd N x for c � Ý � � 0� � i� IŽ x . i
as well as

��1 �1c u* � c � g x .Ž .Ž .Ý i i
Ž .i�I x

This contradicts assumption 3 of Corollary 4.1, and hence assumption 3 of
Theorem 3.1 has to be satisfied.

Clearly, the technical assumptions 1 and 2 of Corollary 4.1 can be
circumvented in special situations in the same way as described in Section

Ž .3 with respect to Theorem 3.1. Hence, constraint qualification 26 is
automatically sufficient for calmness of M in the following cases:

� � is convex or described by a finite number of regular and semi-
Ž . Ž .smooth inequalities as in 19 that satisfy the regularity condition 20 .

� � is a disjunctive set as in Definition 3.8.
� � is a regular set and g is convex or continuously differentiable or

a maximum or minimum over a continuously and compactly indexed family
Žof continuously differentiable functions in all of which cases g becomes

� 	.semismooth; see 4 .

Ž .In the completely regular case � and g regular , the constraint qualifica-
Ž .tion 26 can be weakened by passing to the boundary a second time. Note

that no semismoothness assumption is required here.

Ž . mTHEOREM 4.2. Consider the multifunction M in 3 with � � � at a�
Ž .point 0, x � Gph M. Assume that

1. � is regular at x.
2. All components g are regular at x.i
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3. The following constraint qualification holds true:

�bd � � g x � � 0 i � I x , � � 1 � �bd N xŽ . Ž . Ž .Ž . Ž .Ý Ýi i i i �½ 5ž /
Ž . Ž .i�I x i�I x

� �.

Ž .Then M is calm at 0, x .

Ž .Proof. We define � as in 27 and introduce the function

� x � max g1 x , . . . , g m x ,� 4Ž . Ž . Ž .

Ž .which is regular according to assumption 2 of Theorem 4.2. If � x 	 0
� Ž . 	 Ž .i.e., g x � int � , then the continuity of g entails calmness of M at 0, x

Ž . Ž .in a trivial way. Hence let � x � � x � 0. Then, because of the regular-
Ž � 	 .ity in assumption 2, we have see 2 , Theorem 2.8.2 .

c �� � x � � � g x � � 0 i � I x , � � 1 . 28Ž . Ž . Ž . Ž .Ž .Ý Ýi i i i½ 5
Ž . Ž .i�I x i�I x

Ž .Suppose now that M fails to be calm at 0, x . Repeating the proof of
Ž . � � Ž .Theorem 3.1 until 10 , one gets sequences x , u such that u � �� x ,˜ ˜n n n n

Ž . � Ž .� x � 0, and u � u* omitting indices of subsequences . By definition,˜n n
Ž .� x � 0 implies that � and � coincide in a neighborhood of x .˜ ˜n n

Ž . Ž . c Ž . ŽConsequently, �� x � �� x � � � x , and we arrive at by upper˜ ˜ ˜n n n
.semicontinuity of Clarke’s subdifferential

cu* � � � x . 29Ž . Ž .

Ž . Ž .The second relation in 10 may also be written as due to regularity of �

cu* � �N x . 30Ž . Ž .�

Ž .Finally, 14 may be rewritten in terms of � as

� x � � x 2Ž .Ž .˜n
0 	 	 .

� � nx � x˜n

Ž .Similar to 17 , this entails that

�� x ; h � 0 for h given by 15 . 31Ž . Ž . Ž .

Note that for all these relations derived from the proof of Theorem 3.1, no
Ž . Ž . ² :semismoothness arguments were used. Now 30 and 31 give u*, h � 0.
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On the other hand, with � being regular, its directional derivative coin-
cides with its generalized directional derivative in the sense of Clarke and
hence can be represented as

c² : ��� x ; h � max u*�, h u*� � � � x . 32� 4Ž . Ž . Ž .

Ž . Ž . ² : ² :Then 29 and 31 provide that u*, h � 0, whence u*, h � 0. Combin-
cŽ . Ž .ing this last relation with 30 , it follows that u* � �bd N x with the�

same argumentation as in the last paragraph of the proof of Theorem 3.1.
Ž .Finally, the orthogonality of u* and h along with 32 also entail that

c² : �u* � argmax u*�, h u*� � � � x .� 4Ž .

² :Because the linear function h, � necessarily attains its maximum on
c Ž .� � x at a boundary point, it results that

c cu* � bd � � x � �bd N xŽ . Ž .�

Ž .which, in view of 28 , is a contradiction to assumption 3 of Theorem 4.2.

Ž . ŽIn the trivial case of a single inequality g x � 0 without abstract
.constraints , the constraint qualification in Theorem 4.2 turns into the

Ž .condition 0 � bd � g x . Of course, in the smooth case with a single
Ž .inequality, this amounts to the condition �g x � 0, which is sufficient

even for the stronger Aubin property of the constraint set mapping. A
Ž . Žsubstantial gain over the criterion 0 � � g x sufficient for the Aubin

. Žproperty therefore occurs either in a nonsmooth setting as, for instance,
.in the simple convex example discussed in Section 1 , or in a smooth

setting with several inequalities. To illustrate it, consider the situation,
where � � � n. Then the constraint qualification from Theorem 4.2 attains
the form

�0 � bd conv �g x i � I x , 33� 4Ž . Ž . Ž .Ž .i

whereas the classical Mangasarian�Fromovitz constraint qualification,
written in ‘‘dual’’ form, reads

�0 � conv �g x i � I x . 34� 4Ž . Ž . Ž .i

Ž . Ž .Note that 33 is much weaker than 34 and yet ensures calmness of the
constraint mapping, hence guarantees existence of Lagrange multipliers
for local minima.

Combining the last remarks with those following Corollary 3.10 and with
Example 3.3, we have identified several significant circumstances�inde-
pendently for the set � and for the function g�under which the criteria
Ž . Ž .4 and 2 differ or coincide.



HENRION AND OUTRATA128

We now give an example that highlights the necessity of the additional
regularity assumption on g in Theorem 4.2:

EXAMPLE 4.3. In the context of Theorem 4.2, let m � 2 and define
2Ž . Ž . � � Ž . � 4 Ž .g x � x , g x � � x , � � �, x � 0. Then M 0 � 0 ; hence 0, x1 2

� Gph M. Obviously, assumption 1 is satisfied. Furthermore, we have

�bd � � g x � � 0 i � I x , � � 1 � �bd N xŽ . Ž . Ž .Ž . Ž .Ý Ýi i i i �½ 5ž /
Ž . Ž .i�I x i�I x

�� 4 � 4 � 4� bd � � 0 
 � � �1, 1 � , � � 0, � 
 � � 1 � �bd 0� 4 Ž .Ž .1 2 1 2 1 2

� 	 � 4� bd �1, 1 � 0 � �.Ž .

This entails assumption 3. Hence, all assumptions of Theorem 4.2 with the
exception of the regularity of g are satisfied. Now, with the sequences2

�1 Ž �2 .x � n and y � �n , 0 , it is easily checked that M fails to be calmn n
at x. On the other hand, the weaker result of Corollary 4.1 still applies in

Ž .the sense that 26 is violated.

Consider now a situation associated with a parametric nonlinear com-
Ž . k nplementarity problem NCP . For a given p � � , find x � � such that


² :f p , x � 0, x , f p , x � 0, p , x � � , 35Ž . Ž . Ž . Ž .

where f : � k � � n � � n is assumed to be continuously differentiable and
k n Ž . Ž Ž ..� � � � � is closed. Putting b p, x � x, �f p, x , the nonabstract
Ž . Ž . npart of 35 can be equivalently written in the form b p, x � Gph N , in�


which case N reduces to the classical normal cone of convex analysis. We
define a multifunction M : �2 n � � k � � n by

� nM y � p , x � � b p , x 
 y � Gph N .Ž . Ž . Ž .� 4�


Ž .THEOREM 4.4. Let 0, p, x � Gph M and assume that

Ž .1. � is closed and regular at p, x .
2. The constraint qualification

T T c �� � f p , x z , w � � f p , x z � �bd N p , xŽ . Ž . Ž .ž /p x � ��for some w , z � N x , �f p , xŽ . Ž .Ž .Gph N n� 


� w � 0, z � 0

is satisfied.
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Ž .Then M is calm at 0, p, x .

Proof. Our aim is to apply Theorem 3.1 with

m � 2n , p � k 
 n , g � b , � � Gph N n .�


Endowing the space � n � � n with the norm

n
2i i� � � �� , � � max � , � ,Ž . � 4Ž .Ý1 2 1 2
 (

i�1

� 	 Žthe following point-to-set distance has been calculated in 8 Proposition
.5.1 :

ndist 0, �b p , x 
 Gph N � min x , F p , x ,� 4Ž . Ž .Ž . 2�


where the minimum must be understood componentwise. But the left side
Ž .is exactly the value function � of assumption 2 a in Theorem 3.1. Because

Ž . Ž � � .concave functions like ‘‘min’’ and convex functions like � are semi-2

smooth, � itself is semismooth as a composition.
Finally, observing that

T
0 � � f p , xŽ .p wD*b p , x w , z � ,Ž .Ž . Ž

T zI � � f p , xŽ .n x

we verify that assumption 2 of Theorem 4.4 entails assumption 3 of
Ž .Theorem 3.1. Summarizing, assumptions 1, 2 a , and 3 of Theorem 3.1 are

satisfied.

5. CONCLUSION

In a number of perturbed equilibrium problems, including the foregoing
NCP, the map M attains the form

�M y � p , x � � b p , x 
 y � Gph Q , 36� 4Ž . Ž . Ž . Ž .

where b : � k � � n � �2 n is continuously differentiable and Q : � n � �2 n

is a multifunction with the closed graph. In this situation the presented
theory can be applied, provided that we endow �2 n with a suitable norm
� �� such that the value function


� p , x � min z � b p , xŽ . Ž . 

z�Gph Q
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satisfies the requirements of Theorem 3.1. The choice of this norm
Ž .depends naturally on the structure of the possibly complicated nonconvex

set Gph Q.
Consider now the optimization problem

minimize � x subject to x � M 0 � � , 37Ž . Ž . Ž .

where � : � n � � is a Lipschitzian objective, and assume that x is its localˆ
� 	solution. By virtue of 10 and Lemma 3.1, under the assumptions of

Theorem 3.1 there exists a real R � 0 and neighborhood UU of x such thatˆ
x solves the penalized problemˆ

minimize � x 
 R� x subject to x � � � UU . 38Ž . Ž . Ž .

Function � thus can be used as a penalty for the numerical solution of
Ž . Ž .37 . Moreover, on the basis of 38 , we can derive necessary optimality

Ž .conditions for 37 .
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