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1. Introduction

Consider an inequality system

f (x, u) ≤ 0, (1)

where f is a given extended real-valued function. It is a familiar consideration in math-
ematics to seek to solve this inequality for x , while viewing u as a parameter. Typically
this is done in a neighborhood of a given point (x̄, ū) for which (1) is satisfied, and the
important issues are these: For a given u near ū, does there continue to be at least one
value of x for which (1) holds? How does this set S(u) of solutions vary with u?

One outcome is to consider the following metric inequalities in some neighborhood
of (x̄, ū):

d(x, S(u)) ≤ a max(0, f (x, u))

for some constant a > 0. These inequalities are called error bounds for system (1).
Error bounds of constraint systems on compact sets are closely related to the concept

of metric regularity: A set-valued mapping S: U ⇒ X with (ū, x̄) ∈ gph S is said to be
metrically regular at ū for x̄ if there exists a constant κ > 0 such that

d(u, S−1(x)) ≤ κd(x, S(u))

for all (u, x) in some neighborhood of (ū, x̄). The infimum of κ for which the above
inequality holds is the modulus of metric regularity and is denoted by reg S(ū | x̄). Prob-
ably, the first regularity result goes back to Graves (see [7]), stating that a continuously
differentiable mapping S between Banach spaces, having a surjective differential DS(ū)
at ū, is metrically regular at (ū, S(ū)). For recent surveys on metric regularity, see [5],
[6], [10] and [30].

The primary objective of this paper is to develop sufficient conditions for error
bounds and to give applications of the results obtained to optimization problems and sen-
sitivity analysis as well as controllability in control problems of nonconvex unbounded
differential inclusions. There are several conditions ensuring these error bounds. These
conditions are in general expressed in terms of subdifferentials or axiomatic subdiffer-
entials (see [16], [2], [3], [19]–[23], [32], [12], [29] and references therein). Some of
these subdifferentials depend on the data space. For example, Fréchet subdifferentials
and limiting Fréchet subdifferentials characterize Asplund spaces (see [27] and [28]).
Sufficient conditions given before in terms of these two subdifferentials are formulated
only in Asplund spaces.

Our aim here is to give sufficient conditions in general Banach spaces for error
bounds in terms of Fréchet and limiting Fréchet subdifferentials which are the smallest
ones among all subdifferentials or axiomatic subdifferentials. This allows us to obtain
sufficient conditions for general systems in terms of the approximate subdifferential by
Ioffe [8], [9].

The rest of the paper is organized as follows. Section 2 contains basic definitions.
Section 3 is devoted to the study of local and global error bounds related to system (1)
and to the system

x ∈ C and g(x, u) ∈ D,

where g takes values in a finite-dimensional space. The conditions presented in this
section are given only in terms of Fréchet and limiting Fréchet subdifferentials. Based



Sufficient Conditions for Error Bounds and Applications 163

on the results in Section 3, we develop in Section 4 sufficient conditions in terms of the
approximate subdifferentials for error bounds for systems of the form

(x, y) ∈ C × D and g(x, y, u) = 0,

where g takes values in an infinite-dimensional space. This symmetric structure offers us
the choice of imposing conditions either on C or D to get error bounds for this system.
As a particular case of these systems we consider systems of the form

x ∈ C, g(x) ∈ D,

since they can be transformed into the form (x, y) ∈ C × D, g(x)− y = 0, where g
takes values in a Banach space. In Section 5 we give some applications of our results.
We prove the nonemptiness and weak-star compactness of Fritz–John and Karush–
Kuhn–Tucker multiplier sets, establish the Lipschitz continuity of the value function and
compute its subdifferential and finally obtain results on local controllability in control
problems of nonconvex unbounded differential inclusions.

2. Notation and Preliminaries

In order to make the paper as short as possible, some definitions and the complete wording
of the results are not repeated here, and the reader is referred to [24]–[26], [8] and [9]
if required. Throughout we assume that X , Y and Z are Banach spaces endowed with
some norm denoted by ‖ · ‖ to which we associate the distance function d(·,C) to a set
C . We also assume that (U, d) is a metric space. B(x, r) refers to the ball centered at x
and of radius r .

We write x
f→x0, and x

S→x0 to express x → x0 with f (x) → f (x0) and x → x0

with x ∈ S, respectively.
Let f be an extended real-valued function on X × U . The partial limiting Fréchet

subdifferential of f at (x0, u0) in x with respect to u is the set

∂F
x f (x0, u0) = w∗-seq- lim sup

(x,u)
f→(x0 ,u0)

ε→0+

∂εx f (x, u),

where

∂εx f (x, u) =
{

x∗ ∈ X∗ : lim inf
h→0

f (x + h, u)− f (x, u)− 〈x∗, h〉
‖h‖ ≥ −ε

}

is the partial ε-Fréchet subdifferential of f at (x, u). When f depend only on x we
denote it by ∂F f (x).

The limiting Fréchet normal cone to a closed set S ⊂ X at a point x ∈ S is given by

NF(S, x) = ∂FδS(x),

where δS denotes the indicator function of S. The basic theory of the Fréchet and limiting
Fréchet subdifferentials, with fairly comprehensive references and remarks, is developed
in the paper by Mordukhovich and Shao, see [28].

If f is an extended real-valued function on X, we write for any subset S of X ,

fS(x) =
{

f (x) if x ∈ S,
+∞ otherwise.
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The function

d− f (x, h) = lim inf
u→h
t↓0

t−1( f (x + tu)− f (x))

is the lower Dini directional derivative of f at x and the Dini ε-subdifferential of f at x
is the set

∂−ε f (x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d− f (x; h)+ ε‖h‖,∀h ∈ X}
for x ∈ Dom f and ∂−ε f (x) = ∅ if x /∈ Dom f, where Dom f denotes the effective
domain of f. For ε = 0 we write ∂− f (x).

By F(X) we denote the collection of finite-dimensional subspaces of X. The ap-
proximate subdifferentials of f at x0 ∈ Dom f is defined by the following expressions
(see [8] and [9]):

∂A f (x0) =
⋂

L∈F(X)
lim sup

x
f→x0

∂− fx+L(x) =
⋂

L∈F(X)
lim sup

x
f→xo
ε↓0

∂−ε fx+L(x),

where

lim sup
x

f→x0

∂− fx+L(x) = {x∗ ∈ X∗ : x∗ = w∗-lim x∗i , x∗i ∈ ∂− fxi+L(xi ), xi
f→x0},

that is, the set of w∗-limits of all such nets.
The G-normal cone to a closed set C ⊂ X at x0 is defined by

NG(C, x0) = R+ ∂Ad(C, x0).

The limiting Fréchet and approximate subdifferentials are both infinite-dimensional
extensions of the nonconvex subdifferential introduced in [24].

Using the remark following Proposition 1.6 and Proposition 2.4 in [14] we obtain
the following result.

Proposition 1. Let v: X �→ R be a function which is locally Lipschitzian at x̄ with
Lipschitz constant kv . Then the following are equivalent:

(i) x∗ ∈ ∂Av(x̄).
(ii) (x∗,−1) ∈ NG(graph v; (x̄, v(x̄))).

(iii) (x∗,−1) ∈ (kv + 1)∂Ad(graph v; (x̄, v(x̄))).
(iv) For all L ∈ F(X) there are nets x∗i → x∗, xi → x̄ , εi → 0+ and ri → 0+

such that

‖x∗i ‖ ≤ (kv + 1)(1+ εi ),

v(x)− v(xi )− 〈x∗i , x − xi 〉 + εi‖x − xi‖≥0, ∀x ∈ B(xi , ri ) ∩ (L + xi ).

Finally we recall that the mapping g: X ×U �→ Y is of class C1 at (x̄, ū) in x with
respect to u if g and its partial derivative Dx g(x, u) are continuous at (x̄, ū).
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3. Error Bounds Using Fréchet Subdifferentials

It is well known that some Banach spaces may be characterized in terms of some sub-
differentials. For example the Dini subdifferential characterizes the Weak Trustworthy
spaces. The ε-Fréchet (and limiting Fréchet) subdifferential gives a characterization of
Asplund spaces. To give sufficient conditions for error bounds for systems in terms of
the limiting Fréchet subdifferential, the previous works assume that the space is Asplund
(see the papers by Mordukhovich and Shao [27], [28]). Our aim here is to obtain these
results in general Banach spaces.

Here we consider the following systems:

f (x, u) ≤ 0 (S1)

and

x ∈ C and g(x, u) ∈ D, (S2)

where f : X ×U �→ R∪{+∞} is a lower semicontinuous function, C and D are closed
sets in X and Rm , and g: X × U �→ R

m is a mapping. Here Rm is endowed with the
euclidean norm which will also be denoted by ‖ · ‖.

The corresponding parametric solution set is defined by the multivalued mapping

S1(u) = {x ∈ X : f (x, u) ≤ 0}
and

S2(u) = {x ∈ C : g(x, u) ∈ D}.
We begin with system (S1) for which we give a sufficient condition ensuring a local

error bound. We set

Bf ((x, u), r) := {(x ′, u′) ∈ B(x, r)× B(u, r) : | f (x ′, u′)− f (x, u)| ≤ r}.

Theorem 2. Suppose f (x̄, ū) = 0 and there exists r > 0 such that

∀(x, u) ∈ Bf ((x̄, ū), r), x /∈ S1(u), ∀ε ∈ ]0, r [, 0 /∈ ∂εx f (x, u).

Then there exist constants a > 0, b > 0 and s > 0 such that

d(x, S1(u)) ≤ ad( f (x, u),R−)

for all x ∈ B(x̄, s), u ∈ B(ū, s), with f (x, u) ≤ b.

Proof. Suppose the contrary. Then there exist sequences xn → x̄ and un → ū such
that

d(xn, S1(un)) > nd( f (xn, un),R−) and f (xn, un) ≤ 1

n
. (2)
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Note that xn /∈ S1(un) or equivalently f (xn, un) > 0. Set ε2
n = f (xn, un), λn =

min(nε2
n, εn) and sn = ε2

n/λn. It is easy to see that εn, λn, sn → 0+. Consider the
function h(x) = d( f (x, un),R−). Then

h(xn) ≤ inf
x∈X

h(x)+ ε2
n.

By the lower semicontinuity of h, Ekeland’s variational principle ensures the existence
of x ′n ∈ X satisfying

‖x ′n − xn‖ ≤ λn, (3)

h(x ′n) ≤ h(x)+ sn‖x ′n − x‖, ∀x ∈ X. (4)

Note that by (2) and the definition of λn we have d(xn, S1(un)) > λn and then by (3) we
obtain x ′n /∈ S1(un). Since f is lower semicontinous, h(x) coincides with f (x, un) in a
neighborhood of x ′n (V(x ′n)) and hence by (4) we get for some subsequence (x ′m(n)) that

f (x ′m(n), um(n)) ≤ f (x, um(n))+ sm(n)‖x ′m(n) − x‖, ∀x ∈ V(x ′n),

and then f (x ′m(n), um(n))→ f (x̄, ū) and

0 ∈ ∂sm(n)
x f (x ′m(n), um(n))

and this contradicts our assumption.

Remark 3. In the paper by Lewis and Pang [17], they gave conditions for the existence
of a global error bound for a convex inequality system and established a necessary and
sufficient condition for a closed convex set defined by a closed proper function to possess
a global error bound in terms of a natural residual.

We have the following corollary of Theorem 2.

Corollary 4. Suppose that f (x̄, ū) = 0 and that

0 /∈ ∂F
x f (x̄, ū).

Then the conclusion of Theorem 2 holds.

As the limiting Fréchet subdifferential is always included in Clarke’s one our result
implies all those expressed in terms of Clarke’s subdifferential. Take for example the
real-valued function f defined on R3 by f (x, y, u) = |x | − |y|. Then

S(u) = {(x, y) ∈ R2 : |x | ≤ |y|}
and at the point (0, 0) we have 0 /∈ ∂F

(x,y) f (0, 0, 0) while 0 is in Clarke’s subdifferential
of f at (0, 0).
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We continue with system (S1) in which we assume that f (x, u) = f (x). We give a
condition for which a global error bound holds. The proof is similar to the previous one.

Theorem 5. Suppose that the solution set S1 of system (S1) is nonempty and there
exists r > 0 such that

∀x /∈ S1, ∀ε ∈ ]0, r [, 0 /∈ ∂ε f (x). (5)

Then there exists a constant a > 0 such that

d(x, S1) ≤ ad( f (x),R−), ∀x ∈ X.

Remark 6. In the case where f is convex, the relation (5) always implies

∀x /∈ S1, 0 /∈ ∂ f (x). (6)

However, the converse does not hold. To see this, it is enough to consider the function

f (x) =



x2 if x > 0,
0 if − 1 ≤ x ≤ 0,
(x + 1)2 if x < −1.

This example also shows that (6) is not sufficient to get an error bound, even when we
have S1 compact.

Now we pass to system (S2). The following result is a consequence of Theorem 2.

Theorem 7. Suppose that:

(i) (x̄, ū) is a solution of system (S2).
(ii) g is of class C1 at (x̄, ū) in x with respect to u ,i.e. g and its partial derivative

Dx g(x, u) are continuous at (x̄, ū).

Then (β) �⇒ (α), where

(α) there exists a > 0 and r > 0 such that

d(x, S2(u)) ≤ ad(g(x, u), D)

for all x ∈ C ∩ B(x̄, r) and all u ∈ B(ū, r); and
(β) there is no y∗ ∈ NF(D, g(x̄, ū)), y∗ �= 0, satisfying 0 ∈ y∗ ◦ Dx g(x̄, ū) +

NF(C, x̄).

Proof. Consider the function f : X ×U �→ R ∪ {+∞} defined by

f (x, u) =
{

d(g(x, u), D) if x ∈ C,
+∞ otherwise.

Then

S2(u) = {x ∈ X : f (x, u) ≤ 0}.
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With these definitions and taking into account the continuity of g in both variables x and
u, assertion (α) is equivalent to the conclusion of Theorem 2. Suppose that (α) is false.
Then, by Theorem 2, there are sequences xn → x̄ , with xn ∈ C , un → ū and εn → 0+

such that

xn /∈ S2(un) and 0 ∈ ∂εn
x f (xn, un). (7)

So there exists rn → 0+ such that

f (xn, un) ≤ f (x, un)+ 2εn‖xn − x‖, ∀x ∈ B(xn, rn),

or equivalently

d(g(xn, un), D) ≤ d(g(x, un), D)+ 2εn‖xn − x‖, ∀x ∈ B(xn, rn) ∩ C. (8)

Let dn ∈ D such that

d(g(xn, un), D) = ‖g(xn, un)− dn‖.

Then dn → g(x̄, ū) and by (8) we obtain

‖g(xn, un)− dn‖ ≤ ‖g(x, un)− dn‖ + 2εn‖x − xn‖, ∀x ∈ B(xn, rn) ∩ C,

and

‖g(xn, un)− dn‖ ≤ ‖g(xn, un)− y‖, ∀y ∈ D.

Set y∗n = (g(xn, un) − dn)/‖g(xn, un)− dn‖. Using the euclidean structure of Rm and
the fact that g is of class C1 at (x̄, ū) in x with respect to u we get a sequence sn → 0+

such that

−y∗n ◦ Dx g(xn, un) ∈ N sn
F (C, xn)

and

y∗n ∈ N sn
F (D, dn).

Extracting a subsequence if necessary we may assume that y∗n → y∗, with ‖y∗‖ = 1
(because the space has a finite dimension). Thus there exists y∗ ∈ NF(D, g(x̄, ū)),
y∗ �= 0, such that 0 ∈ y∗ ◦ Dx g(x̄, ū) + NF(C, x̄). However, this inclusion contradicts
assertion (β).

4. Error Bounds Using Approximate Subdifferentials

In this section we consider parametrized systems of the form

(x, y) ∈ C × D and g(x, y, u) = 0, (S3)
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where C and D are closed sets in X and Y and g: X × Y × U �→ Z is a mapping.
Our system may be nonlinear with respect to the perturbation u. Let S3(u) be the set of
solutions to system (S3). Before stating the following theorem, we recall the following
notion by Borwein and Strojwas [1]. A set S ⊂ X is said to be compactly epi-Lipschitzian
at x0 ∈ S if there exist γ > 0 and a norm compact set H ⊂ X such that

S ∩ B(x0, γ )+ B(0, tγ ) ⊂ S − t H for all t ∈ ]0, γ [.

Theorem 8. Suppose that:

(i) (x̄, ȳ, ū) is a solution of system (S3).
(ii) g is of class C1 at (x̄, ȳ, ū) in x with respect to (y, u) with surjective partial

derivative Dx g(x̄, ȳ, ū).
(iii) g is of class C1 at (x̄, ȳ, ū) in y with respect to (x, u) with partial derivative

Dy g(x̄, ȳ, ū).
(iv) C is compactly epi-Lipschitzian at x̄ .

Then (β) �⇒ (α), where

(α) there exist a > 0 and r > 0 such that

d((x, y), S3(u)) ≤ a‖g(x, y, u)‖
for all x ∈ C ∩ B(x̄, r), y ∈ D ∩ B(ȳ, r) and u ∈ B(ū, r); and

(β) there is no z∗ ∈ Z∗, z∗ �= 0, satisfying

z∗ ◦ Dx g(x̄, ȳ, ū) ∈ kg∂Ad(C, x̄), z∗ ◦ Dy g(x̄, ȳ, ū) ∈ kg∂Ad(D, ȳ),

where kg is a Lipschitz constant of g at (x̄, ȳ, ū).

Proof. Consider the function f : X × Y ×U �→ R ∪ {+∞} defined by

f (x, y, u) =
{‖g(x, y, u)‖ if (x, y) ∈ C × D,
+∞ otherwise.

Then

S3(u) = {(x, y) ∈ X × Y : f (x, y, u) ≤ 0}.

Suppose that (α) is false. Then, as in the proof of Theorem 7, there are sequences
((xn, yn)) ⊂ C × D, (un) ⊂ U and (rn), (sn) ⊂ R+, with (xn, yn)→ (x̄, ȳ), un → ū,
rn → 0+ and sn → 0+, such that

g(xn, yn, un) �= 0

and

‖g(xn, yn, un)‖ ≤ ‖g(x, y, un)‖ + sn‖(x − xn, y − yn)‖
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for all (x, y) ∈ (C × D) ∩ B((xn, yn), rn). Thus, there exists z∗n ∈ Z∗, with ‖z∗n‖ = 1,
such that

z∗n ◦ Dx g(xn, yn, un) ∈ (kg + sn)∂Ad(xn,C)+ sn B∗

and

z∗n ◦ Dy g(xn, yn, un) ∈ (kg + sn)∂Ad(yn, D)+ sn B∗.

Now using the surjectivity of Dx g(x̄, ȳ, ū) and the fact that g is of class C1 there exists
r > 0, not depending on n ≥ n0, such that

‖z∗n ◦ Dx g(xn, yn, un)‖ ≥ r.

Extracting a subnet we may assume that z∗n → z∗ with respect to the weak*-topology,
with z∗ ◦ Dx g(x̄, ȳ, ū) ∈ kg∂Ad(x̄,C) and z∗ ◦ Dy g(x̄, ȳ, ū) ∈ kg∂Ad(ȳ, D). Since C is
compactly epi-Lipschitzian at x̄ , then by Lemma 2.3 in [15] there exist h1, . . . , hk ∈ X ,
not depending on n, such that

r ≤ max
i=1,...,k

〈z∗n ◦ Dx g(xn, yn, un), hi 〉

and hence

r ≤ max
i=1,...,k

〈z∗ ◦ Dx g(x̄, ȳ, ū), hi 〉.

Thus z∗ �= 0 and this contradiction completes the proof.

As a particular case of the previous system, we consider systems of the form

(x, y) ∈ C × D and g1(x)− g2(y) = 0, (S4)

where C and D are closed sets in X and Y , respectively, and g1: X → Z and g2: Y → Z
are mappings. Let S4(z) := {(x, y) ∈ C × D : g1(x)− g2(y) = z}.

Corollary 9. Suppose that:

(i) (x̄, ȳ) is a solution of system (S4).
(ii) g1 is of class C1 at x̄ with surjective derivative Dg1(x̄).

(iii) g2 is of class C1 at ȳ with derivative Dg2(ȳ).
(iv) C is compactly epi-Lipschitzian at x̄ .

Then (β) �⇒ (α), where

(α) there exist a > 0 and r > 0 such that

d((x, y), S4(z)) ≤ a‖g1(x)− g2(y)+ z‖
for all x ∈ C ∩ B(x̄, r), y ∈ D ∩ B(ȳ, r) and z ∈ B(0, r); and



Sufficient Conditions for Error Bounds and Applications 171

(β) there is no z∗ ∈ Z∗, z∗ �= 0, satsfying

−z∗ ◦ Dg1(x̄) ∈ kg∂Ad(C, x̄), z∗ ◦ Dg2(x̄) ∈ kg∂Ad(D, ȳ),

where kg is a Lipschitz constant of g := g1 − g2 at (x̄, ȳ).

The following corollary generalizes in the differentiable case the result by Jourani
and Thibault [15] in which it is assumed that D is compactly epi-Lipschitzian at g(x̄).
Our result takes advantage of the symmetric role of C and D.

Corollary 10. Let g: X �→ Y be a mapping of class C1 at x̄ and let C and D be closed
sets in X and Y , respectively. Consider the system

x ∈ C, g(x) ∈ D

to which we associate the parametric solution set given by the multivalued mapping

S5(y) = {x ∈ C : g(x)+ y ∈ D}.

Let x̄ ∈ C ∩ g−1(D). Suppose that either

(i) Dg(x̄) is surjective and C is compactly epi-Lipschitzian at x̄ , or
(ii) D is compactly epi-Lipschitzian at g(x̄).

Then (β) �⇒ (α), where

(α) there exist a > 0 and r > 0 such that

d(x, S5(y)) ≤ ad(g(x)+ y, D), ∀x ∈ C ∩ B(x̄, r), ∀y ∈ B(0, r);
and

(β) there is no y∗ ∈ Y ∗, y∗ �= 0, satsfying

−y∗ ◦ Dg(x̄) ∈ kg∂Ad(C, x̄), y∗ ∈ kg∂Ad(D, g(x̄)),

where kg is a Lipschitz constant of g at x̄ .

5. Applications

The main intention of this section is devoted to applications of our results to the notion of
weak sharp minima, necessary optimality conditions and sensitivity analysis as well as
to local controllability of optimal control problems of unbounded differential inclusions
with nonconvex admissible velocity sets.

5.1. Weak Sharp Minima

We can apply our results to optimization problems, in particular for studying the notion
of weak sharp minima which ensures, for example, the finite convergence of some
algorithms.



172 P. Bosch, A. Jourani, and R. Henrion

Consider a function g: X �→ R ∪ {∞}. We say that S := arg min g is a set of weak
sharp minima for g with modulus b > 0 if

g(x) ≥ g(u)+ bd(x, S), ∀x ∈ X, ∀u ∈ S.

As we can see, this is equivalent to the error bound

d(x, S) ≤ 1

b
max(0, f (x)), ∀x ∈ X,

where f (x) = g(x) − g(u) for some u ∈ S. So this inequality is ensured under the
assumptions of Theorem 5.

5.2. Necessary Optimality Conditions

We consider here optimization problems of the form

min{ f (x, y) : g(x, y) = 0, (x, y) ∈ C × D}, (9)

where g: X × Y �→ Z and f : X × Y �→ R are mappings of class C1 at (x̄, ȳ) ∈ C × D,
with g(x̄, ȳ) = 0, where C and D are closed sets in X and Y , respectively.

A vector (λ, z∗) ∈ R+ × Z∗ is a Fritz–John multiplier of (9) at (x̄, ȳ) if

‖(λ, z∗)‖ = 1, (10)

−λ∇x f (x̄, ȳ)− z∗ ◦ Dx g(x̄, ȳ) ∈ 2akgk f ∂Ad(C, x̄), (11)

−λ∇y f (x̄, ȳ)− z∗ ◦ Dy g(x̄, ȳ) ∈ 2akgk f ∂Ad(D, ȳ). (12)

Here kf and kg denote the Lipschitz constants of f and g near (x̄, ȳ) and a is as in
assertion (α) of Theorem 8 (with g(x, y) instead of g(x, y, u)). These constants are
assumed to be at least equal to 1.

For a local solution (x̄, ȳ) to (9) we denote

• all multipliers (λ, z∗) satisfying (10)–(12) by FJ(x̄, ȳ) and
• all multipliers z∗ satisfying (11) and (12), with λ = 1, by KKT(x̄, ȳ) (the set of

Karush–Kuhn–Tucker multipliers).

The following result is a direct consequence of Theorem 8.

Theorem 11. Suppose that (x̄, ȳ) is a local solution to the problem (9). Then, under
the assumptions of Theorem 8, with g(x, y) instead of g(x, y, u), F J (x̄, ȳ) is nonempty
and weak-star compact in R× Z∗. If in addition assertion (β) of Theorem 8 holds, then
KKT(x̄, ȳ) is nonempty and weak-star compact in Z∗.

We have to note that if neither (ii) nor (iv) in Theorem 8 is satisfied, then the theorem
is wrong. To see this let X = Y = l2 be the Hilbert space of square summable sequences,
with (ek) its canonical orthonormal base and let the operator A: l2 → l2 be defined by

A
(∑

xi ei

)
=
∑

21−i xi ei .
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Then A is not surjective and Im(A) is a proper dense subspace of l2. The adjoint A∗ is
injective but not surjective. So let x∗ /∈ Im(A∗) and set f = x∗, g = A and D = {0}.
Then 0 is the only feasible point and it is the optimum for this problem. Moreover, there
is no (λ, y∗) �= (0, 0) satisfying λ∇ f (x̄)+ y∗ ◦ Dg(x̄) = 0.

5.3. Sensitivity Analysis

Suppose that an optimization problem (P) is given in the following abstract form:

min{ f (x, y) : g(x, y) = 0, (x, y) ∈ C × D}.
It often happens that (P) lends itself naturally to parametric perturbation, so that (P)

is embedded in a family of optimization problems (Pu) indexed by a parameter u

min{ f (x, y, u) : g(x, y, u) = 0, (x, y) ∈ C × D}
where f : X × Y ×U �→ R is a lower semicontinuous function, g: X × Y ×U �→ Z is
a mapping and C and D are closed sets in X and Y , respectively.

The value of problem (Pu) is denoted v(u), and v is called the value function. For
each u in the domain of v we consider the set of minimizers:

S(u) := {(x, y) ∈ C × D : g(x, y, u) = 0, f (x, y, u) = v(u)}.
We proceed to examine a few typical properties of v that have a bearing on (P).

We begin with the Lipschitzian property of v. For this we introduce a compactness
assumption which will assure the stability of the parametrized problems (Pu). A stability
assumption (SA) holds if there exists a norm-compact set H such that for u near 0,
S(u) �= ∅ and

S(u) ⊂ H + B(0, ρ(u)),

where limu→0 ρ(u) = 0.
We have the following properties of the value function v.

Proposition 12. Suppose that (SA) holds and that f and g are continuous on S(0)×{0}
and H × {0}, respectively. Then:

(a) The value function v is lower semicontinuous at 0.
(b) The following assertions are equivalent:

(i) The multivalued mapping S is upper semicontinuous at 0; i.e.,
∀ε > 0, ∃η > 0, S(u) ⊂ S(0)+ B(0, ε), ∀u ∈ B(0, η).

(ii) The value function v is upper semicontinuous at 0.

Proof. (a) Suppose the contrary, then there exist ε > 0 and a sequence (un) converging
to 0 such that for n large enough,

v(0) > v(un)+ ε.

By (SA) there exists (xn, yn) ∈ S(un), which we assume converges to some (x̄, ȳ). Now
from the continuity of f and g we deduce

v(0) ≥ f (x̄, ȳ, 0)+ ε, (x̄, ȳ) ∈ C × D, g(x̄, ȳ, 0) = 0
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and hence

v(0) ≥ v(0)+ ε,

which leads to a contradiction. So v is lower semicontinuous at 0.
(b) Suppose that (i) holds. Let (un) be any sequence converging to 0 and for which

limn→+∞ v(un) exists. We will show that limn→+∞ v(un) = v(0). By (SA) there exists
(xn, yn) ∈ S(un), which we assume converges to (x̄, ȳ) and by (i), (x̄, ȳ) ∈ S(0). Thus

v(un) = f (xn, yn, un), (xn, yn) ∈ C × D, g(xn, yn, un) = 0

and by the continuity of f and g we get

lim
n→+∞ v(un) = f (x̄, ȳ, 0), (x̄, ȳ) ∈ C × D, g(x̄, ȳ, 0) = 0.

As (x̄, ȳ) ∈ S(0), we obtain limn→+∞ v(un) = v(0). Now it suffices to use these
arguments to prove that

lim sup
u→0

v(u) = v(0).

Conversely, suppose that v is upper semicontinuous at 0 and that S is not upper semi-
continuous at 0. Then there are ε > 0 and sequences (un) and ((xn, yn)) such that

(xn, yn) ∈ S(un) and (xn, yn) /∈ S(0)+ B(0, ε).

We may assume, by (SA), that (xn, yn)→ (x̄, ȳ). Since

v(un) = f (xn, yn, un), (xn, yn) ∈ C × D, g(xn, yn, un) = 0,

then by the continuity of f and g and the upper semicontinuity of v at 0 we obtain

v(0) ≥ lim sup
n→+∞

v(un) = f (x̄, ȳ, 0), (x̄, ȳ) ∈ C × D, g(x̄, ȳ, 0) = 0,

which is equivalent to saying that (x̄, ȳ) ∈ S(0). Thus, for n large enough, (xn, yn) ∈
S(0)+ B(0, ε) and this contradiction completes the proof.

Theorem 13. Suppose that:

1. For each sequence (un) converging to 0 we have

∅ �= lim sup
n→+∞

S(un) ⊂ S(0).

2. For each (x̄, ȳ) ∈ S(0) we have:
(i) f , g are locally Lipschitzian near (x̄, ȳ, 0) with Lipschitz constant k(x̄, ȳ).
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(ii) g is of class C1 at (x̄, ȳ, 0) in (x, y) with respect to u with surjective partial
derivative Dx g(x̄, ȳ, 0).

(iii) f is of class C1 at (x̄, ȳ, 0) in (x, y) with respect to u.
(iv) C is compactly epi-Lipschitzian at x̄ .
(v) Assertion (β) of Theorem 8 holds.

Then v is locally Lipschitzian near 0.

Proof. We proceed to show that v is locally Lipschitzian around 0. So suppose the
contrary, then there are sequences un → 0 and u′n → 0 such that, for n large enough,

|v(un)− v(u′n)| > nd(un, u′n).

We may assume that the set I = {n : v(un)− v(u′n) > nd(un, u′n)} is infinite (because
(un) and (u′n) play a symmetric role). For all n ∈ I there exists, by assumption 1,
((x ′n, y′n))n∈J⊂I which converges to (x̄, ȳ) ∈ S(0) and (x ′n, y′n) ∈ S(u′n), for all n ∈ J .
Now, by Theorem 8, for n ∈ J large enough,

d((x ′n, y′n), S3(un)) ≤ a‖g(x ′n, y′n, un)‖

and hence there exists (xn, yn) ∈ S3(un) such that

‖(x ′n, y′n)− (xn, yn)‖ ≤ a‖g(x ′n, y′n, un)‖

and since g is locally Lipschitzian near 0 uniformly in (x ′n, y′n), with constant kg =
kg(x̄, ȳ),

‖(x ′n, y′n)− (xn, yn)‖ ≤ a‖g(x ′n, y′n, un)− g(x ′n, y′n, u′n)‖ ≤ ak(x̄, ȳ)d(un, u′n).

Then, for all n ∈ I sufficiently large,

nd(un, u′n) < f (xn, yn, un)− f (x ′n, y′n, u′n) ≤ k(x̄, ȳ)(1+ ak(x̄, ȳ))d(un, u′n)

and this contradiction completes the proof.

Corollary 14. The result of Theorem 13 remains valid if we replace assumption 1 by
the following assumption:

1′. (SA) holds and S is upper semicontinuous at 0.

Let KKT(x̄, ȳ) denote the set of Karush–Kuhn–Tucker multipliers of (P0) at (x̄, ȳ), that
is, the set of z∗ ∈ Z∗ satisfying

−∇x f (x̄, ȳ, 0)− z∗ ◦ Dx g(x̄, ȳ, 0) ∈ 6(1+ akg)(kv + kf )∂Ad(C, x̄),

−∇y f (x̄, ȳ, 0)− z∗ ◦ Dy g(x̄, ȳ, 0) ∈ 6(1+ akg)(kv + kf )∂Ad(D, ȳ).
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Here kv , kf and kg denote Lipschitz constants of v near 0 and f and g near (x̄, ȳ, 0) and
a is as in assertion (α) of Theorem 8. These constants are assumed to be at least equal
to 1.

Then we have the following estimate of the subdifferential of v.

Theorem 15. Suppose in addition to the assumptions of Theorem 13 that f and g are
of class C1 at (x̄, ȳ, 0) for each (x̄, ȳ) ∈ S(0) and that the perturbation set U is a Banach
space. Then

∂Av(0) ⊂
⋃

(x̄,ȳ)∈S(0)

{∇u f (x̄, ȳ, 0)+ z∗ ◦ Du g(x̄, ȳ, 0) : z∗ ∈ KKT(x̄, ȳ)}.

Proof. The proof is similar to that in [11]. Let kv be a Lipschitz constant of v around
0 (which is possible since, by Theorem 13, v is locally Lipschitzian near 0). Let u∗ ∈
∂Av(0). Then, by Proposition 1, we have, for all L ∈ F(U ), that there exist nets ui → 0,
εi → 0+, u∗i → u∗, with ‖u∗i ‖ ≤ (kv + 1)(1 + εi ), and ri → 0+ such that, for all
u ∈ B(ui , ri ),

v(u)− v(ui )− 〈u∗i , u − ui 〉 + εi‖u − ui‖ + 2(kv + εi )d(u, ui + L) ≥ 0.

From assumption 1 in Theorem 13 there exist (x̄, ȳ) ∈ S(0) and (xi , yi ) ∈ S(ui ), with
(xi , yi ) → (x̄, ȳ), such that for all (x, y, u) ∈ C × D × B(ui , ri ), g(x, y, u) = 0, we
have

f (x, y, u)− f (xi , yi , ui )− 〈u∗i , u − ui 〉 + εi‖u − ui‖
+ 2(kv + εi )d(u, ui + L) ≥ 0.

Using Theorem 8 we obtain

3a(kf + kv)‖g(x, y, u)‖ + f (x, y, u)− f (xi , yi , ui )− 〈u∗i , u − ui 〉
+ εi‖u − ui‖ + (kv + εi )d(u, ui + L) ≥ 0

for all (x, y, u) ∈ C ∩ B(xi , ri )× D ∩ B(yi , ri )× B(ui , ri ). Thus the function

(x, y, u) �→ 6(1+ akg)(kf + kv)[d(x,C)+ d(y, D)]+ 2a(kf + kv)‖g(x, y, u)‖
+ f (x, y, u)− f (xi , yi , ui )− 〈u∗i , u − ui 〉 + εi‖u − ui‖ + 3kvd(u, ui + L)

attains its local minimum at (xi , yi , ui ). We conclude by using subdifferential calculus
and by passing to the limit.

In the case where f and g are not depending on the perturbation u and g = g1 − g2,
where g1: X �→ Z and g2: Y �→ Z , then we get the following result which is a direct
consequence of the previous one.

Corollary 16. Under the assumptions of Theorem 15 we have

(i) for all (x̄, ȳ) ∈ S(0), ∂Cv(0) ∩ KKT(x̄, ȳ) �= ∅ and
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(ii)

∂Av(0) ⊂
⋃

(x̄,ȳ)∈S(0)

KKT(x̄, ȳ).

Here ∂C denotes Clarke’s subdifferential.

Proof. It suffices to prove the first part. Let (x̄, ȳ) ∈ S(0). Then

f (x̄, ȳ)− v(0) = 0 ≤ f (x, y)− v(u)

for all (x, y, u) near (x̄, ȳ, 0), with (x, y) ∈ S3(u). By Theorem 8 there exists constant
a > 0 such that

d((x, y), S(u)) ≤ ‖g1(x)+ u − g2(y)‖

for all (x, y, u) near (x̄, ȳ, 0), with (x, y) ∈ C × D. So that (x̄, ȳ, 0) is a local solution
of the function

(x, y, u) �→ f (x, y)− v(u)+ a(kf + kv)‖g1(x)+ u − g2(y)‖
+ 2a(kf + kv)[d(x,C)+ d(y, D)].

So the conclusion follows by using the subdifferential calculus.

5.4. Local Controllability

We consider here systems of the form

ẋ(t) ∈ F(t, x(t)) a.e. t ∈ [a, b], (x(a), x(b)) ∈ S, (13)

where F : [a, b] × Rn �→ R
n is a multivalued mapping which is measurable in the first

variable t ∈ [a, b] and S ⊂ R
n × Rn is a nonempty closed set. The domain over

which the study of system (13) occurs is typically one of the functions W 1,p([a, b],Rn)

(abbreviated W 1,p) consisting of all absolutely continuous functions x : [a, b] �→ R
n

for which |ẋ | is in the functional space L p([a, b],Rn) (abbreviated L p) (ẋ denotes the
derivative (almost everywhere) of x). The space W 1,p is endowed with the norm

‖x‖ = |x(a)| + ‖ẋ‖L p ,

where | · | denotes the euclidean norm of Rn . Here we assume that p ≥ 1.
Consider the multivalued mapping G: Rn �→ W 1,p defined by

G(y) = {x ∈ W 1,p: ẋ(t) ∈ F(t, x(t)) a.e., (x(a), x(b)+ y) ∈ S}. (14)

The distance function on W 1,p or Rn × Rn will be denoted by d(· , · ).
Let z be a solution of system (13). This system is said to be locally controllable at

z if there exist α > 0 and r > 0 such that

G(y) ∩ B(z, α|y|) �= ∅, ∀y ∈ B(0, r).
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Let S = Ca × Cb and C be the solution set of the system

x(a) ∈ Ca, ẋ(t) ∈ F(t, x(t)) a.e. t ∈ [a, b].

Consider the linear continuous mapping w(x) = x(b) and let w∗ denote its adjoint
mapping.

Theorem 17. The system is locally controllable at z provided that C is closed (which
is the case when the multivalued mapping x �→ F(t, x) has a closed graph for almost
all t) and

w∗(NF(Cb, z(b))) ∩ −NF(C, z) = {0}. (15)

As a consequence of this theorem we obtain the following result.

Corollary 18. Let p = 1. Assume that F is closed-valued and measurably Lipschitzian
at z and bounded by a summable function (in L1) around z(t) a.e. in [a, b]. Suppose
that if

(v̇(t), v(t)) ∈ ∂Cd(F(t, ·), ·)(z(t), ż(t)) a.e., (16)

and

v(a) ∈ ∂Fd(z(a),Ca), v(b) ∈ ∂F d(z(b),Cb),

then

v(b) = 0.

Then the conclusion of Theorem 17 holds.

Here ∂C refers to Clarke’s subdifferential [4].

Proof. It suffices to show that (15) holds and to apply Theorem 17. Indeed, consider
(as in [31]) the mappings α: Rn × L1 → Rn × Rn and β: Rn × L1 → L1 × L1 de-
fined by

α(x(0), ẋ) = (x(a), x(b)), β(x(a), ẋ) = (x, ẋ).

Let cb ∈ NF(Cb, z(b)), with−w∗(cb) ∈ NF(S, z). By Proposition 6.3 in [12] there exist
K > 0, ca ∈ K∂Fd(z(a),Ca) and (u, v) ∈ K∂A IL(z, ż) such that

−α∗(ca, cb) = β∗(u, v),

where IL(x, y) = ∫ b
a d(y(t), F(t, x(t))) dt . Thus (see [31])

cb = −v(b), ca = v(a) and u(t) = v̇(t), a.e.

and hence cb = 0 and the proof is complete.
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This corollary has been extended in [13] to the more general class of multivalued
mappings, namely the sub-Lipschitzian multivalued mappings in the sense of Loewen–
Rockafellar [18]. In [13] condition (16) is replaced by the following weaker one:

ṗ(t) ∈ co D∗
F F(t, z(t), ż(t))(−p(t)) a.e. t ∈ [a, b], (17)

where D∗
F F(t, ·)means the coderivative [24]–[26] of F(t, ·) in x at the point (z(t), ż(t))

and “co” stands for convex hull.
Now let C be the solution set of the differential inclusion

ẋ(t) ∈ F(t, x(t)) a.e. t ∈ [a, b].

Consider the linear continuous mapping w(x) = (x(a), x(b)) and let w∗ denote its
adjoint mapping.

Theorem 7 gives us the following result.

Theorem 19. The system is locally controllable at z provided that C is closed (which
is the case when the multivalued mapping x �→ F(t, x) has a closed graph for almost
all t) and

w∗(NF(S, (z(a), z(b)))) ∩ −NF(C, z) = {0}.

Proof. We consider the following linear continuous mappingw1(x, y) = (x(a), x(b)+
y), then we have that

G(y) = {x ∈ W 1,p : x ∈ C, w1(x, y) ∈ S}

and then (z, 0) is a solution of this system.
It suffices to show that part (β) of Theorem 7 holds for this system. On the contrary,

suppose that there exists y∗ �= 0 such that

y∗ ∈ NF(S, w1(z, 0))

and

0 ∈ y∗ ◦ Dxw1(z, 0)+ NF(C, z).

However, we have that

Dxw1(z, 0)(x) = (x(a), x(b)) = w(x)

and then

y∗ ◦ Dxw1(z, 0)(x) = 〈
y∗, w(x)

〉 = 〈
w∗(y∗), x

〉



180 P. Bosch, A. Jourani, and R. Henrion

for all x , and hence y∗ ◦ Dxw1(z, 0) = w∗(y∗), but we have supposed that y∗ ∈
NF(S, (z(a), z(b))) and then

w∗(NF(S, (z(a), z(b)))) ∩ −NF(C, z) �= {0},

which leads to a contradiction with the hypothesis of the theorem. So part (β) of Theo-
rem 7 holds and then there exist a > 0 and r > 0 such that

d(x,G(y)) ≤ ad(w1(x, y), S)

for all x ∈ C ∩ B(z, r) and all y ∈ B(0, r). Therefore

d(x,G(y)) ≤ ad((x(a), x(b)+ y), S)

and evaluating in z we obtain

d(z,G(y)) ≤ ad((z(a), z(b)+ y), S) ≤ a‖y‖, ∀y ∈ B(0, r),

and this completes the proof.
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