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Abstract— Modern electricity portfolio and risk management
models represent multistage stochastic programs. The input of
such programs consists in a finite set of scenarios having the form
of a scenario tree. They model the probabilistic information on
random data (electrical load, stream flows to hydro units, market
prices of fuel and electricity). Since the corresponding determinis-
tic equivalents of multistage stochastic programs are mostly large
scale, one has to find significant tree-structured scenarios. Our ap-
proach to generate multivariate scenario trees is based on recur-
sive deletion and bundling of scenarios out of some given (possibly
large) scenario set originating from historical or simulated data.
The procedure makes use of certain Monge-Kantorovich trans-
portation distances for multivariate probability distributions. We
report on computational results for generating load-inflow sce-
nario trees based on realistic data of EDF Electricité de France.

Index Terms— Stochastic programming, power management,
scenario reduction, scenario tree construction

I. INTRODUCTION

The operation of power systems under deregulated market

conditions leads to an increasing interest in incorporating un-

certainty and risk into optimization models (see [12], [33],

[34]). The corresponding stochastic optimization models re-

quire decisions on the basis of given probabilistic information

on random data. Typically, such models use a finite number of

scenarios to model uncertainty of relevant data, e.g., [1], [3],

[9], [10], [14], [30], [32]. Each scenario can be viewed as one

realization of a certain multi-dimensional stochastic data pro-

cess of the model. All scenarios and their probabilities repre-

sent an approximation of the probability distribution given by

the random data. Clearly, a good approximation may involve

a very large number of scenarios. But, due to computational

complexity for most practical problems, the number of scenar-

ios must be restricted to have the continuing ability to solve the

stochastic model. The main challenge of scenario tree genera-

tion is to effect a compromise between a good approximation of

the probability distribution and the dimension of the stochastic

model.

During the last few years scenario modelling and the gener-

ation of scenario trees became a very active field of research

in stochastic programming (see the survey [6]). Recently, ex-

isting methods and new techniques were refined and proposed,

respectively, for generating scenario trees for multistage mod-

els. We mention here in chronological order

(i) bound-based approximation methods [11], [8], [4],

(ii) Monte Carlo-based sampling schemes [21], [5], [2], [31],

(iii) the moment-matching principle [19], [20],

(iv) optimal approximations based on probability metrics [25],

[18], [7], [13], and

(v) the use of integration quadratures [23].

A systematic comparison, both theoretical and computational,

of these approaches has not been undertaken so far. Some prin-

ciples for the evaluation of scenario tree generation methods are

presented in [22]. Potential shortcomings of the approach (iii)

are discussed in [18].

We propose a technique that belongs to the group (iv) and

is based on probability metrics that are associated with the sta-

bility of the underlying stochastic program. The input of the

method consists in a finite number of scenarios that are pro-

vided by the user and, say, are obtained from historical data

by data analysis and resampling techniques or from statisti-

cal models calibrated to the relevant historical data. Then the

method constructs a scenario tree by recursive (optimal) sce-

nario reduction [13], [14].

II. GENERATION OF SCENARIO TREES

A. Approximation of stochastic programs

The recent paper [28] surveys quantitative stability results

for stochastic programs. It is shown there that the distances

µ̂r, r ≥ 1, of multivariate probability distributions given by

Monge-Kantorovich (mass) transportation problems [27] are

relevant for the stability of two-stage models. More precisely,

µ̂1 is relevant if either right-hand sides or prices are stochastic

and µ̂2 is important if both are stochastic. In case of multistage

stochastic programs the distances µ̂r as well as a functional

measuring the ’distance’ of the information structures are indis-

pensable for stability [17]. In the present paper, we concentrate

on the functionals µ̂r. The effects of distances of information

structures are discussed in [17] and the forthcoming paper [16].

Let us consider the important case that both, the original

and approximate probability distribution P and Q, respectively,

have a finite support, i.e., a finite number of scenarios in some

Euclidean space IRs. Let the supports be given by

supp(P ) = {ξ1, . . . , ξN}, supp(Q) = {ξ̃1, . . . , ξ̃M},

and the probabilities by

pi = P ({ξi}) and qj = Q({ξ̃j}).
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The Monge-Kantorovich functional µ̂r for r ≥ 1 is defined as

µ̂r(P, Q) = inf

{

N
∑

i=1

M
∑

j=1

cr(ξ
i, ξ̃j)ηij

∣

∣

∣
ηij ≥ 0, (1)

M
∑

l=1

ηil = pi,

N
∑

l=1

ηlj = qj , i = 1, . . . , N, j = 1, . . . , M

}

.

Thus, the functional µ̂r represents the optimal value of a linear

transportation problem. The non-negative cost function cr is

defined by

cr(ξ, ξ̃) = max{1, ||ξ − ξ0||, ||ξ̃ − ξ0||}
r−1||ξ − ξ̃||, (2)

where ξ0 is some fixed element in IRs. The cost function can be

viewed as a certain distance function on the set of all scenarios.

In case r = 1 the cost function cr coincides with the metric

induced by the norm on IRs.

B. Optimal scenario reduction

The scenario reduction approach was first developed in [7]

and enhanced in [15]. Let us recall its main ideas: We consider

a discrete distribution P with scenarios ξi and probabilities pi,

i = 1, . . . , N , and another discrete distribution Q supported

by a subset of scenarios ξj , j ∈ {1, . . . , N} \ J , of P and

probabilities qj , j 6∈ J , i.e, the index set J describes the set

of deleted scenarios. The main result in [7] provides the best

possible distance µ̂r(P, Q) if the index set J is fixed, but the

weights qj vary. The optimal distribution Q∗ is given by the

optimal redistribution

q∗j = pj +
∑

i∈Jj

pi, j 6∈ J, (3)

where the index sets Jj are given by

Jj = {i ∈ J : j = j(i)}

and j(i) is a selection of the index set of closest scenarios to ξi

j(i) ∈ argmin
j 6∈J

cr(ξ
i, ξj), i ∈ J.

Hence, the optimal scenario reduction consists in adding each

deleted scenario weight to that of some of those scenarios being

closest with respect to cr. The distance of P and Q∗ is given by

DJ := µ̂r(P, Q∗) =
∑

i∈J

pi min
j /∈J

cr(ξ
i, ξj). (4)

To determine an optimal index set J∗ with a prescribed number

of N−n elements, one has to solve the combinatorial optimiza-

tion problem

J∗ ∈ argmin{DJ : #J = N − n},

which is NP-hard. To determine a nearly optimal index set

J with given cardinality in reasonable time, fast heuristic

algorithms of forward and backward type are given in [15] and

[13]. The forward strategy is adapted to the special situation

of deleting recursively all but one scenarios. The backward

strategy consists in the opposite approach, namely, in deleting

recursively only one scenario.

Algorithm 1—Forward Reduction:

Step 0: J0 := {1, . . . , N}

Step m+1: um+1 ∈ arg min
u∈Jm

DJm\{u}

Jm+1 := Jm\{um+1}

End: Optimal redistribution (3) w.r.t. J := Jn

Algorithm 2—Backward Reduction:

Step 0: J0 := ∅

Step m+1: vm+1 ∈ arg min
v/∈Jm

DJm∪{v}

Jm+1 := Jm ∪ {vm+1}

End: Optimal redistribution (3) w.r.t. J := JN−n

C. Scenario tree construction

Next we describe two approaches for constructing scenario

trees based on recursive scenario reduction. The first one has

been given already in [13]. Both approaches fit into the gen-

eral tree generation scheme given in [6]. The strategy consists

in modifying a given fan of individual scenarios by bundling

scenarios according to the scenario reduction technique. It can

be shown that the constructed trees are much smaller than the

given scenario fans, and nevertheless, they are good approxi-

mations with respect to the Monge-Kantorovich distance µ̂1.

Let P be the probability distribution of a fan of multivari-

ate data scenarios ξi = (ξi
1, . . . , ξ

i
T ) with probabilities πi,

i = 1, . . . , N , i.e., all scenarios coincide at the starting point

t = 1, i.e., ξ1
1 = . . . = ξN

1 =: ξ∗1 . The fan may be regarded as a

Fig. 1. Scenario fan of individual scenarios.

scenario tree with 1 + N(T − 1) nodes. Given P and ε > 0 we

are looking for a probability distribution Pε such that its sce-

narios form a scenario tree with root node ξ∗1 , less nodes than

P , and

µ̂1(P, Pε) ≤ ε.

Again there exist a backward and a forward variant. Let us

start with the backward version. It is based on recursive sce-

nario reduction on the time horizon {1, . . . , t}, where the time

parameter t is reduced recursively from t = T to t = 2. For the
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time horizon {1, . . . , t} we consider the relative costs

ct(ξ, ξ̃) :=

t
∑

τ=1

‖ξτ − ξ̃τ‖, (5)

which corresponds to (2) on {1, . . . , t} for r = 1.

Algorithm 3—Backward Construction:

Let εt > 0, t = 2, . . . , T , be such that
T
∑

t=2
εt ≤ ε.

Step 0: Let IT+1 = {1, . . . , N} and πi
T+1 = πi

for all i = 1, . . . , N .

Step m: Set t = T + 1 − m.

Determine a scenario index set It ⊆ It+1

by scenario reduction, i.e., such that
∑

i∈It+1\It

πi
t+1 min

j∈It

ct(ξ
i, ξj) ≤ εt.

Set π
j
t = π

j
t+1 +

∑

i∈Jtj

πi
t+1, where

Jtj = {i ∈ It+1\It : j = jt(i)} and

jt(i) ∈ arg min
j∈It

ct(ξ
i, ξj), i ∈ It+1\It.

Step T: Construction of Pε: Determine recursively

mappings αt : IT → It for t = T, . . . , 2,

where αT := id|IT
and such that

αt(i) :=

{

jt(αt+1(i)), αt+1(i) ∈ It+1\It,

αt+1(i), else,

for t = T − 1, . . . , 2.

Determine scenarios ξ̃j for j ∈ IT with ξ̃
j
1 = ξ∗1 ,

and ξ̃
j
t := ξ

αt(j)
t for t = 2, . . . , T . Finally, set

π̃j := π
j
T and Pε :=

∑

j∈IT

π̃
j
T δξ̃j .

1

2
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4

5

6

7

8

9

1 2 3 4t t t t= = = =

Index
III I4321

Fig. 2. Illustration of backward scenario tree construction.

It can be shown that µ̂1(P, Pε) ≤ ε holds for any scenario

tree Pε constructed by Algorithm 3. Figure 3 displays an exam-

ple demonstrating the recursive reduction of nodes by bundling

scenarios for decreasing time horizon.
Next we focus attention on a new forward variant of scenario

tree construction. The idea consists in applying the scenario re-

duction technique repeatedly for increasing time periods from

t = 2 to t = T . The forward method is based on a succes-

sive clustering of scenarios, where the number of elements con-

tained in a cluster is recursively reduced. Different from the

Fig. 3. Example of backward tree construction by reducing nodes of a given
scenario fan recursively by modifying the tree structure using scenario reduc-
tion and bundling. The time horizon consists of 5 periods.

backward variant, scenario reduction is now applied separately

to each cluster, where at time t only ξt is taken into account.

Instead of (5), let the costs at time t now be defined by

ct(ξ, ξ̃) := ‖ξt − ξ̃t‖, (6)

which corresponds to (2) at t for r = 1.

Algorithm 4—Forward Construction:

Let εt > 0, t = 2, . . . , T , be such that
T
∑

t=2
εt ≤ ε.

Step 1: Let I = {1, . . . , N} be the first cluster and let

Z1 := {I}.

Step t: Let Zt−1 = {I1, . . . , Ilt−1
} the clusters defined

in Step t − 1.

(1) Chose εk ≥ 0 such that
lt−1
∑

k=1

εk ≤ εt

(2) For k = 1, . . . , lt−1: Determine a subset

Jk ⊆ Ik and a selection jk : Ik → Ik\Jk

by scenario reduction such that jk(i) = i for

i ∈ Ik\Jk and
∑

i∈Jk

πict(ξ
i, ξjk(i)) ≤ εk.

(3) Set Zt = {j−1
k (i) : i ∈ Ik\Jk, 1 ≤ k ≤ lt−1}

with j−1
k (i) := {j ∈ Ik : jk(j) = i}.

(4) Define some mapping αt : I → I such that

αt|Ik
≡ jk.

Step T+1: Construction of Pε: Let ZT = {IT
1 , . . . , IT

lT
}

and let i1, . . . , ilT be some indices such that

ik ∈ IT
k for k = 1, . . . , lT .

Determine scenarios ξ̃k with ξ̃k
1 = ξ∗1 and

ξ̃k
t = ξ

αt(ik)
t for t = 2, . . . , T and 1 ≤ k ≤ lT .

Finally, set π̃k :=
∑

i∈IT
k

πi and Pε =
lT
∑

k=1

π̃kδξ̃k .

Note that all clusters corresponding to one time step, that are

all sets Ik of Zt, are disjoint and their union cover all indices

of I = {1, . . . , N}. Hence, the mappings αt are well defined.
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Fig. 4. Illustration of forward scenario tree construction.

Moreover, the values αt(i) coincide for all indices i contained

in the same cluster. See Figure 4 that shows the principle of the

algorithm.

For Algorithm 4 the same result can be shown as for the pre-

vious Algorithm 3. Namely, the estimate µ̂1(P, Pε) ≤ ε holds

for the probability distribution Pε of any tree constructed by

Algorithm 4. Figure 5 displays an example demonstrating the

recursive reduction of nodes by bundling scenarios using the

forward method.

Fig. 5. Example of forward scenario tree construction by reducing nodes of
a given scenario fan recursively by modifying the tree structure using scenario
reduction and clustering. The time horizon consists of 5 time periods.

III. APPLICATION

The scenario tree generation approach was applied to con-

struct scenario trees out of data scenarios provided by Elec-

tricité de France (EDF). The data consisted of a finite number

of scenarios representing realizations of a bivariate stochastic

process whose components are electrical load and water inflow

for a time horizon of two years. Since the random data only

enter right-hand sides of (in)equality constraints, the relevant

probability metric for construction scenario trees is the Monge-

Kantorovich distance µ̂1 (cf. Section II-A).

The time horizon of the data was discretized with three time

steps per day, where each time step is associated to a set of

daily hours during which the demand does not change much.

Table I and II show the discretization of the data for the time

horizon of two years and provide the number of scenarios, the

total number of time periods and the corresponding number of

nodes of the initial scenario fan. The first node (root node) cor-

responds to the mean value of all scenarios at time period t = 1.

The weekly amounts of water inflows have been uniformly dis-

tributed to the corresponding time steps of the week.

TABLE I

DISCRETIZATION OF THE TWO-YEAR TIME HORIZON FOR THE DATA

PROVIDED BY EDF.

Random variable Discretization Number time steps

electrical load 3 per day 2 184
water inflow weekly 104

TABLE II

DIMENSION OF THE INITIAL SCENARIO FAN PROVIDED BY EDF

Number

scenarios 456
time periods 2 184
initial nodes 995 449

Three series of tests of Algorithms 3 and 4 were performed

to generate scenario trees such that

(i) branching is allowed at all time steps,

(ii) branching is only allowed at the beginning of a day,

(iii) branching is only allowed at the beginning of a week.

To measure the distances between the original and approximate

probability distributions the relative tolerance εrel := ε
εmax

was

used in all test runs, where εmax is the best possible distance

between the probability distribution of the initial scenario fan

and the distribution of one of its scenarios endowed with unit

mass.
All test runs were performed on a PC with a 3 GHz Intel

Pentium CPU and 1 GByte main memory.

A. Results of backward construction

For the backward variant of scenario tree construction indi-

vidual tolerances εt at branching points were chosen recursively

such that

εT = ε · (1 − q), q ∈ (0, 1) and

εt = q · εt+1, t = T − 1, . . . , 2.

According to our numerical experience a choice of q ∈ (0, 1)
closer to 1 leads to a higher number of remaining scenarios and

branching points (stages). Choosing q closer to 0 leads to the

opposite effect. For the test runs of Algorithm 3 we used q =
0.95.

Tables III–V display the numerical results for the series of

tests (i)–(iii) and different relative tolerances. The second and

third column compare the sizes of the initial scenario fan and

the constructed scenario tree in terms of the numbers of scenar-

ios and nodes, respectively. The last but one column contains

the number of stages, i.e., the number of time periods where

branching occurs. The computing times for constructing the

trees can be found in the last column. The computing time al-

ready contains the CPU time of (about) 100 seconds for com-

puting the distances of scenarios which are needed in all test

runs.
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TABLE III

RESULTS FOR BACKWARD TREE CONSTRUCTION WITHOUT BRANCHING

RESTRICTION

εrel Scenarios Nodes Stages Time (sec)

0.10 442 584 270 151 172.86

0.20 429 371 046 150 129.11

0.30 417 268 201 146 117.42

0.40 405 193 014 135 110.83

0.50 393 140 536 115 106.30

TABLE IV

RESULTS FOR BACKWARD TREE CONSTRUCTION WITH DAILY BRANCHING

RESTRICTION

εrel Scenarios Nodes Stages Time (sec)

0.10 442 584 793 128 134.17

0.20 429 373 569 124 115.47

0.30 417 269 850 125 110.41

0.40 405 196 182 120 107.4

0.50 393 144 009 110 104.93

TABLE V

RESULTS FOR BACKWARD TREE CONSTRUCTION WITH WEEKLY

BRANCHING RESTRICTION

εrel Scenarios Nodes Stages Time (sec)

0.10 442 589 575 88 118.47

0.20 429 397 047 83 110.65

0.30 416 293 403 86 108.40

0.40 405 219 714 83 106.15

0.50 393 170 520 81 105.16

It turns out that for a small relative tolerance an approxi-

mate scenario tree can be constructed that contains only 50%

of the original nodes. The pictures of Figure 6 and 7 show the

structure of two generated scenario trees with weekly branch-

ing structure and epsilon tolerances εrel = 0.2 and εrel = 0.5,

respectively.

B. Results of forward construction

In a second series of tests scenario trees were constructed out

of the EDF data by the new Algorithm 4. In case of forward tree

construction individual tolerances εt at branching points were

chosen such that

εt =
ε

T

[

1 + q

(

1 −
t

T

)]

, t = 2, . . . , T,

where q ∈ [0, 1] is a parameter, that affects the branching struc-

ture of the constructed trees very similar to the case of backward

construction. For the test runs we used q = 1.

Tables VI-VIII provide numerical results for Algorithm 4.

Just as before, the tables correspond to the series of tests (i)-

(iii), i.e., the first one contains results for trees without branch-

ing restriction, the second for trees with a daily branching struc-

ture, and the last by allowing branching only at the beginning

of a week.

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

Fig. 6. Generated scenario tree based on EDF-data obtained by the backward
construction with εrel = 0.2 and weekly branching structure.

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

Fig. 7. Generated scenario tree based on EDF-data obtained by the backward
construction with εrel = 0.5 and weekly branching structure.

The numerical results illustrate that the forward variant of

scenario tree construction performs as well as the backward

version. Nevertheless, there are certain differences. Namely,

it turns out that, for small relative tolerances, the trees contain

less nodes in case of the backward tree construction compared

to the forward variant. For increasing relative tolerances the

new forward construction algorithm provides trees containing

less nodes than the backward counterpart.

Figure 8 and 9 illustrate the generated scenario trees with

weekly branching structure for εrel = 0.4 and εrel = 0.5. For

these trees it turns out that about 15% of all nodes are suffi-

cient to guarantee 40% accuracy, while 6% of the nodes still

guarantee 50% accuracy.
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TABLE VI

RESULTS FOR FORWARD TREE CONSTRUCTION WITHOUT BRANCHING

RESTRICTION

εrel Scenarios Nodes Stages Time (sec)

0.10 378 743 087 129 108.11

0.20 305 529 994 162 109.15

0.30 216 289 324 161 114.18

0.40 145 138 175 121 134.11

0.50 93 67 696 84 202.42

TABLE VII

RESULTS FOR FORWARD TREE CONSTRUCTION WITH DAILY BRANCHING

RESTRICTION

εrel Scenarios Nodes Stages Time (sec)

0.10 380 739 545 101 106.72

0.20 309 521 871 131 107.33

0.30 217 299 520 137 108.99

0.40 144 139 236 108 115.95

0.50 92 64 569 74 149.43

TABLE VIII

RESULTS FOR FORWARD TREE CONSTRUCTION WITH WEEKLY BRANCHING

RESTRICTION

εrel Scenarios Nodes Stages Time (sec)

0.10 389 746 613 49 106.53

0.20 300 509 103 57 106.84

0.30 228 310 653 64 107.59

0.40 163 151 809 69 109.78

0.50 92 60 501 46 119.12
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