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Abstrat. We onsider onvex stohasti programs with an (approximate) initial

probability distribution P having �nite support suppP , i.e., �nitely many senar-

ios. The behaviour of suh stohasti programs is stable with respet to perturba-

tions of P measured in terms of a Fortet-Mourier probability metri. The problem

of optimal senario redution onsists in determining a probability measure that

is supported by a subset of suppP of presribed ardinality and is losest to P in

terms of suh a probability metri. Two new versions of forward and bakward type

algorithms are presented for omputing suh optimally redued probability mea-

sures approximately. Compared to earlier versions, the omputational performane

(auray, running time) of the new algorithms has been improved onsiderably.

Numerial experiene is reported for di�erent instanes of senario trees with om-

putable optimal lower bounds. The test examples also inlude a ternary senario

tree representing the weekly eletrial load proess in a power management model.
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1 Introdution

Many stohasti deision problems may be formulated as onvex stohasti

programs of the form

minf

Z




f

0

(!; x)P (d!) : x 2 Xg ; (1)

where X � R

m

is a given nonempty losed onvex set, 
 a losed subset

of R

s

, the funtion f

0

from 
 � R

m

to R is ontinuous with respet to !

and onvex with respet to x, and P is a �xed Borel probability measure on


, i.e., P 2 P(
). For instane, this formulation overs (onvex) two- and

multi-stage stohasti programs with reourse.

Typial integrands f

0

(�; x), x 2 X , in onvex stohasti programming

problems are nondi�erentiable, but loally Lipshitz ontinuous on 
. In the

following, we assume that there exist a ontinuous and nondereasing funtion

h : R

+

! R

+

with h(0) = 0, a nondereasing funtion g : R

+

! R

+

n f0g

and some �xed element !

0

2 R

s

suh that

jf

0

(!; x)� f

0

(~!; x)j � g(kxk)(!; ~!) (2)
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for eah x 2 X , where the funtion  : 
 �
 ! R is given by

(!; ~!) := maxf1; h(k! � !

0

k); h(k~! � !

0

k)gk! � ~!k;8!; ~! 2 
: (3)

This means that the funtion h(k � �!

0

k) desribes the growth of the loal

Lipshitz onstants of f

0

(�; x) in balls around !

0

with respet to some norm

k � k on R

s

. Polynomial growth of h, i.e., h(r) = r

p�1

for r 2 R

+

and some

p � 1, represents an important speial ase. For instane, in [11℄ it is shown

that the hoie p = 2 is appropriate for two-stage models with stohastiity

entering pries and right-hand sides.

In [4,11℄ it is shown that the model (1) is stable with respet to small

perturbations in terms of the probability metri

�



(P;Q) := sup

f2F



j

Z




f(!)P (d!)�

Z




f(!)Q(d!)j ;

where F



is the lass of ontinuous funtions de�ned by

F



= ff : 
 ! R : f(!)� f(~!) � (!; ~!) for all !; ~! 2 
g

and probability measures P and Q in the set

P



(
) := fQ 2 P(
) :

Z




(!; !

0

)Q(d!) <1g:

The distane �



is a probability metri on P



(
) and is alled a Fortet-Mourier

(type) metri. In this generality, it is introdued in [13℄ and further studied

in [10,12℄. The metri �



may be estimated from above by the Kantorovih

funtional �̂



, i.e., it holds for any P;Q 2 P



(
) that

�



(P;Q) � �̂



(P;Q); where (4)

�̂



(P;Q) := inff

Z


�


(!; ~!)�(d(!; ~!)) : � 2 P(
 �
); �(B �
) = P (B);

�(
 �B) = Q(B) for all B 2 Bg

and the minimization problem de�ning �̂



is known as Monge-Kantorovih

mass transportation problem (f. [10,12℄). Equality holds in (4) if h � 1.

As an important instane let us mention that the initial probability mea-

sure P is itself disrete with �nitely many atoms (or senarios) or that P

represents a good disrete approximation of the original measure. Its support

may be very large so that, for reasons of omputational omplexity and time

limitation, this probability measure is further approximated by a probability

measure Q arried by a (muh) smaller subset of senarios. In this ase, the

distanes �



(P;Q) and �̂



(P;Q) represent optimal values of �nite-dimensional

linear programs. For example, the Monge-Kantorovih mass transportation
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problem de�ning �̂



redues for P =

P

N

i=1

p

i

Æ

!

i

and Q =

P

N

j=1;j 62J

q

j

Æ

!

j

to

the well known linear transportation problem

�̂



(P;Q) = minf

N

X

i;j=1

j 62J

(!

i

; !

j

)�

ij

: �

ij

� 0;

N

X

i=1

�

ij

= q

j

;

N

X

j=1

j 62J

�

ij

= p

i

g

where J � f1; : : : ; Ng and Æ

!

2 P(
) denotes the Dira measure plaing

unit mass at !. In Setion 2 it will turn out that metri �̂



is very useful to

evaluate distanes of spei� probability measures obtained during a senario-

redution proess.

Various redution rules appear in the literature in the ontext of reent

large-sale real-life appliations. We refer to the orresponding disussion in

[4℄, to the reent work [3℄ on senario generation and redution, and to the

senario generation approah in [9℄ based on Fortet-Mourier distanes.

In the present paper, we follow the approah for reduing senarios of

a given disrete probability measure P =

P

N

i=1

p

i

Æ

!

i

developed in [4℄. It

onsists in determining an index set J

�

� f1; : : : ; Ng of given ardinality

#J

�

= N � n and a probability measure Q

�

=

P

N

j=1;j 62J

�

q

�

j

Æ

!

j

suh that

�̂



(P;Q

�

) = minf�̂



(P;

N

X

j=1

j 62J

q

j

Æ

!

j

) : J � f1; : : : ; Ng;#J = N � n; (5)

X

j 62J

q

j

= 1; q

j

� 0; j 62 Jg:

Problem (5) may be reformulated as a mixed-integer program.

In Setion 2 we derive bounds for (5), develop two new heuristi algo-

rithms (fast forward seletion and simultaneous bakward redution) for solv-

ing (5) and study their omplexity and their relations to the algorithms in

[4℄. Indeed, the fast forward seletion algorithm turns out to be an eÆient

implementation of the forward seletion proedure of [4℄, generating the same

redued probability measures.

In order to ompare the performane of the algorithms we provide, in

Setion 3, expliit formulas for the minimal distanes (5) in ase that h � 1,

P is a regular (binary or ternary) senario tree (i.e., a tree having a spei�

struture) and Q

�

is a redued tree with �xed ardinality n.

In Setion 4 we report on numerial experiene for the redution of reg-

ular binary and ternary senario trees. The test trees also inlude a ternary

senario tree representing the weekly eletrial load proess in a power man-

agement model, whih was onsidered in [4℄. It turns out that the new im-

plementation of the fast forward seletion algorithm is about 10-100 times

faster than the earlier version. When omparing auray, fast forward sele-

tion performed best, and simultaneous bakward redution performed better

than the bakward redution variant of [4℄ in most ases, but at the expense
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of higher running times. When omparing running times, fast forward sele-

tion (simultaneous bakward redution) is preferable in ase of approximately

n <

N

4

(n >

N

4

).

2 Senario Redution

We onsider the stohasti program (1) and selet the funtion  of form (3)

suh that the Lipshitz ondition (2) is satis�ed. Let the initial probability

distribution P be disrete and arried by �nitely many senarios !

i

2 
 with

weights p

i

> 0, i = 1; : : : ; N , and

P

N

i=1

p

i

= 1, i.e., P =

P

N

i=1

p

i

Æ

!

i

. Let

n 2 N, n < N , J � f1; : : : ; Ng with #J = N � n and onsider the probabil-

ity measure Q having senarios !

j

with probabilities q

j

, j 2 f1; : : : ; NgnJ ,

i.e., ompared to P , the measure Q =

P

j 62J

q

j

Æ!

j

is redued by deleting all

senarios !

j

, j 2 J , and by assigning new probabilisti weights q

j

to eah se-

nario !

j

, j 62 J . The optimal redution onept desribed above reommends

to onsider the probability distane

D(J ; q) := �̂



(

N

X

i=1

p

i

Æ

!

i

;

X

j 62J

q

j

Æ

!

j

)

depending on the index set J and q. The optimal redution onept (5)

says that the index set J

�

and the optimal weight q

�

are seleted suh that

D(J

�

; q

�

) = minfD(J ; q) : J � f1; : : : ; Ng;#J = N � n;

P

j 62J

q

j

= 1; q

j

�

0; j 62 Jg. First we reall the following expliit formula for minfD(J ; q) :

P

j 62J

q

j

= 1; q

j

� 0; j 62 Jg when the index set J � f1; : : : ; Ng is �xed ([4℄,

Theorem 3.1).

Theorem 2.1 (redistribution)

Given J � f1; : : : ; Ng we have

D

J

= minfD(J ; q) : q

j

� 0;

X

j 62J

q

j

= 1g =

X

i2J

p

i

min

j 62J

(!

i

; !

j

): (6)

Moreover, the minimum is attained at

�q

j

= p

j

+

X

i2J

j

p

i

; for eah j 62 J; (7)

where J

j

:= fi 2 J : j = j(i)g and j(i) 2 argmin

j 62J

(!

i

; !

j

) for eah i 2 J .

Formula (7) will be alled optimal redistribution rule. It reveals that the new

probability of a preserved senario is equal to the sum of its former probability

and of all probabilities of deleted senarios that are losest to it with respet

to the \distane"  on 
.



Senario Redution Algorithms in Stohasti Programming 5

Next we disuss the optimal hoie of an index set J for senario redution

with �xed ardinality #J . Theorem 2.1 motivates us to onsider the following

formulation of the optimal redution problem for given n 2 N, n < N :

minfD

J

:=

X

i2J

p

i

min

j 62J

(!

i

; !

j

) : J � f1; : : : ; Ng;#J = N � ng: (8)

Problem (8) means that the set f1; : : : ; Ng has to be overed by two sets

J � f1; : : : ; Ng and f1; : : : ; NgnJ suh that J has �xed ardinalityN�n and

the over has minimal ost D

J

. Thus, (8) represents a set-overing problem.

It may be formulated as a 0-1 integer program (f. [7℄) and is NP-hard. Sine

eÆient solution algorithms are hardly available in general, we are looking

for (fast) heuristi algorithms exploiting the struture of the osts D

J

. In the

spei� ases of n = 1 and n = N � 1, (8) may be solved quite easily.

If #J = 1, the problem (8) takes the form

min

l2f1;:::;Ng

p

l

min

j 6=l

(!

l

; !

j

): (9)

If the minimum is attained at l

�

2 f1; : : : ; Ng, i.e., the senario !

l

�

is deleted,

the redistribution rule (7) yields the probability distribution of the redued

measure

�

Q. If j

�

2 argmin

j 6=l

�

(!

l

�

; !

j

), then it holds that �q

j

�

= p

j

�

+ p

l

�

and �q

l

= p

l

for all l 62 fl

�

; j

�

g. Of ourse, the optimal deletion of a single

senario may be repeated reursively until a presribed number N � n of

senarios is deleted. This strategy reommends a oneptual algorithm alled

bakward redution.

If #J = N � 1, the problem (8) is of the form

min

u2f1;:::;Ng

N

X

i=1

p

i

(!

i

; !

u

) : (10)

If the minimum is attained at u

�

2 f1; : : : ; Ng, only the senario !

u

�

is kept

and the redistribution rule (7) provides �q

u

�

= p

u

�

+

P

i 6=u

�

p

i

= 1. This

strategy provides the basi onept of a seond oneptual algorithm alled

forward seletion.

First, we take a loser look at the bakward redution strategy. A bak-

ward type algorithm was already suggested in [4,6℄. It determines a redued

senario set by reduing N �n senarios from the original set of senarios as

follows. Let the indies l

i

be seleted suh that

l

i

2 arg min

l2f1;:::;Ngnfl

1

;:::;l

i�1

g

p

l

min

j 6=l

(!

l

; !

j

) ; i = 1; : : : ; N � n: (11)

Then

lb :=

N�n

X

i=1

p

l

i

min

j 6=l

i

(!

l

i

; !

j

) (12)
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an be shown to be a lower bound of the optimal value of (8). Furthermore,

the index set fl

1

; : : : ; l

N�n

g is a solution of (8) if the set argmin

j 6=l

i

(!

l

i

; !

j

)

nfl

1

; : : : ; l

i�1

; l

i+1

; : : : ; l

N�n

g is nonempty for all i = 1; : : : ; N�n ([4,6℄). This

property is the reason for developing the following algorithm. In the �rst step,

an index n

1

with n � n

1

< N is determined using formula (11) suh that

J

1

= fl

1

; : : : ; l

N�n

1

g is a solution of (8) for n = n

1

. Next, the redistribution

rule of Theorem 2.1 is used. This leads to the redued probability measure

P

1

ontaining all senarios indexed by f1; : : : ; NgnJ

1

. If n < n

1

, the measure

P

1

is further redued by deleting all senarios belonging to some index set

J

2

with #J

2

= n

1

� n

2

and n � n

2

< n

1

, whih is obtained in the same

way by using formula (11). This proedure is ontinued until, in step r, we

have n

r

= n and J = [

r

i=1

J

i

. Finally, the redistribution rule (7) is used again

for the index set J . This algorithm is alled bakward redution of senario

sets. Yet, there are many variants for hoosing the next senario in eah step.

Often there exist several andidates for deletion. In Setion 4 we use a speial

implementation of bakward redution of senario sets.

Another partiular variant overs the ase that #J

i

= 1 for eah i =

1; : : : ; N � n. This variant (without the �nal redistribution) was already an-

nouned in [2,5℄. However, numerial tests have shown that the bakward

redution of senario sets provides slightly more aurate results ompared

to bakward redution of single senarios.

Next we present a new modi�ation of the bakward redution priniple.

The major di�erene onsists in inluding all deleted senarios into eah

bakward step simultaneously. Namely, the next index l

i

is determined as a

solution of the optimization problem

l

i

2 arg min

l62J

[i�1℄

X

k2J

[i�1℄

[flg

p

k

min

j 62J

[i�1℄

[flg

(!

k

; !

j

): (13)

A more detailed desription of the whole algorithm, whih is alled simulta-

neous bakward redution, is given in

Algorithm 2.2 (simultaneous bakward redution)

Step 1: 

kj

:= (!

k

; !

j

) ; k; j = 1; : : : ; N ;

Sorting of f

kj

: j = 1; : : : ; Ng ; k = 1; : : : ; N ;



[1℄

ll

:= min

j 6=l



lj

; l = 1; : : : ; N ;

z

[1℄

l

:= p

l



[1℄

ll

; l = 1; : : : ; N ;

l

1

2 arg min

l2f1;:::;Ng

z

[1℄

l

; J

[1℄

:= fl

1

g :

Step i: 

[i℄

kl

:= min

j 62J

[i�1℄

[flg



kj

; l 62 J

[i�1℄

; k 2 J

[i�1℄

[ flg ;

z

[i℄

l

:=

X

k2J

[i�1℄

[flg

p

k



[i℄

kl

; l 62 J

[i�1℄

;
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l

i

2 arg min

l62J

[i�1℄

z

[i℄

l

; J

[i℄

:= J

[i�1℄

[ fl

i

g :

Step N-n+1: Redistribution by (7):

Algorithm 2.2 allows the following interpretation. Its �rst step orresponds

to the optimal deletion of only one senario. For i > 1, l

i

is hosen suh that

D

J

[i�1℄

[fl

i

g

= min

l62J

[i�1℄

D

J

[i�1℄

[flg

; (14)

where D

J

[i�1℄

[flg

is de�ned in (8). Hene, the index l

i

is de�ned reursively

suh that the index set fl

1

; : : : ; l

i�1

; l

i

g will be optimal provided that the

previous indies fl

1

; : : : ; l

i�1

g are �xed.

Sine running times are important harateristis of senario redution

algorithms, we study the omputational omplexity, i.e., the number of el-

ementary arithmeti operations, of Algorithm 2.2. In [6℄ it is shown that a

proper implementation (without sorting) of bakward redution of senario

sets requires a omplexity of O(N

2

) operations (uniformly with respet to

n). When omparing formulas (11) and (13), one noties an inrease of om-

plexity in the ost struture of (13) for determining l

i

. More preisely, step i

requires the omputation of N � i+1 sums, eah of whih onsists of i sum-

mands and N�i+1 omparisons. Eah summand represents a produt of two

numbers. One of these fators requires about 2 operations for determining

the minimum. The sorting proess in step 1 requires O(N

2

logN) operations

([1℄, Chapter 1). When exluding the omplexity of evaluating the funtion

 and that of the redistribution rule, altogether we obtain b

N

(n) operations

for seleting a subset of n senarios, where

b

N

(n) := O(N

2

logN) +

N�n

X

i=1

(3i+ 1)(N � i+ 1) (15)

= n

3

� n

2

(

3

2

N +

1

2

)� n

3

2

(N + 1) + a(N)

and a(N) :=

N

3

2

+O(N

2

logN) + 2N

2

+

3

2

N:

Proposition 2.3 The omputational omplexity for reduing a set of N 2 N

senarios to a subset ontaining n 2 f1; : : : ; Ng senarios onsists of b

N

(n)

(see (15)) operations when using simultaneous bakward redution.

Hene, the omplexity of simultaneous bakward redution is inreasing with

dereasing n and is, of ourse, minimal at n = N . This result orresponds to

the running time observations of our numerial tests reported in Setion 4.

Next, we desribe a strategy that is just the opposite of bakward re-

dution. Its oneptual idea is based on formula (10) and onsists in the

reursive seletion of senarios that will not be deleted. The basi onept

of suh an algorithm is given in [4℄ and alled forward seletion. Forward
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seletion determines an index set fu

1

; : : : ; u

n

g suh that

u

i

2 arg min

u2J

[i�1℄

X

k2J

[i�1℄

nfug

p

k

min

j 62J

[i�1℄

nfug

(!

k

; !

j

); (16)

for i = 1; : : : ; n, where J

[i�1℄

:= f1; : : : ; Ngnfu

1

; : : : ; u

i�1

g. The �rst step

of this proedure oinides with the solution of problem (10). After the last

step, the optimal redistribution rule has to be used to determine the redued

probability measure. Formula (16) allows the same interpretation as in the

ase of simultaneous bakward redution. It is again losely related to the

struture of D

J

in (8). Now, let us onsider the following algorithm, whih is

easily implementable and is alled fast forward seletion.

Algorithm 2.4 (fast forward seletion)

Step 1: 

[1℄

ku

:= (!

k

; !

u

) ; k; u = 1; : : : ; N ;

z

[1℄

u

:=

N

X

k=1

k 6=u

p

k



[1℄

ku

; u = 1; : : : ; N ;

u

1

2 arg min

u2f1;:::;Ng

z

[1℄

u

; J

[1℄

:= f1; : : : ; Ngnfu

1

g :

Step i: 

[i℄

ku

:= minf

[i�1℄

ku

; 

[i�1℄

ku

i�1

g ; k; u 2 J

[i�1℄

;

z

[i℄

u

:=

X

k2J

[i�1℄

nfug

p

k



[i℄

ku

; u 2 J

[i�1℄

;

u

i

2 arg min

u2J

[i�1℄

z

[i℄

u

; J

[i℄

:= J

[i�1℄

nfu

i

g :

Step n+1: Redistribution by (7):

Theorem 2.5 The index set fu

1

; : : : ; u

n

g determined by Algorithm 2.4 is a

solution of the forward seletion priniple, i.e., u

i

satis�es ondition (16) for

eah i = 1; : : : ; n. Furthermore, z

[i℄

u

i

= D

J

[i℄

holds for eah i = 1; : : : ; n, where

D

J

[i℄

is de�ned in (8).

Proof: For i = 1 the result is immediate. For i = 2; : : : ; N , it holds that

u

i

2 arg min

u2J

[i�1℄

z

[i℄

u

= arg min

u2J

[i�1℄

X

k2J

[i�1℄

nfug

p

k



[i℄

ku

= arg min

u2J

[i�1℄

X

k2J

[i�1℄

nfug

p

k

minf

[i�1℄

ku

; 

[i�1℄

ku

i�1

g

= arg min

u2J

[i�1℄

X

k2J

[i�1℄

nfug

p

k

minf

[i�2℄

ku

; 

[i�2℄

ku

i�1

; 

[i�2℄

ku

i�2

g

.

.

.
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= arg min

u2J

[i�1℄

X

k2J

[i�1℄

nfug

p

k

minf

[1℄

ku

; 

[1℄

ku

i�1

; : : : ; 

[1℄

ku

1

g

= arg min

u2J

[i�1℄

X

k2J

[i�1℄

nfug

p

k

min

j 62J

[i�1℄

nfug

(!

k

; !

j

)

= arg min

u2J

[i�1℄

D

J

[i�1℄

nfug

: (17)

Hene, the index u

i

satis�es ondition (16) and it holds that

z

[i℄

u

i

=

X

k2J

[i℄

p

k

min

j 62J

[i℄

(!

k

; !

j

) = D

J

[i℄

(i = 1; : : : ; n): 2

The onditions (14) and (17) show that both algorithms are based on the

same basi idea for seleting the next (senario) index. The only di�erene

onsists in the use of bakward and forward strategies, respetively, i.e., in

determining the sets of deleted and remaining senarios, respetively.

As in the ase of bakward redution, the omputational omplexity of Algo-

rithm 2.4 is of interest. Step i requires (N � i+1)

2

operations for omputing



[i℄

ku

(k; u 2 J

[i�1℄

), (N � i + 1)(N � i) operations for z

[i℄

u

(u 2 J

[i�1℄

) and

N � i+ 1 operations for determining u

i

. Altogether, we obtain

f

N

(n) :=

n

X

i=1

2(N � i+ 1)

2

=

2

3

n

3

� n

2

(2N + 1) + n(2N

2

+ 2N +

1

3

) (18)

operations for seleting a subset of n senarios. Hene, we have

Proposition 2.6 The omputational omplexity of fast forward seletion for

reduing a set of N 2 N senarios to a subset ontaining n 2 f1; : : : ; Ng

senarios onsists of f

N

(n) (see (18)) operations.

Hene, the omplexity of fast forward seletion inreases with inreasing n

and is maximal if n = N . Thus, the use of fast forward seletion will be

reommendable if the number n of remaining senarios satis�es the ondition

f

N

(n) � b

N

(n). The number n

�

= n

�

(N) suh that f

N

(n

�

) = b

N

(n

�

) holds,

is a zero of a polynomial of degree 3 that depends nonlinearly on N . It turns

out that n

�

�

N

4

for large N .

3 Minimal distanes of senario trees

All algorithms disussed in the previous setion provide only approximate

solutions of (8) in general. Sine error estimates for these algorithms are not

available, we need test examples of disrete original and redued measures

of di�erent sale with known (optimal) �



-distanes. Beause of their pra-

tial importane, we onsider probability measures with senarios exhibiting
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a tree struture. In partiular, we derive optimal distanes of ertain regu-

larly strutured original senario trees and of their redued trees ontaining

di�erent numbers of senarios.

We onsider a senario tree that represents a stohasti proess with pa-

rameter set f0; 1; : : : ;Kg for some K 2 N and with senarios (or paths)

branhing at eah parameter k 2 f0; 1; : : : ;Kg with branhing degree d (i.e.,

eah node of the tree has d suessors). In ase of d = 2 and d = 3, the

tree will be alled binary and ternary, respetively. Hene, the tree on-

sists of N := d

K

senarios !

i

= (!

0

i

; : : : ; !

K

i

), i = 1; : : : ; d

K

, and has

!

0

1

= : : : = !

0

d

K

as its root node. Furthermore, let all senarios have equal

probabilities p

i

=

1

d

K

; i = 1; : : : ; d

K

. Suh a senario tree will be alled regular

if, for eah k 2 f0; : : : ;Kg, there exist symmetri sets V

k

:= fÆ

k

1

; : : : ; Æ

k

d

g � R

suh that

!

k

i

=

k

X

j=0

Æ

j

i

j

(k 2 f0; : : : ;Kg) ; (19)

where a (K + 1)-tuple of indies (i

0

; : : : ; i

K

) 2 f1; : : : ; dg

K+1

orresponds

to eah index i = 1; : : : ; d

K

. We say that V

k

is symmetri if Æ 2 V

k

implies

�Æ 2 V

k

. In ase of d = 2 and d = 3, this means that the sets V

k

are

of the form V

k

= f�Æ

k

; Æ

k

g and V

k

= f�Æ

k

; 0; Æ

k

g, respetively, for some

Æ

k

2 R

+

, and it holds Æ

k

i

k

= (2i

k

� 3)Æ

k

and Æ

k

i

k

= (i

k

� 2)Æ

k

, respetively, for

k = 0; : : : ;K. Clearly, we have Æ

0

1

= : : : = Æ

0

d

= 0 for regular trees. Figure 1





 

  

  

�

�

�

T

T

T

�

�

�

B

B

B

�

�

�

B

B

B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Æ

0

= 0

Æ

1

= 2

Æ

2

= 1

Æ

3

= 3

-5 0 5

Figure 1: Binary senario tree

shows an example of a regular binary senario tree with K = 3 and N = 2

3

senarios. We speify the funtion  in (3) by setting h � 1 and by hoosing

the maximum norm k � k

1

on R

K+1

, i.e.,

(!; ~!) := k! � ~!k

1

= max

k=0;:::;K

j!

k

� ~!

k

j (!; ~! 2 
):
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Our �rst result provides an expliit formula for the minimal distane between

a regular binary tree and redued subtrees with at least n =

N

4

senarios.

Proposition 3.1 (3/4-solution)

Let a regular binary senario tree with N = 2

K

senarios and K � 3 be given.

Let k

0

2 argmin

1�k�K

Æ

k

, k

0

� K � 2 and maxfÆ

k

0

+1

; Æ

k

0

+2

g � 2Æ

k

0

. Then

the distane between any senarios is not smaller than 2Æ

k

0

and there are

3

4

N

distint pairs of senarios suh that the distane between the members of eah

pair is exatly 2Æ

k

0

. In partiular, it holds for eah n 2 N with

N

4

� n < N :

D

min

n

:= minfD

J

: #J = N � ng =

N � n

N

2Æ

k

0

: (20)

Proof: We use the representation (19) of eah senario !

i

for i = 1; : : : ; N .

Let i; j 2 f1; : : : ; Ng, i 6= j, and let (i

0

; : : : ; i

K

) and (j

0

; : : : ; j

K

) denote the

orresponding (K + 1)-tuples of indies. Let l 2 f1; : : : ;Kg be suh that

i

l

6= j

l

and i

r

= j

r

for r = 0; : : : ; l � 1. Then we obtain

k!

i

� !

j

k

1

= max

k=0;:::;K

j!

k

i

� !

k

j

j = max

k=0;:::;K

j

k

X

r=0

(Æ

r

i

r

� Æ

r

j

r

)j

� j

l

X

r=0

(Æ

r

i

r

� Æ

r

j

r

)j =

l

X

r=0

2ji

r

� j

r

jÆ

r

= 2Æ

l

� 2Æ

k

0

:

Hene, for eah J � f1; : : : ; Ng with #J = N � n it holds that

D

J

=

X

i2J

p

i

min

j 62J

k!

i

� !

j

k

1

�

X

i2J

1

N

2Æ

k

0

=

N � n

N

2Æ

k

0

:

It remains to show that there exists an index set J

�

suh that #J

�

= N � n

and suh that the lower bound is attained, i.e., D

J

�

=

N�n

N

2Æ

k

0

. To this end,

we onsider the index set

I

�

:= fi 2 f1; : : : ; Ng : sign(Æ

k

0

i

k

0

) = �sign(Æ

k

0

+1

i

k

0

+1

) = �sign(Æ

k

0

+2

i

k

0

+2

)g

and de�ne J

�

:= f1; : : : ; Ng n I

�

. Let Tr

�

denote the tree onsisting of all

senarios !

i

for i 2 I

�

. Figure 2 illustrates a detail of Tr

�

starting at a node

r

r

r

r

r r

�

�

�

�

�

�

�

�

�

�

�

�

Æ

k

0

Æ

k

0

+1

Æ

k

0

+2

Figure 2: Detail of the subtree Tr

�

at level k

0

� 1 and ending at level k

0

+2. Hene, for the ardinality of I

�

and
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J

�

we obtain

#I

�

= 2

k

0

�1

� 2 � 2

K�k

0

�2

=

1

4

2

K

=

N

4

and #J

�

= N �#I

�

=

3

4

N :

Now we want to show that there exists an index i 2 I

�

for eah j 2 J

�

suh

that k!

i

�!

j

k

1

= 2Æ

k

0

holds. Let j 2 J

�

and !

j

be the related senario. Let

us onsider the behaviour of !

j

on the branhing levels k

0

; k

0

+1 and k

0

+2.

Sine j 62 I

�

, we have to distinguish three ases eah for Æ

k

0

j

k

0

= Æ

k

0

(resp.

Æ

k

0

j

k

0

= �Æ

k

0

):

Case (1): Æ

k

0

+1

j

k

0

+1

=

(�)

+

Æ

k

0

+1

^ Æ

k

0

+2

j

k

0

+2

=

(�)

+

Æ

k

0

+2

Case (2): Æ

k

0

+1

j

k

0

+1

=

(�)

+

Æ

k

0

+1

^ Æ

k

0

+2

j

k

0

+2

=

(+)

�

Æ

k

0

+2

Case (3): Æ

k

0

+1

j

k

0

+1

=

(+)

�

Æ

k

0

+1

^ Æ

k

0

+2

j

k

0

+2

=

(�)

+

Æ

k

0

+2

Now, we onsider the following (K + 1)-tuple (i

0

; : : : ; i

K

), where i

k

= j

k

for

all k 62 fk

0

; k

0

+ 1; k

0

+ 2g and

Æ

k

0

i

k

0

=

(+)

�

Æ

k

0

^ Æ

k

0

+1

i

k

0

+1

=

(�)

+

Æ

k

0

+1

^ Æ

k

0

+2

i

k

0

+2

=

(�)

+

Æ

k

0

+2

:

Let i 2 f1; : : : ; d

K

g denote the orresponding index. Clearly, i 2 I

�

and,

onsequently, it holds for the distane between !

i

and !

j

that

k!

i

� !

j

k

1

= max

k=0;:::;K

j

k

X

r=0

(Æ

r

i

r

� Æ

r

j

r

)j

= max

k2fk

0

;k

0

+1;k

0

+2g

j

k

X

r=k

0

(Æ

r

i

r

� Æ

r

j

r

)j

=

8

<

:

j2Æ

k

0

j , in ase (1)

maxfj2Æ

k

0

j; j2Æ

k

0

� 2Æ

k

0

+2

jg , in ase (2)

maxfj2Æ

k

0

j; j2Æ

k

0

� 2Æ

k

0

+1

jg , in ase (3)

= 2Æ

k

0

:

The latter equation holds due to the assumption that Æ

k

0

� maxfÆ

k

0

+1

; Æ

k

0

+2

g

� 2Æ

k

0

. Hene, D

J

�

=

#J

�

N

2Æ

k

0

=

3

2

Æ

k

0

. By onsidering subsets of J

�

having

ardinality in [1;

3

4

N ℄, the result follows for the general ase, too. 2

The seond result provides a similar formula for the minimal distane between

a regular ternary tree and redued subtrees ontaining n �

2

9

N senarios.

Proposition 3.2 (7/9-solution)

Let a regular ternary senario tree with N = 3

K

senarios and K � 3 be

given. Let k

0

2 argmin

1�k�K

Æ

k

with k

0

� K�2, maxfÆ

k

0

+1

; Æ

k

0

+2

g � 2Æ

k

0

.

Then the distane between any senarios is not smaller than Æ

k

0

and there are
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7

9

N distint pairs of senarios suh that the distane between the members of

eah pair is exatly Æ

k

0

. In partiular, it holds for eah n 2 N with

2

9

N �

n < N :

D

min

n

= minfD

J

: #J = N � ng =

N � n

N

Æ

k

0

: (21)

Proof: Similarly as in Proposition 3.1 we obtain

k!

i

� !

j

k

1

� Æ

k

0

for all i; j 2 f1; : : : ; Ng, i 6= j, and, hene,

D

J

=

X

i2J

p

i

min

j 62J

k!

i

� !

j

k

1

�

N � n

N

Æ

k

0

for eah subset J of f1; : : : ; Ng with #J = N � n. Again we have to show

that there exists an index set J

��

suh that #J

��

= N �n and suh that the

lower bound

N�n

N

Æ

k

0

is attained with D

J

��

. We onsider the index set

I

��

:= fi 2 f1; : : : ; Ng : (Æ

k

0

i

k

0

= 0 ^ Æ

k

0

+1

i

k

0

+1

6= 0 ^ Æ

k

0

+2

i

k

0

+2

6= 0)

_ (Æ

k

0

i

k

0

6= 0 ^ Æ

k

0

+1

i

k

0

+1

= 0 ^ Æ

k

0

+2

i

k

0

+2

= 0)g

and de�ne J

��

:= f1; : : : ; NgnI

��

. Let Tr

��

denote the tree onsisting of all

senarios !

i

for i 2 I

��

. Figure 3 illustrates a detail of Tr

��

starting at a

r

rr

r

r r r r r

r r

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Æ

k

0

Æ

k

0

+2

Æ

k

0

+1

Figure 3: Detail of the subtree Tr

��

node at level k

0

� 1 and ending at level k

0

+2. For the ardinality of I

��

and

J

��

we obtain that

#I

��

= 3

k

0

�1

� 6 � 3

K�k

0

�2

=

2

9

3

K

=

2

9

N and #J

��

= N �#I

��

=

7

9

N :

Similarly as in Proposition 3.1 it an be shown that there exists an index

i 2 I

��

for eah j 2 J

��

suh that k!

i

� !

j

k

1

= Æ

k

0

holds. Hene, D

J

��

=

#J

��

N

Æ

k

0

=

7

9

Æ

k

0

. By onsidering subsets of J

��

having ardinality in [1;

7

9

N ℄,

the result follows for the general ase, too. 2

Similar results are available under additional assumptions in ase we have

the Eulidean norm instead of the maximum norm (see also [6℄).
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4 Numerial Results

This setion aims at reporting on numerial experiene of testing and om-

paring the algorithms desribed in Setion 2, namely, on bakward redution

of senario sets, simultaneous bakward redution, fast forward seletion. All

algorithms were implemented in C. The test runs were performed on an HP

9000 (780/J280) Compute-Server with 180 MHz frequeny and 768 MByte

main memory under HP-UX 10.20, i.e., the same on�guration as for the nu-

merial tests in [4℄. We onsider the situation where the funtion  is de�ned

by (!; ~!) := k! � ~!k

1

(8!; ~! 2 
) and the original disrete probability

measure P is given in senario tree form. More preisely, we use a test bat-

tery of three binary and ternary senario trees, respetively. All test trees

are regular and, thus, the results of Setion 3 apply. They will provide min-

imal (Fortet-Mourier) distanes of P to redued measures supported by n

senarios if n is not too small.

Example 4.1 (binary senario tree)

LetK = 10, d = 2, N = 2

10

= 1024, p

i

=

1

N

, i = 1; : : : ; N , and (Æ

1

; : : : ; Æ

10

) =

(0:5; 0:6; 0:7; 0:9; 1:1; 1:3; 1:6; 1:9; 2:3; 2:7). Figure 4 illustrates the original se-

nario tree. Proposition 3.1 applies with k

0

= 1 and D

min

n

=

N�n

N

holds for

eah

N

4

= 256 � n < N .

Example 4.2 (ternary senario tree)

Let K = 6, d = 3, N = 3

6

= 729, p

i

=

1

N

, i = 1; : : : ; N , and (Æ

1

; : : : ; Æ

6

) =

(0:7; 0:9; 1:2; 1:5; 2:6; 3:3). The tree is shown in Figure 5. Proposition 3.2 ap-

plies with k

0

= 1 and D

min

n

= 0:7

N�n

N

holds for eah

2N

9

= 162 � n < N .

Example 4.3 (ternary load senario tree)

We onsider the senario tree onstrution in Setion 4 of [4℄ for the weekly

eletrial load proess of a German power utility (see also [5,8℄ for a desrip-

tion of a stohasti power management model and its solution by Lagrangian

relaxation). The original onstrution is based on an hourly disretization of

the weekly time horizon with branhing points at t

k

= 24k for k = 1; : : : ; 6,

and on a pieewise linear interpolation between the t

k

. The orresponding

mean shifted tree is illustrated in Figure 6. For a moment, we disregard all

non-branhing points of the time disretization and onsider the orrespond-

ing mean shifted tree. The latter tree is a regular ternary senario tree with

K = 6, N = 3

6

= 729, p

i

=

1

N

for i = 1; : : : ; N and Æ

k

= �

t

k

q

3

2

8�k+1

for k = 1; : : : ; 6, where �

t

denotes the standard deviation of the stohasti

load proess at time t. Sine, in this ase, �

t

inreases with inreasing t,

Proposition 3.2 applies with k

0

= 1 and it holds that D

min

n

= Æ

1

N�n

N

for

2N

9

= 162 � n < N . Finally, it remains to remark that, due to the pieewise

linear struture of the senarios and the hoie of the maximum norm for

de�ning , the minimal distane D

min

n

does not hange when inluding all

non-branhing points.
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-10

-5

0

5

10

Figure 4: Original binary senario tree

Number Bakward of Simultaneous Fast Lower Minimal

n of Senario Sets Bakward Forward Bound Distane

Senarios �

rel



Time �

rel



Time �

rel



Time

1 116.01 % 2 s 111.93 % 96 s 100.00 % 2 s 19.01 % 100.00 %

2 102.86 % 2 s 75.45 % 96 s 79.16 % 2 s 18.99 % *

3 78.54 % 2 s 66.54 % 96 s 63.96 % 2 s 18.97 % *

4 66.35 % 2 s 61.69 % 96 s 59.04 % 3 s 18.95 % *

5 64.81 % 2 s 57.95 % 96 s 54.51 % 3 s 18.92 % *

10 53.68 % 2 s 48.21 % 95 s 44.39 % 4 s 18.81 % *

20 39.16 % 2 s 40.15 % 95 s 35.84 % 7 s 18.59 % *

30 35.61 % 2 s 34.70 % 94 s 31.56 % 10 s 18.37 % *

50 31.55 % 2 s 29.11 % 93 s 26.75 % 15 s 17.93 % *

100 22.68 % 2 s 21.73 % 89 s 20.97 % 27 s 16.98 % *

150 18.48 % 2 s 18.16 % 85 s 18.02 % 38 s 16.06 % *

200 16.70 % 2 s 16.50 % 81 s 16.11 % 48 s 15.14 % *

250 15.23 % 2 s 15.21 % 76 s 14.55 % 56 s 14.22 % *

260 14.97 % 2 s 14.97 % 75 s 14.26 % 58 s 14.04 % 14.04 %

270 14.75 % 2 s 14.75 % 74 s 14.00 % 60 s 13.86 % 13.86 %

280 14.53 % 2 s 14.53 % 72 s 13.76 % 61 s 13.67 % 13.67 %

290 14.30 % 2 s 14.30 % 71 s 13.54 % 63 s 13.49 % 13.49 %

300 14.08 % 2 s 14.08 % 70 s 13.32 % 64 s 13.30 % 13.30 %

350 12.98 % 2 s 12.98 % 64 s 12.39 % 71 s 12.39 % 12.39 %

400 11.88 % 2 s 11.88 % 57 s 11.47 % 76 s 11.47 % 11.47 %

450 10.78 % 2 s 10.78 % 51 s 10.55 % 81 s 10.55 % 10.55 %

500 9.67 % 2 s 9.67 % 45 s 9.63 % 85 s 9.63 % 9.63 %

600 7.79 % 2 s 7.79 % 33 s 7.79 % 91 s 7.79 % 7.79 %

700 5.95 % 2 s 5.95 % 22 s 5.95 % 95 s 5.95 % 5.95 %

800 4.12 % 2 s 4.12 % 12 s 4.12 % 97 s 4.12 % 4.12 %

Table 1: Results of binary senario tree redution
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Figure 5: Original ternary senario tree

Number Bakward of Simultaneous Fast Lower Minimal

n of Senario Sets Bakward Forward Bound Distane

Senarios �

rel



Time �

rel



Time �

rel



Time

1 164.68 % 1 s 164.68 % 32 s 100.00 % 1 s 18.66 % 100.00 %

2 93.02 % 1 s 89.29 % 32 s 80.70 % 1 s 18.63 % *

3 72.84 % 1 s 69.77 % 32 s 61.40 % 1 s 18.60 % *

4 56.27 % 1 s 56.27 % 32 s 56.59 % 1 s 18.56 % *

5 53.56 % 1 s 53.56 % 31 s 51.78 % 1 s 18.53 % *

6 50.85 % 1 s 50.85 % 31 s 49.26 % 1 s 18.50 % *

10 45.27 % 1 s 44.69 % 31 s 41.78 % 2 s 18.37 % *

15 39.72 % 1 s 38.83 % 31 s 36.09 % 3 s 18.20 % *

20 33.92 % 1 s 34.74 % 31 s 32.67 % 3 s 18.06 % *

30 30.22 % 1 s 30.74 % 31 s 28.41 % 5 s 17.77 % *

40 27.20 % 1 s 27.56 % 31 s 25.63 % 6 s 17.50 % *

50 25.05 % 1 s 25.04 % 30 s 23.44 % 7 s 17.25 % *

100 18.48 % 1 s 17.58 % 29 s 17.88 % 13 s 15.98 % *

150 15.38 % 1 s 15.33 % 26 s 15.25 % 18 s 14.71 % *

162 14.99 % 1 s 14.89 % 26 s 14.74 % 19 s 14.40 % 14.40 %

200 13.75 % 1 s 13.62 % 24 s 13.52 % 22 s 13.44 % 13.44 %

220 13.10 % 1 s 13.01 % 23 s 12.94 % 24 s 12.93 % 12.93 %

230 12.77 % 1 s 12.72 % 22 s 12.68 % 24 s 12.68 % 12.68 %

240 12.44 % 1 s 12.43 % 22 s 12.42 % 25 s 12.42 % 12.42 %

250 12.17 % 1 s 12.17 % 21 s 12.17 % 26 s 12.17 % 12.17 %

300 10.90 % 1 s 10.90 % 18 s 10.90 % 28 s 10.90 % 10.90 %

350 9.63 % 1 s 9.63 % 15 s 9.63 % 31 s 9.63 % 9.63 %

400 8.36 % 1 s 8.36 % 12 s 8.36 % 32 s 8.36 % 8.36 %

500 5.82 % 1 s 5.82 % 7 s 5.82 % 34 s 5.82 % 5.82 %

600 3.28 % 1 s 3.28 % 3 s 3.28 % 35 s 3.28 % 3.28 %

Table 2: Results of ternary senario tree redution
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Figure 6: Original load senario tree

Number Bakward of Simultaneous Fast Lower Minimal

n of Senario Sets Bakward Forward Bound Distane

Senarios �

rel



Time �

rel



Time �

rel



Time

1 121.09 % 1 s 117.85 % 31 s 100.00 % 1 s 16.31 % 100.00 %

2 98.80 % 1 s 90.19 % 31 s 80.83 % 1 s 16.28 % *

3 75.88 % 1 s 72.25 % 31 s 61.65 % 1 s 16.24 % *

4 73.75 % 1 s 59.71 % 31 s 56.94 % 1 s 16.21 % *

5 62.04 % 1 s 55.45 % 31 s 52.22 % 1 s 16.18 % *

6 56.57 % 1 s 52.24 % 31 s 49.57 % 1 s 16.14 % *

10 46.86 % 1 s 45.20 % 31 s 41.93 % 2 s 16.01 % *

15 39.69 % 1 s 40.22 % 30 s 35.76 % 3 s 15.85 % *

20 35.16 % 1 s 36.75 % 30 s 32.32 % 3 s 15.69 % *

30 30.08 % 1 s 31.20 % 30 s 28.11 % 5 s 15.36 % *

40 27.77 % 1 s 27.74 % 30 s 25.25 % 6 s 15.13 % *

50 25.58 % 1 s 25.13 % 29 s 23.02 % 7 s 14.90 % *

100 19.52 % 1 s 17.31 % 28 s 16.86 % 13 s 13.76 % *

150 14.52 % 1 s 13.96 % 25 s 13.67 % 18 s 12.67 % *

162 13.29 % 1 s 13.26 % 25 s 13.15 % 19 s 12.40 % 12.40 %

200 12.04 % 1 s 11.77 % 23 s 11.74 % 22 s 11.57 % 11.57 %

220 11.39 % 1 s 11.16 % 22 s 11.18 % 24 s 11.13 % 11.13 %

230 11.06 % 1 s 10.93 % 22 s 10.95 % 24 s 10.91 % 10.91 %

240 10.73 % 1 s 10.70 % 21 s 10.72 % 25 s 10.70 % 10.70 %

250 10.48 % 1 s 10.48 % 21 s 10.49 % 26 s 10.48 % 10.48 %

300 9.38 % 1 s 9.38 % 18 s 9.38 % 28 s 9.38 % 9.38 %

350 8.29 % 1 s 8.29 % 15 s 8.29 % 31 s 8.29 % 8.29 %

400 7.20 % 1 s 7.20 % 12 s 7.20 % 32 s 7.20 % 7.20 %

500 5.01 % 1 s 5.01 % 7 s 5.01 % 34 s 5.01 % 5.01 %

600 2.82 % 1 s 2.82 % 3 s 2.82 % 35 s 2.82 % 2.82 %

Table 3: Results of load senario tree redution
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By using all 3 redution algorithms the original senario trees of the Examples

4.1{4.3 have been redued. The orresponding tables ontain the relative

auray and the running time of eah algorithm needed to produe a redued

tree with n senarios. In addition, the tables provide the (relative) lower

bound (12) and the (relative) minimal distane D

min

n

in per ent if available.

Here, \relative" means that the orresponding quantity is divided by the

minimal �



-distane of P and one of its senarios endowed with unit mass. In

partiular, the relative auray is de�ned as the quotient of the �



-distane

of the original measure P and the redued measure Q

n

(having n senarios)

and of the �



-distane of P and the measure Æ

!

i

�

, i.e.,

�

rel



(P;Q

n

) :=

�



(P;Q

n

)

�



(P; Æ

!

i

�

)

; (22)

where f!

i

g

i=1;:::;N

denotes the set of senarios of P and !

i

�

is de�ned by

�



(P; Æ

!

i

�

) = minfD

J

: #J = N � 1g = min

i2f1;:::;Ng

�



(P; Æ

!

i

): (23)

0

10

20

30

40

0 100 200 300 400 500 600

T
im

e
 in

 s
e
co

n
d
s

Number of scenarios

fast forward
simultaneous backward

Figure 7: Running time for reduing the load senario tree

Our numerial experiene shows that all algorithms work reasonably well.

All algorithms redue 50% of the senarios of P in an optimal way. As ex-

peted, simultaneous bakward redution and fast forward seletion produe
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more aurate trees than bakward redution of senario sets at the expense

of higher running times. Our results also indiate that fast forward seletion

is slightly more aurate than simultaneous bakward redution, although

both bakward redution variants are sometimes ompetitive. Fast forward

seletion works muh faster than the implementation of forward seletion in

[4℄. For instane, fast forward seletion required 35 seonds to determine a

load senario subtree (Example 4.3) ontaining 600 senarios instead of 8149

seonds reported in [4℄. In partiular, in the ase of deeply redued trees, fast

forward seletion works very fast and aurately.

Furthermore, it has turned out that the lower bound is very good (even

optimal) for large n, but extremely pessimisti for small n. Further, we ob-

serve that the redution of half of the senarios implies only a loss of about

10% of the relative auray. For instane, in ase of Example 4.2 it is possible

to determine a subtree ontaining only 6 out of the originally 729 senarios

that still arries about 50% of the relative auray.

Finally, we have a loser look at the numerial results of the load senario

tree redution. In partiular, we ompare the running times of simultaneous

bakward redution and fast forward seletion in this ase. Figure 7 displays

the running times of both algorithms and learly shows their opposing algo-

rithmi strategies. It reets the orresponding theoretial omplexity results

(Propositions 2.3 and 2.6) and shows that the running time of fast forward

seletion is smaller if n �

N

4

(approximately). This on�rms again that the

forward seletion onept will be favourable if n is small. Figures 8, 9 and

10 show the redued load trees with 15 senarios obtained by all algorithms.

The �gures display the senarios with line width proportional to senario

probabilities.
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