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Abstract. We consider convex stochastic programs with an (approximate) initial
probability distribution P having finite support supp P, i.e., finitely many scenar-
t0s. The behaviour of such stochastic programs is stable with respect to perturba-
tions of P measured in terms of a Fortet-Mourier probability metric. The problem
of optimal scenario reduction consists in determining a probability measure that
is supported by a subset of supp P of prescribed cardinality and is closest to P in
terms of such a probability metric. Two new versions of forward and backward type
algorithms are presented for computing such optimally reduced probability mea-
sures approximately. Compared to earlier versions, the computational performance
(accuracy, running time) of the new algorithms has been improved considerably.
Numerical experience is reported for different instances of scenario trees with com-
putable optimal lower bounds. The test examples also include a ternary scenario
tree representing the weekly electrical load process in a power management model.
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1 Introduction

Many stochastic decision problems may be formulated as convex stochastic
programs of the form

min{/Q fo(w,2)P(dw) : x € X}, (1)

where X C R™ is a given nonempty closed convex set, {2 a closed subset
of R?, the function fy from 2 x R™ to R is continuous with respect to w
and convex with respect to x, and P is a fixed Borel probability measure on
2, ie., P € P(£2). For instance, this formulation covers (convex) two- and
multi-stage stochastic programs with recourse.

Typical integrands fo(-,z), € X, in convex stochastic programming
problems are nondifferentiable, but locally Lipschitz continuous on (2. In the
following, we assume that there exist a continuous and nondecreasing function
h : R4 — R4 with h(0) = 0, a nondecreasing function ¢g : Ry — Ry \ {0}
and some fixed element wg € R?® such that

[folw,z) = fo(@, 2)| < g([|z[))e(w, @) (2)
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for each € X, where the function c¢: 2 x {2 — R is given by
(w,@) = max{1, h(lw — woll), (& — wol) Ylw — &, Vo, @ € 2. (3)

This means that the function A(|| - —wp||) describes the growth of the local
Lipschitz constants of fo(,«) in balls around wp with respect to some norm
| - || on R®. Polynomial growth of h, i.e., h(r) = r?~! for r € Ry and some
p > 1, represents an important special case. For instance, in [11] it is shown
that the choice p = 2 is appropriate for two-stage models with stochasticity
entering prices and right-hand sides.

In [4,11] it is shown that the model (1) is stable with respect to small
perturbations in terms of the probability metric

G(P.Q) = sup | [ f(w)P(dw) - /Q F(@)Qdw),

feF. J2

where F, is the class of continuous functions defined by
Fe={f2=>R: flw)— f(®) <c(w,®) for all w,& € 2}

and probability measures P and () in the set
P(2) :={Q € P(£2) : / c(w,w)Q(dw) < co}.
2

The distance (. is a probability metric on P.(2) and is called a Fortet-Mourier
(type) metric. In this generality, it is introduced in [13] and further studied
in [10,12]. The metric {, may be estimated from above by the Kantorovich
functional fi., i.e., it holds for any P,Q € P.(2) that

C(P,Q) < fic(P,Q), where (4)

e(PQ) = int{ [ cw. @n(dw.5)) s € P(2x 2).0(B x 2) = P(B),
2x 02
(2 x B) = Q(B) for all B € B}

and the minimization problem defining ji. is known as Monge-Kantorovich
mass transportation problem (cf. [10,12]). Equality holds in (4) if h = 1.

As an important instance let us mention that the initial probability mea-
sure P is itself discrete with finitely many atoms (or scemarios) or that P
represents a good discrete approximation of the original measure. Its support
may be very large so that, for reasons of computational complexity and time
limitation, this probability measure is further approximated by a probability
measure () carried by a (much) smaller subset of scenarios. In this case, the
distances (.(P, Q) and fi.(P, Q) represent optimal values of finite-dimensional
linear programs. For example, the Monge-Kantorovich mass transportation
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problem defining ji, reduces for P = YN | pid,, and Q = Z;.V:ij ¢j0.; to
the well known linear transportation problem

N N N

fie(P, Q) = min{ Z c(wi, wj)mij = Mij > 072771'3' = qj, Zﬁij =pi}
Yer =t jes

where J C {1,...,N} and J, € P(f2) denotes the Dirac measure placing

unit mass at w. In Section 2 it will turn out that metric ji. is very useful to

evaluate distances of specific probability measures obtained during a scenario-

reduction process.

Various reduction rules appear in the literature in the context of recent
large-scale real-life applications. We refer to the corresponding discussion in
[4], to the recent work [3] on scenario generation and reduction, and to the
scenario generation approach in [9] based on Fortet-Mourier distances.

In the present paper, we follow the approach for reducing scenarios of
a given discrete probability measure P = Ei\;l pidy; developed in [4]. It
consists in determining an index set J. C {1,...,N} of given cardinality
#J. = N —n and a probability measure Q. = E;'V:Ljy* ¢} 0y, such that

N
fie(P, Q.) = min{ (P, Z 4j0u;) : J C{l,...,N},#J=N—n, (5)
lar

JgJd

Problem (5) may be reformulated as a mixed-integer program.

In Section 2 we derive bounds for (5), develop two new heuristic algo-
rithms (fast forward selection and simultaneous backward reduction) for solv-
ing (5) and study their complexity and their relations to the algorithms in
[4]. Indeed, the fast forward selection algorithm turns out to be an efficient
implementation of the forward selection procedure of [4], generating the same
reduced probability measures.

In order to compare the performance of the algorithms we provide, in
Section 3, explicit formulas for the minimal distances (5) in case that h = 1,
P is a regular (binary or ternary) scenario tree (i.e., a tree having a specific
structure) and @, is a reduced tree with fixed cardinality n.

In Section 4 we report on numerical experience for the reduction of reg-
ular binary and ternary scenario trees. The test trees also include a ternary
scenario tree representing the weekly electrical load process in a power man-
agement model, which was considered in [4]. It turns out that the new im-
plementation of the fast forward selection algorithm is about 10-100 times
faster than the earlier version. When comparing accuracy, fast forward selec-
tion performed best, and simultaneous backward reduction performed better
than the backward reduction variant of [4] in most cases, but at the expense
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of higher running times. When comparing running times, fast forward selec-

tion (simultaneous backward reduction) is preferable in case of approximately
N N

n < x (n > Z)

2 Scenario Reduction

We consider the stochastic program (1) and select the function ¢ of form (3)
such that the Lipschitz condition (2) is satisfied. Let the initial probability
distribution P be discrete and carried by finitely many scenarios w; € 2 with
weights p; > 0, ¢ = 1,...,N, and Eﬁil pi =1, ie, P = E?]:lpi&wi. Let
neN,n<N,JC{l,...,N} with #J = N — n and consider the probabil-
ity measure () having scenarios w; with probabilities ¢;, j € {1,...,N}\J,
i.e., compared to P, the measure () = ij ¢j6w; is reduced by deleting all
scenarios wj, j € J, and by assigning new probabilistic weights ¢; to each sce-
nario wj, j € J. The optimal reduction concept described above recommends
to consider the probability distance

N
D(J;q) = ic(>_ pibus, Y, 10u;)
i=1

igJ

depending on the index set J and ¢. The optimal reduction concept (5)
says that the index set J, and the optimal weight ¢, are selected such that
D(Ji;q) = min{D(J;q) : J C{l,... N} #J =N —n,> 0,0 = 1,45 >
0,7 ¢ J}. First we recall the following explicit formula for min{D(J;q) :
Engqj =1,¢9; > 0,j € J} when the index set J C {1,..., N} is fixed ([4],

Theorem 3.1).

Theorem 2.1 (redistribution)
Given J C {1,..., N} we have

Dy=min{D(J;q): q; 20,Y q;=1}=> _p; r,rgC(wi,Wj) (6)
jéJ ics 7
Moreover, the minimum is attained at
G =pj+ Y pi, foreach j¢.J, (7)
i€J;
where J; :={i e J:j=j(@)} and j(i) € argrx;zigl c(wi,wj) for each i € J.
J
Formula (7) will be called optimal redistribution rule. It reveals that the new
probability of a preserved scenario is equal to the sum of its former probability

and of all probabilities of deleted scenarios that are closest to it with respect
to the “distance” ¢ on 2.
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Next we discuss the optimal choice of an index set J for scenario reduction
with fixed cardinality #.J. Theorem 2.1 motivates us to consider the following
formulation of the optimal reduction problem for given n € N, n < N:

min{Dy; := Zp,-rjr{ei?c(w,-,wj) JC{l,...,N},#J=N—-n}. (8)
icJ

Problem (8) means that the set {1,..., N} has to be covered by two sets
JCA{L,...,N}and {1,..., N}\J such that J has fixed cardinality N —n and
the cover has minimal cost D ;. Thus, (8) represents a set-covering problem.
It may be formulated as a 0-1 integer program (cf. [7]) and is N"P-hard. Since
efficient solution algorithms are hardly available in general, we are looking
for (fast) heuristic algorithms exploiting the structure of the costs D ;. In the
specific cases of n =1 and n = N — 1, (8) may be solved quite easily.
If #J = 1, the problem (8) takes the form

min min c(wy, w;). 9
le{l,...,N}pl o ( 15 J) ( )

If the minimum is attained at [, € {1,..., N}, i.e., the scenario w;, is deleted,
the redistribution rule (7) yields the probability distribution of the reduced
measure Q. If j, € argminj, c(w,,w;), then it holds that g;, = p;, + pi,
and @ = p; for all [ & {l.,j.«}. Of course, the optimal deletion of a single
scenario may be repeated recursively until a prescribed number N — n of
scenarios is deleted. This strategy recommends a conceptual algorithm called
backward reduction.
If #J = N — 1, the problem (8) is of the form

N
min ic(wi, wy) - 10
i) 3t w
If the minimum is attained at u, € {1,..., N}, only the scenario w,, is kept

and the redistribution rule (7) provides §,, = pu, + Z#u* p; = 1. This
strategy provides the basic concept of a second conceptual algorithm called
forward selection.

First, we take a closer look at the backward reduction strategy. A back-
ward type algorithm was already suggested in [4,6]. It determines a reduced
scenario set by reducing N — n scenarios from the original set of scenarios as
follows. Let the indices [; be selected such that

lica min c(wy,w;),i=1,...,N —n. (11)

I min /
glE{l,---vN}\{llv---Ji—l}p J#l

Then
N—n

b= Z I gr;élln c(wy;, wj) (12)
i=1
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can be shown to be a lower bound of the optimal value of (8). Furthermore,
the index set {l,...,In_y} is a solution of (8) if the set argmin -, c(w;, w;)
\{l1,. -, lic1,liv1, -, In—n} isnonempty for alli = 1,..., N —n ([4,6]). This
property is the reason for developing the following algorithm. In the first step,
an index ny with n < n; < N is determined using formula (11) such that
Ji=A{l1,...,IN—n, } is a solution of (8) for n = n;. Next, the redistribution
rule of Theorem 2.1 is used. This leads to the reduced probability measure
P, containing all scenarios indexed by {1,..., N}\ Ji. If n < ny, the measure
P, is further reduced by deleting all scenarios belonging to some index set
Jo with #.J5 = n; — ny and n < ns < ny, which is obtained in the same
way by using formula (11). This procedure is continued until, in step r, we
have n, = n and J = U]_, J;. Finally, the redistribution rule (7) is used again
for the index set J. This algorithm is called backward reduction of scenario
sets. Yet, there are many variants for choosing the next scenario in each step.
Often there exist several candidates for deletion. In Section 4 we use a special
implementation of backward reduction of scenario sets.

Another particular variant covers the case that #.J; = 1 for each i =
1,..., N —n. This variant (without the final redistribution) was already an-
nounced in [2,5]. However, numerical tests have shown that the backward
reduction of scenario sets provides slightly more accurate results compared
to backward reduction of single scenarios.

Next we present a new modification of the backward reduction principle.
The major difference consists in including all deleted scenarios into each
backward step simultaneously. Namely, the next index [; is determined as a
solution of the optimization problem

[; € arg min Z pr min  c(wg,wj). (13)
tg e keJt=1u{i} sEsEmIn

A more detailed description of the whole algorithm, which is called simulta-
neous backward reduction, is given in

Algorithm 2.2 (simultaneous backward reduction)

Step 1: ckj = c(wg,wj), k,j=1,...,N,
Sorting of {cy; :j=1,...,N},k=1,...,N,
. s _
¢; :=ming¢;,[=1,... N,
i 2l lj
zl[l] ::p[cgll],lzl,...,N,

I € argle{rlninN} zl[l] CJM =)

sl — ; ) [i—1] [i—1]
Step i: Chp ng[iHPlrllu{l} crj, LEJ ke ld u{l},

zl[i] = Z pkcgﬁ, ¢ Jhi=1
keJli-1lu{i}
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) ; @ gl . gli-1] )
l; € arglgr%r_ll] 2, JM = u{L}.
Step N-n+1: Redistribution by (7).

Algorithm 2.2 allows the following interpretation. Its first step corresponds
to the optimal deletion of only one scenario. For ¢ > 1, [; is chosen such that

Doimnogy = Jhin,, Doiuogy (14)

where D jii-nyyy is defined in (8). Hence, the index I; is defined recursively
such that the index set {l1,...,l;—1,l;} will be optimal provided that the
previous indices {ly,...,l;_1} are fixed.

Since running times are important characteristics of scenario reduction
algorithms, we study the computational complexity, i.e., the number of el-
ementary arithmetic operations, of Algorithm 2.2. In [6] it is shown that a
proper implementation (without sorting) of backward reduction of scenario
sets requires a complexity of O(IN?) operations (uniformly with respect to
n). When comparing formulas (11) and (13), one notices an increase of com-
plexity in the cost structure of (13) for determining /;. More precisely, step i
requires the computation of NV — i+ 1 sums, each of which consists of 7 sum-
mands and N —i+ 1 comparisons. Each summand represents a product of two
numbers. One of these factors requires about 2 operations for determining
the minimum. The sorting process in step 1 requires O(NN?log N) operations
([1], Chapter 1). When excluding the complexity of evaluating the function
¢ and that of the redistribution rule, altogether we obtain by (n) operations
for selecting a subset of n scenarios, where

N—n
by(n) := O(N*log N) + > (3i + 1)(N =i +1) (15)

i=1
9,3 1 3
=n® —n*(SN + 5) —ni(N+ 1) +a(N)

2
N3 ‘ 5> 3
and a(N):= 5 + O(N?log N) + 2N? + §N'

Proposition 2.3 The computational complexity for reducing a set of N € N
scenarios to a subset containing n € {1,..., N} scenarios consists of by(n)
(see (15)) operations when using simultaneous backward reduction.

Hence, the complexity of simultaneous backward reduction is increasing with
decreasing n and is, of course, minimal at n = N. This result corresponds to
the running time observations of our numerical tests reported in Section 4.
Next, we describe a strategy that is just the opposite of backward re-
duction. Its conceptual idea is based on formula (10) and consists in the
recursive selection of scenarios that will not be deleted. The basic concept
of such an algorithm is given in [4] and called forward selection. Forward



8 Heitsch, Romisch

selection determines an index set {uy,...,up} such that
u; € arg min E pr min  c(wg,wj), (16)
[i—1] ; [i—1]
weli Sy IR

for i = 1,...,n, where JI= .= {1,... N}\{ui,...,u;_1}. The first step
of this procedure coincides with the solution of problem (10). After the last
step, the optimal redistribution rule has to be used to determine the reduced
probability measure. Formula (16) allows the same interpretation as in the
case of simultaneous backward reduction. It is again closely related to the
structure of Dy in (8). Now, let us consider the following algorithm, which is
easily implementable and is called fast forward selection.

Algorithm 2.4 (fast forward selection)

Step 1: E”]L (wk,wu),k,uzl,...,N,
z[l] = Zpkckuv - 7N7
k;éu
€ i mogt.=f,... N .
up € arg ue{rlr{m’N} zr { W {u1}
Step i: CE:L = mln{cl 1 cE:u Y b kue Ji=t
A= Z pkcEfL, ue Jit
keJl=1\{u}
u; € arg min 2l gl = =t £y,
ueJli—1]
Step n+1: Redistribution by (7).

Theorem 2.5 The index set {us,...,u,} determined by Algorithm 2.4 is a
solution of the forward selection principle, i.e., u; satisfies condition (16) for

eachi=1,...,n. Furthermore, zq[f] = D i) holds for each i =1,...,n, where
D i is defined in (8).

Proof: For ¢ =1 the result is immediate. For ¢ = 2,..., N, it holds that

u; € arg min z“ = arg min Z pkcE:L
ueJli—1] ueJli—1] ‘
keJli=1\{u}
1 1
= arg m{ln ] Z Dk rmn{cl ! cgjul ]1}
Jli-1 ,
ue keJli—1\{u}
i—2] [i—2] [z 2]
= arg min Z pkmln{c s Chusy Cheus 2}
ueJli—1] i i

keJE—1\ {u}
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= arg min Z D rnin{cgc1 ,CE] ,. - CE] }
ueJli-1 4 uoR “
kesli—11\ {u}
= arg min Z pr min  c(wg,wj)
li-1] i gli-1]
ueJ keJl-T1\{u) JEIEUN\ {u}
= arg ugjl%P I DJ[i—l]\{u}. (17)

Hence, the index w; satisfies condition (16) and it holds that

Al = Z pr min c(wg,w;) =Dym (i=1,...,n). O
l keJlil igJu

The conditions (14) and (17) show that both algorithms are based on the
same basic idea for selecting the next (scenario) index. The only difference
consists in the use of backward and forward strategies, respectively, i.e., in
determining the sets of deleted and remaining scenarios, respectively.

As in the case of backward reduction, the computational complexity of Algo-
rithm 2.4 is of interest. Step i requires (N — i + 1)? operations for computing
C%L (k,u € JO=1), (N — i+ 1)(N — i) operations for zi (v € JIi—1) and
N — i+ 1 operations for determining u;. Altogether, we obtain

22 —i+1) —§n3—n2(2N+1)+n(2N2+2N+§) (18)

i=1
operations for selecting a subset of n scenarios. Hence, we have

Proposition 2.6 The computational complexity of fast forward selection for
reducing a set of N € N scenarios to a subset containing n € {1,...,N}
scenarios consists of fn(n) (see (18)) operations.

Hence, the complexity of fast forward selection increases with increasing n
and is maximal if n = IN. Thus, the use of fast forward selection will be
recommendable if the number n of remaining scenarios satisfies the condition
fn(n) <bn(n). The number n, = n.(N) such that fy(n.) = by (n.) holds,
is a zero of a polynomial of degree 3 that depends nonlinearly on N. It turns
out that n, ~ % for large .

3 Minimal distances of scenario trees

All algorithms discussed in the previous section provide only approximate
solutions of (8) in general. Since error estimates for these algorithms are not
available, we need test examples of discrete original and reduced measures
of different scale with known (optimal) (.-distances. Because of their prac-
tical importance, we consider probability measures with scenarios exhibiting
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a tree structure. In particular, we derive optimal distances of certain regu-
larly structured original scenario trees and of their reduced trees containing
different numbers of scenarios.

We consider a scenario tree that represents a stochastic process with pa-
rameter set {0,1,..., K} for some K € NN and with scenarios (or paths)
branching at each parameter k € {0,1,..., K} with branching degree d (i.e.,
each node of the tree has d successors). In case of d = 2 and d = 3, the
tree will be called binary and ternary, respectively. Hence, the tree con-

sists of N := d¥ scenarios w; = (w?,...,wK), i = 1,...,d", and has
W = ... = Wl as its root node. Furthermore, let all scenarios have equal
probabilities p; = Z&,i = 1,...,d". Such a scenario tree will be called regular

if, for each k € {0, ..., K}, there exist symmetric sets Vj := {6¥,...,6k} C R
such that

k
wh=>"06l (ke{0,...,K}), (19)
j=0

where a (K + 1)-tuple of indices (ig,...,ix) € {1,...,d}* ! corresponds
to each index ¢ = 1,...,d". We say that V}, is symmetric if § € V}, implies
—6 € Vi. In case of d = 2 and d = 3, this means that the sets V} are
of the form Vi = {—6% 6%} and V; = {—=6%,0,0%}, respectively, for some
5% € R, and it holds 6{-2 = (2iy — 3)6* and 5fk = (i, — 2)d%, respectively, for

k=0,...,K. Clearly, we have 69 = ... =% = 0 for regular trees. Figure 1
=0
st=2
=1
P2 =3
P T T T T EN TR TR T T Y
-5 0 5

Figure 1: Binary scenario tree

shows an example of a regular binary scenario tree with K = 3 and N = 23
scenarios. We specify the function ¢ in (3) by setting A = 1 and by choosing
the maximum norm || - ||o on REF! ie.,

c(w, @) = |lw— @] = max |k — % (w,@ € ).

yeeny
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Our first result provides an explicit formula for the minimal distance between

a regular binary tree and reduced subtrees with at least n = % scenarios.

Proposition 3.1 (3/4-solution)

Let a reqular binary scenario tree with N scenarios and K > 3 be given.
Let ko € argmini << 6%, ko < K — 2 and max{dkot1 fkot2} < 28ko. Then
the distance between any scenarios is not smaller than 26%° and there are %N
distinct pairs of scenarios such that the distance between the members of each
pair is exactly 26%°. In particular, it holds for each n € N with % <n<N:

= oK

N-—n

DM = min{D;: #J =N —n} = 25k0. (20)
Proof: We use the representation (19) of each scenario w; for i =1,..., N.
Let i,j € {1,...,N}, i # j, and let (ip,...,ix) and (jo,...,jx) denote the
corresponding (K + 1)-tuples of indices. Let [ € {1,...,K} be such that
iy # ji and i, = j, for r =0,...,0 — 1. Then we obtain

k
lwi = wjlleo = max |wf —wf|= max | (0] —o)
K
l l
>[S00 =) =3 2lin — jiolo" = 280 > 25% .
r=0 r=0

Hence, for each J C {1,..., N} with #J = N — n it holds that

. 1_ . N —n
D, = Zpim1?||wi — Wjlloo > Z N25k0 = TZ6kO .
e ® ieJ

It remains to show that there exists an index set J, such that #J, = N —n
and such that the lower bound is attained, i.e., D;, = %26’“0. To this end,
we consider the index set

L,:={ie{l,...,N}: sign(&fk"o) = —sign(6FT!) = —sign(sFoT2)1

ko +1 ko +2

and define J, := {1,...,N}\ L. Let T'r, denote the tree consisting of all
scenarios wj for i € I,. Figure 2 illustrates a detail of T'r, starting at a node

5k0
sko+1

sk0+2

Figure 2: Detail of the subtree 17«

at level kg — 1 and ending at level kg + 2. Hence, for the cardinality of I, and
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J« we obtain

3 . 1 N 3
#I, =2k~ .9 . 9K—ko=2 — oK — —_ anq #J, =N —#I, =-N.

4 4 4

Now we want to show that there exists an index ¢ € I, for each j € J, such
that ||w; — wj]leo = 26% holds. Let j € J. and w; be the related scenario. Let
us consider the behaviour of w; on the branching levels ko, ko + 1 and ko + 2.

Since j &€ I., we have to distinguish three cases each for (5;-“,30 = k0 (resp.
ko _ ko).
6j£0 = —gho):

Case (1):  okotl = (D)ghotl p ghot2 _ (2) ghot2

Jkp+1 Jko+2

Case (2): 6kt = (= )§ko+1 A kot — () gho+2

Jkp+1 Jko+2
Case (3): 5;»::;11 = (D) ghot1 A 5;»:4;22 — (J_r) Skot+2
Now, we consider the following (K + 1)-tuple (ip,...,ix ), where iy = ji for

all k & {ko, ko + 1, ko + 2} and

gko — (+)51€0 A grotl —

kg Tko+1 kg +2

5k0+1 A 5k0+2 _

(=) sko+2
= oreTe.
Let i € {1,...,d%} denote the corresponding index. Clearly, i € I, and,
consequently, it holds for the distance between w; and w; that

k
[|w; — wj”oo = maXK | Z((S{r - 6;r)|

—Yreees

r=0
k

]{:E{ko k0+1 k:o+2 Zk

|26k0 | , in case (1)
max{|26F|,|20%0 — 26%0F2|} | in case (2)
max{|26%0 ]|, |20%0 — 2§%0+L|} in case (3)

= 24k0

The latter equation holds due to the assumption that §%0 < max{§ko+1 §hot+2}
< 260, Hence, D, = #J* 26k0 = 3(5’“0 By considering subsets of J, having

cardinality in [1, 4N] the result follows for the general case, too. a

The second result provides a similar formula for the minimal distance between
a regular ternary tree and reduced subtrees containing n > %N scenarios.

Proposition 3.2 (7/9-solution)

Let a regular ternary scenario tree with N = 3% scenarios and K > 3 be
given. Let ko € arg ming <<y 6% with ko < K —2, max{gko L, gkot2} < 25k0,
Then the distance between any scenarios is not smaller than §*° and there are
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%N distinct pairs of scenarios such that the distance between the members of
each pair is exactly %°. In particular, it holds for each n € N with %N <
n<N:

) N —
D™ = min{Dy : #£J = N —n} = ——gko, (21)
Proof: Similarly as in Proposition 3.1 we obtain
Jeos = jloc > 8%
for all i,j € {1,...,N}, i # j, and, hence,
N -—n
— -mi C s > ko
Dy=> p; min [lw; = wjllso 2 5

ieJ

for each subset J of {1,..., N} with #J = N — n. Again we have to show
that there exists an index set J,, such that #.J.. = N —n and such that the
lower bound %6’“0 is attained with D, . We consider the index set

La:={ie{l,...,N}: (5;“;0 =0 A Pt £ A gRot2 L)

Tk 41 ko +2
k ko+1 __ ko+2 __
V(R £0 A Rl =0 A Rt = 0))

and define J,. := {1, ..., N}\ L. Let T'r.. denote the tree consisting of all
scenarios w; for ¢ € I,,.. Figure 3 illustrates a detail of T'r,, starting at a

sko
sko+1

sko+2

Figure 3: Detail of the subtree Tr«

node at level kg — 1 and ending at level kg 4+ 2. For the cardinality of I., and
J«x We obtain that
ko—1 K-ko2 _ 20K _ 2 7
#, =3""".6-377" 253 :§N and #J**:N—#I**:§N.

Similarly as in Proposition 3.1 it can be shown that there exists an index
i € L., for each j € J,. such that ||w; — wj|lc = 6 holds. Hence, D, =
#Jex gho = T5ko By considering subsets of J.. having cardinality in [1, ZN],
the result follows for the general case, too. a

Similar results are available under additional assumptions in case we have
the Euclidean norm instead of the maximum norm (see also [6]).
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4 Numerical Results

This section aims at reporting on numerical experience of testing and com-
paring the algorithms described in Section 2, namely, on backward reduction
of scenario sets, simultaneous backward reduction, fast forward selection. All
algorithms were implemented in C. The test runs were performed on an HP
9000 (780/J280) Compute-Server with 180 MHz frequency and 768 MByte
main memory under HP-UX 10.20, i.e., the same configuration as for the nu-
merical tests in [4]. We consider the situation where the function c is defined
by c(w,®) = [jw — @||ec (Vw,& € £2) and the original discrete probability
measure P is given in scenario tree form. More precisely, we use a test bat-
tery of three binary and ternary scenario trees, respectively. All test trees
are regular and, thus, the results of Section 3 apply. They will provide min-
imal (Fortet-Mourier) distances of P to reduced measures supported by n
scenarios if n is not too small.

Example 4.1 (binary scenario tree)

Let K =10,d=2,N =20 = 1024, p; = +,i=1,...,N, and (§*,...,6'0) =
(0.5,0.6,0.7,0.9,1.1,1.3,1.6,1.9,2.3,2.7). Figure 4 illustrates the original sce-
nario tree. Proposition 3.1 applies with ko = 1 and D" = % holds for
each & =256 <n < N.

Example 4.2 (ternary scenario tree)

Let K=6,d=3 N=3"=729,p;=%,i=1,...,N, and (6*,...,6%) =
(0.7,0.9,1.2,1.5,2.6,3.3). The tree is shown in Figure 5. Proposition 3.2 ap-
plies with ko = 1 and D™" = 0.7% holds for each % =162<n < N.

Example 4.3 (ternary load scenario tree)

We consider the scenario tree construction in Section 4 of [4] for the weekly
electrical load process of a German power utility (see also [5,8] for a descrip-
tion of a stochastic power management model and its solution by Lagrangian
relaxation). The original construction is based on an hourly discretization of
the weekly time horizon with branching points at t, = 24k for k =1,...,6,
and on a piecewise linear interpolation between the ty. The corresponding
mean shifted tree is illustrated in Figure 6. For a moment, we disregard all
non-branching points of the time discretization and consider the correspond-
ing mean shifted tree. The latter tree is a regular ternary scenario tree with
K=6N=3 =72,p =% fori=1,....N and 6* = o1,/ 55+
for k = 1,...,6, where o, denotes the standard deviation of the stochastic
load process at time t. Since, in this case, o, increases with increasing t,
Proposition 3.2 applies with ko = 1 and it holds that D" = §* N&” for
% =162 <n < N. Finally, it remains to remark that, due to the piecewise
linear structure of the scenarios and the choice of the mazimum norm for
defining c, the minimal distance D™™ does not change when including all
non-branching points.
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Figure 4: Original binary scenario tree

Number | Backward of |Simultaneous Fast Lower | Minimal
n of |Scenario Sets| Backward Forward Bound | Distance
Scenarios| (¢ |Time| ¢ |Time| (7 |Time
1 116.01 %| 2s |111.93 %| 96 s [100.00 %| 2 s [19.01 %|100.00 %
2 102.86 %| 2s |75.45 % |96 s [79.16 % | 2 s |18.99 % *
3 7854 % | 2s |66.54 % | 96s|63.96 % | 2s [18.97 % *
4 66.35 % | 2s [61.69 % | 96s |59.04 %| 3s [18.95 % *
5 64.81 % | 2s [57.95% |96 s |54.51 % | 3 s [18.92 % *
10 53.68 % | 2s |48.21 % | 95s|44.39 % | 4s [18.81 % *
20 39.16 % | 2s [40.15 % | 95s |35.84 % | 7s 1859 % *
30 35.61 % | 2s [34.70 % | 94 s |31.56 % |10 s |18.37 % *
50 3155 % | 2s [29.11 % | 93 s |26.75 % | 15s(17.93 % *
100 22.68 % | 2s |21.73 % | 89 s |20.97 % | 27 s [16.98 % *
150 1848 % | 2s |18.16 % | 85 s | 18.02 % | 38 s [16.06 % *
200 16.70 % | 2s |16.50 % | 81 s |16.11 % | 48 s [15.14 % *
250 1523 % | 2s |15.21 % | 76 s | 14.55 % | 56 s [14.22 % *
260 14.97 % | 2s |14.97 % | 75 s | 14.26 % | 58 s (14.04 %| 14.04 %
270 14.75 % | 2s |14.75 % | 74 s | 14.00 % | 60 s [13.86 %| 13.86 %
280 1453 % | 2s |14.53 % | 725 |13.76 % | 61 s |13.67 %| 13.67 %
290 14.30 % | 2s |14.30 % | 71 s | 13.54 % | 63 s (13.49 %| 13.49 %
300 14.08 % | 2s |14.08 % | 70 s | 13.32 % | 64 s [13.30 %| 13.30 %
350 1298 % | 2s |12.98 % | 645|12.39 % | 71 s [12.39 %| 12.39 %
400 11.88 % | 2s |11.88 % | 57 s |11.47 % | 76 s (11.47 %| 11.47 %
450 10.78 % | 2s |10.78 % | 51 s | 10.55 % | 81 s [10.55 %| 10.55 %
500 9.67 % | 2s | 9.67T% |45s| 9.63 % |85 s|9.63 % | 9.63 %
600 7T79% | 28 | 779% |33s | 7.79 % |91s|7.7T9% | 7.79 %
700 595 % | 2s | 595 % |22s| 5.95% |95s(5.95 % | 5.95 %
800 412 % | 2s | 412 % |12s| 412 % |97 (412 % | 412 %

Table 1: Results of binary scenario tree reduction
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Figure 5: Original ternary scenario tree

Number | Backward of |Simultaneous Fast Lower | Minimal
n of |Scenario Sets| Backward Forward Bound | Distance
Scenarios| (¢ |Time| ¢ |Time| (7 |Time
1 164.68 %| 1s |164.68 %| 32 s [100.00 %| 1 s |18.66 %|100.00 %
2 93.02 % | 1s [89.29 % |32s |80.70% | 1s |18.63 % *
3 72.84 % | 1s |69.77 % | 32s|61.40 % | 1s [18.60 % *
4 56.27 % | 1s |56.27 %|32s|56.59 %| 1s [18.56 % *
5 53.56 % | 1s |53.56 %|31s|51.78 % | 1s (1853 % *
6 50.85 % | 1s |50.85 % |31s[49.26 % | 1s |18.50 % *
10 45.27 % | 1s [44.69 % |31 s [41.78 % | 2 s |1837 % *
15 39.72 % | 1s [38.83 % |31s|36.09%| 3s (1820 % *
20 3392 % | 1s 3474 % | 31s|32.67%| 3s |18.06 % *
30 3022 % | 1s [30.74 % | 31s|28.41 % | 5s |17.77 % *
40 2720 % | 1s |27.56 %|31s|25.63%| 6s [17.50 % *
50 25.00 % | 1s |25.04 %|30s|23.44 % | 7s [17.25 % *
100 1848 % | 1s |17.58 % | 29s|17.88 % |13 s |15.98 % *
150 1538 % | 1s |15.33 % | 26s|15.25 % |18 s [14.71 % *
162 14.99 % | 1s |14.89 % | 26 s | 14.74 % | 19 s (14.40 %| 14.40 %
200 13.75 % | 1s |13.62 % | 24 s |13.52 % |22 s (13.44 %| 13.44 %
220 13.10 % | 1s |13.01 % | 23 s |12.94 % | 24 s (12.93 %| 12.93 %
230 1277 % | 1s |12.72 % | 225 |12.68 % | 24 s [12.68 %| 12.68 %
240 12.44 % | 1s [1243 % | 22s (1242 % | 25 s (12.42 %| 12.42 %
250 1217 % | 1s |12.17 % | 21 s | 12.17 % | 26 s [12.17 %| 12.17 %
300 10.90 % | 1s |10.90 % | 18 s | 10.90 % | 28 s [10.90 %| 10.90 %
350 963 % | 1s | 963% |15s| 9.63 % |31s|9.63%| 9.63 %
400 836 % | 1s | 836 % |12s| 836 % |32s(8.36 %| 8.36 %
500 582 % | 1s | 582 % | Ts | 5.82% |34s|582%| 5.82 %
600 328% | 1s | 328% | 3s | 3.28% |35s(3.28% | 3.28%

Table 2: Results of ternary scenario tree reduction
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Figure 6: Original load scenario tree

Number | Backward of |Simultaneous Fast Lower | Minimal
n of |Scenario Sets| Backward Forward Bound | Distance
Scenarios rel Time rel Time rel - ITime

1 121.09 %| 1s |117.85 %| 31 s {100.00 %| 1 s [16.31 %|100.00 %
98.80 % | 1s |90.19 % |31s|80.83 % | 1s [16.28 % *
75.88 % | 1s |72.25 % |31s|61.65 %| 1s (1624 %
73.75 % | 1s |59.71 % | 31s (5694 % | 1s (1621 %
62.04 % | 1s |5545 % |31s|5222%| 1s [16.18 %
6 56.57 % | 1s [52.24 % | 31s[49.57 % | 1s |16.14 %
10 46.86 % | 1s | 4520 % |31s|41.93 % | 2s [16.01 %
15 39.69 % | 1s |40.22 % |30s|35.76 % | 3s [15.85 %
20 35.16 % | 1s |36.75 % |30s{32.32%| 3s [15.69 %
30 30.08 % | 1s |31.20 % |30s|28.11 % | 5s [15.36 %
40 2777 % | 1s |27.74 % | 30s [25.25 % | 6s (15.13 %
50 2558 % | 1s [25.13 % |29s(23.02% | 7s |14.90 %
100 1952 % | 1s [17.31 % | 28 s | 16.86 % | 13 s {13.76 %
150 1452 % | 1s [13.96 % | 25 s | 13.67 % | 18 s {12.67 %
162 1329 % | 1s [13.26 % | 25 s | 13.15 % | 19 s |12.40 %| 12.40 %
200 12.04 % | 1s [11.77 % | 23 s | 11.74 % | 22 s |11.57 %| 11.57 %
220 1139 % | 1s |11.16 % |22 s |11.18 % | 24 s [11.13 %| 11.13 %
230 11.06 % | 1s [10.93 % | 22 s | 10.95 % | 24 s |10.91 %| 10.91 %
240 10.73 % | 1s [10.70 % | 21 s | 10.72 % | 25 s |10.70 %| 10.70 %
250 1048 % | 1s [10.48 % | 21 s |10.49 % | 26 s |10.48 %| 10.48 %
300 938 % | 1s | 938% | 18s| 9.38 % |28s(9.38% | 9.38%
350 829 % | 1s | 829 % |15s| 829 % |31s|8.29 % | 829 %
400 720% | 1s | 720% | 12s| 7.20 % |32s|7.20 % | 7.20 %
500 501 % | 1s | 501% | 7s | 501 % |34s|5.01 %| 5.01 %
600 282 % | 1s | 282% | 3s | 282 % 355|282 % | 282 %

T W N

* K X X X X X X ¥ ¥ ¥

*

Table 3: Results of load scenario tree reduction
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By using all 3 reduction algorithms the original scenario trees of the Examples
4.1-4.3 have been reduced. The corresponding tables contain the relative
accuracy and the running time of each algorithm needed to produce a reduced
tree with n scenarios. In addition, the tables provide the (relative) lower
bound (12) and the (relative) minimal distance D™ in per cent if available.
Here, “relative” means that the corresponding quantity is divided by the
minimal (.-distance of P and one of its scenarios endowed with unit mass. In
particular, the relative accuracy is defined as the quotient of the (.-distance
of the original measure P and the reduced measure @,, (having n scenarios)
and of the (.-distance of P and the measure d,,., i.e.,

re . CC(Pv Qn)
Cc l(Pv Qn) T mv (22)

where {w;}i=1,... ~n denotes the set of scenarios of P and w;~ is defined by

(o(P,0,.) =min{Dy:#J =N -1} = min (. (P,d,,). (23
ie{l,...,N}
T T T T T
40 fast forward
simultaneous backward -------
30 F
%
=
3
3
£ 20
[}
=
E
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0 L 1 I L |
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Number of scenarios

Figure 7: Running time for reducing the load scenario tree

Our numerical experience shows that all algorithms work reasonably well.
All algorithms reduce 50% of the scenarios of P in an optimal way. As ex-
pected, simultaneous backward reduction and fast forward selection produce
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more accurate trees than backward reduction of scenario sets at the expense
of higher running times. Our results also indicate that fast forward selection
is slightly more accurate than simultaneous backward reduction, although
both backward reduction variants are sometimes competitive. Fast forward
selection works much faster than the implementation of forward selection in
[4]. For instance, fast forward selection required 35 seconds to determine a
load scenario subtree (Example 4.3) containing 600 scenarios instead of 8149
seconds reported in [4]. In particular, in the case of deeply reduced trees, fast
forward selection works very fast and accurately.

Furthermore, it has turned out that the lower bound is very good (even
optimal) for large n, but extremely pessimistic for small n. Further, we ob-
serve that the reduction of half of the scenarios implies only a loss of about
10% of the relative accuracy. For instance, in case of Example 4.2 it is possible
to determine a subtree containing only 6 out of the originally 729 scenarios
that still carries about 50% of the relative accuracy.

Finally, we have a closer look at the numerical results of the load scenario
tree reduction. In particular, we compare the running times of simultaneous
backward reduction and fast forward selection in this case. Figure 7 displays
the running times of both algorithms and clearly shows their opposing algo-
rithmic strategies. It reflects the corresponding theoretical complexity results
(Propositions 2.3 and 2.6) and shows that the running time of fast forward
selection is smaller if n < % (approximately). This confirms again that the
forward selection concept will be favourable if n is small. Figures 8, 9 and
10 show the reduced load trees with 15 scenarios obtained by all algorithms.
The figures display the scenarios with line width proportional to scenario
probabilities.
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