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Scenario Reduction and Scenario Tree Constructio
for Power Management Problems

Nicole Giowe-Kuska, Holger Heitsch and Werneoisch

Abstract— Portfolio and risk management problems of power scenario sets in dynamic decision models are that the process is
utilities may be modeled by multistage stochastic programs. These deterministic at the first time period and that it has tabaan-
models use a set of scenarios and corresponding probabilities icinative The latter means that the random data and decision
to model the multlvarlate_ random data process _(elect_rlcal load, rocesses at anv time do not depend on future realizations of
stream flows to hydro units, and fuel and electricity prices). For p y . p -
most practical problems the optimization problem that contains the data process. These requirements lead to a special form of
all possible scenarios is too large. Due to computational complex- the finite scenario set, namely, to a tree structurescénario
ity and to time limitations this program is often approximated by  tree may be represented by a finite set of nodes. It starts from
amodel involving a (much) smaller number of scenarios. The pro- tha oot node at the first period and eventually branches into
posed reduction algorithms determine a subset of the initial sce- d tth t iod. Each node h ; d
nario set and assign new probabilities to the preserved scenarios. noces at the ”?X period. Each node has a umque_ pre egessor
The scenario tree construction algorithms successively reduce the N0de, but possibly several successors. The branching continues
number of nodes of a fan of individual scenarios by modifying the up to nodes at the final period whose number corresponds to the
tree structure and by bundling similar scenarios. Numerical ex- npumber of scenarios.
perience is reported for constructing scenario trees for the load  g5mpjing from historical time series or from statistical mod-
anddsgl)o:‘mzérket prlces_l_entermg a stochastic portfolio management els (e.g., time series or regression models) is the most popular
model of a German utility. J

Y method for generating data scenarios. Statistical models for the
data processes entering power operation and planning models
have been proposed, e.qg., in [3], [10], [11], [21], [23].

The computational effort for solving scenario-based opti-

I. INTRODUCTION mization models depends on the number of scenarios even if

Economic needs and the ongoing liberalization of Europegﬁcomppgition methods are used that_exploit special structures.
electricity markets stimulate the interest of power utilities in d _er;]ce, it '(‘;’ nat(ljjral to look forhscer?arlo—basedllapproglma:lons
veloping models and optimization techniques for the generati@hthe random data process that have a small number of sce-
and trading of electric power under uncertainty. Utilities partid12/10s, but still represent reasonably good approximations. Our

ipating in deregulated markets observe increasing uncertail"i‘@proaCh t_o scgnario reduct?on _controls the good.r?ess.-of-_fit of
in electrical load (i.e., demand for electric power) and pricége approximation by a certain distance of probability distribu-

for fuel and electricity on spot and contract markets. Therefofd2NS: aprobability metric Itis recommended to select the spe-

many different optimization models for the operation and plaﬁlf'c probability metric out of a certain family of Kantorovich or

ning of power utilities use scenarios to deal with uncertainty rdansportation metrics such that the optimal values and solution
lated to economic and enviromental parameters, cf. [1], [6], [ ets of the stochastic programs behave stable with respect to

[8], [10], [15], [18], [21], [22] and the state-of-the-art surve érturpations of the underlyjng propability distributipns mea-
[24]. Each scenario corresponds to a particular outcome of g €d in terms of the specified metric. Transportation metrics
random quantity, i.e., scenarios are realizations (trajectories) §PréSent optimal values of linear transportation problems, i.e.,

a certain multidimensional stochastic process, the data proceRgCial linear programs. It turns out that the transportation dis-
of the optimization model. Typical components of the data priNc€ Petween a scenario-based approximation and another one,
cess are the electrical load, stream inflows in hydro plants, %?fsed on a subset of scenarios and representing the best possi-
prices for fuel and electricity on wholesale markets. ole approximation, can be computed explicitly without solving
The scenarios and their probabilities form an discrete a 1ear programs. The latter formula trades off scenario prob-

proximation of the probability distribution of the data proces _b||||t_|§s and distances of scenarios considered as elements of
Clearly, the set of scenarios chosen for the optimization mod%ll'_l(_:h' ean spgces. th » A on of
might bias its solution. A survey of methods for generating sets e second part of the paper addresses the guestion of sce-

of scenarios that form an approximation of the underlying raH—fi”O t(;ee generation fosr mﬁ'gpe“‘)‘?' dyna;]mc decision mod-
dom data process is given in [4]. Relations to the stability ofoﬁ—S under uncerta!nty: uch dynamic stoc _a_St'C programs are
propriate optimization models when decisions, such as re-

timal values and solutions of scenario-based optimization m s . . :
ncing a power portfolio, are taken at several discrete time

els have also been studied by several authors (see [5], Chaptef ‘ lled st = le th ol art
in [20] and the references therein). Additional features of sudfints cafled stages. For example, In€ Portiolio manager starts
with a given portfolio and a set of scenarios about future states
N. Growe-Kuska, H. Heitsch and W.dRiisch are with the Institute of Math- O_f t_he system which he@he Incoorporates into a_n _mvestmgnt de-
ematics, Humboldt—University Berlin, D-10099 Berlin, Germany cision. The model specifies a sequence of decisions at discrete

Index Terms— Stochastic programming, scenario reduction,
scenario tree construction.

0-7803-7967-5/03/$17.00 ©2003 IEEE


Tesi
Paper accepted for presentation at 2003 IEEE Bologna Power Tech Conference, June 23th-26th, Bologna, Italy

Tesi
0-7803-7967-5/03/$17.00 ©2003 IEEE


time points. The precise composition of the portfolio dependigel and electricity prices) is approximately given by finitely

on transactions at the previous stage and on scenarios realireshy scenariog§’ =

{eAT_,i=1,...,S,and their probabil-

in the interim. Hence, another set of investment decisionsiies p;, Y7, p; = 1.
made that incorporates the current status of the portfolio andThe scenario reduction algorithms developed in [5], [12] de-
new information on future scenarios.
The portfolio manager may base his/her decisions on indgd assign new probabilities to the preserved scenarios such
pendently generated scenarios for the parameters of the systiean the corresponding reduced probability measpris the
and of the economy. Although such a fan of individual scenattosest to the original measukin terms of a certain probabil-
ios represents a very specific scenario tree, its tree structur@yslistance betwee® andQ. The probability distance trades
not appropriate for the stagewise decision process and, in a#f-scenario probabilities and distances of scenario values. In
dition, contains a large number of nodes. What is needed ighe context of stochastic power management models, we use
scenario tree where information is revealed in all stages of the Kantorovich distanc®y of (multivariate) probability dis-
model. We propose an algorithm for the construction of sceibutions (cf. [19], Section 5).
nario trees that reduces the number of nodes of an original farFor discrete probability distributions with finitely many sce-
of individual scenarios by modifying the tree structure and hyarios the Kantorovich distandgy is just the optimal value
bundling similar scenarios. The whole procedure is based onfaa linear transportation problem. Lét be the distribution
recursive reduction argument using transportation metrics. of another n-dimensional stochastic procéssith scenarios
The paper is organized as follows. §i we give a descrip- ¢/ € R*T and probabilitieg;, j = 1,..., S. Then
tion of our concept for the reduction of scenarios modeling the i
stochastic data processes of stochastic programslilinve s S o
present our procedure for generating scenario trees and regd(P, @) = inf ¢ > > nier(¢h, &) :

on numerical tests for constructing scenario trees for the load

termine a scenario subset (of prescribed cardinality or accuracy)

i=1 j=1

and spot market prices entering a stochastic portfolio manage- 5
ment model of a German utility.

1. SCENARIO REDUCTION

We briefly describe a universal and general concept devRlies some norm oR", i.e.,c measures the distance between
oped in [5], [12] for the reduction of scenarios modeling thg-anarios on the whole time horizén, . .., T'}.
stochastic data processes in stochastic programs. It impag§eg, let() be the reduced probability distribution gfi.e., the
no requirements on the stochastic data processes (e.g. thesgﬁport ofQ consists of scenaricd for j € {1,...,8}\ J

pendence structure or the dimension of the process) or on they

structure of the scenarios (e.g. tree-structured or not).

A. Nomenclature

é’ N{gt}tT:P
g{ {gt}Z:l
£,

Di, g5

P,Q
S

J
#J

s=8S—#J
5

Ct (517 5])

n-dimensional stochastic processes
with parameter sefl,...,T'}

scenarios (sample path &f¢)

scenario probabilities, i.ep; > 0,

0 >0,2pi=34=1

probability distribution of the pro-
cesseg and¢, resp.

number of scenarios in the initial sce-
nario set

index set of deleted scenarios
cardinality of the index set J; i.e., the
number of deleted scenarios
number of preserved scenarios
tolerance for the reduction
distance between scenarifti}!

Nt =1
{6] T=1

B. Theoretical background
Assume that the probability distributiod®® of the n-

dimensional stochastic data procéss {¢;}L, (with possible
components electrical load, stream flows to hydro units, and

S S
i=1 j=1

wherec, (¢,87) .= S0 |8 — €|, t = 1,...,T, and|.| de-

J denotes some index set of deleted scenarios. For fixed
J C {1,...,S}, the scenario sef) based on the scenarios
{€7} j¢s having minimal Dk-distance taP may be computed
explicitly ([5], Theorem 3.1). The minimal distance is

D (P,Q) = piminer(§', &)

icJ

(1)

and the probability; of the (preserved) scenarigs j ¢ J, of
@ is given by the rule

qj ==p; + Z pi, Where 2)
i€J(j)

T() = i€ T:j=i(0)}.i) € agminer(€ &), Vie T

The interpretation of theptimal redistribution rule(2) is that
the new probability of a preserved scenario is equal to the sum
of its former probability and of all probabilities of deleted sce-
narios that are closest to it with respectta All deleted sce-
narios have probability zero.

The optimal choice of an index sdtfor scenario reduction
with fixed cardinality#.J is given by the solution of theptimal
reduction problem

min{Zpinlei?cT(gi,fj) :J C {1,.‘.,5},#J:S—s},
ics
3)



wheres = S — #J > 0 is the number of preserved scenarios.

It is well-known that (3) represents a set-covering problem.

may be formulated as a 0-1 integer program and is NP-hard. I — T~
From (1) and (3) we deduce the followingaximal reduction e

strategyto determine a reduced propablllty dlsmpu“@nf 5_ Fig. 1. Delete 2 of 5 scenarios with a backward reduction algorithm

such that the set of deleted scenarios has maximal cardlnalltgy

and thatDk (P, Q) < ¢ holds, i.e.,Q is close to the original

distribution P with given accuracy > 0:

have shown that the following particular variants of backward

Maximal reduction strateggmrs): reduction (Algorithm 1) and forward selection algorithms
(Algorithm 2) provide more accurate solutions of the optimal
Determine an index sef with maximal cardinalitys#.J reduction problem (3) than the described ad-hoc variants.
such that
Zpi min cr (€4, €67) <e. Algorithm 1 — Simultaneous backward reduction
‘ Ji¢J o
ieJ
The redistribution rule (2) yields the probabilities j ¢ Step O: Compute the distances of scenario pairs:
J, of the preserved scenarios. b o )
Crj = CT(g 7§])1 k7.7 = 17"'75'

Sortthe record$cy; : j =1,...,5},

C. Algorithms k=1.....8
Since efficient solution algorithms for (3) are hardly avail-
able in general, (fast) heuristic algorithms were developed thastep 1: Compute
exploit the structure of the objective. In the specific cases |of Cgll] :=minc;,l=1,...,5 and

#J = 1 (deleting one scenario) aggJ = S — 1 (keeping one
scenario), solving (3) becomes quite easy.

S I R S

i .—p[C” y o= 1,...,0.

Special case 1: Deleting one scenario

If #£J =1, the problem (3) takes the form Choosd; € arg {mins} z,m.
c{1,...,
. . I ¢j
min min ¢ ,E). 4
refnsy P r(&, &) *) SetJM .= {1, }.
If the minimum is attained at. € {1,...,S}, i.e., the .
scenario ¢ is deleted, the redistribution rule (2) yields Stepi: C[;])r.npute )
the probability distribution of the reduced measupe If U gy
j* € arg minj#* CT(fl*,fj), then it holds thad]]* = Pj, +pr,
andg; = p; forall I & {L., j.}. forl ¢ Jii=1 ke Ji=1 U {i} and
Special case 2: Optimal selection of a single scenario i ._ A g gl
If #J = S — 1, the problem () is of the form KA keﬂi_zuu{,}pkck“ 7 '
min zs: - (fl gu) (5) ChOOSdi € arg min Zl[i].
ue{l,...,S} P} bieris ’ (g Jli—1l

If the minimum is attained at., € {1,...,5}, only the SetJi = JE U {1}

scenario&“~ is kept and the redistribution rule (2) provide
Qu, = Pu, t+ Zi;éu* p; = 1.

o

Step S-s+1: J := JI5—sl is the index set of deleted sc
narios. Compute optimal probabilities fo
General case the preserved scenarios from (2).

Of course, the optimal deletion of a single scenario may
be repeated recursively until a prescribed numBer s of The scenario reduction algorithms were used to reduce a
scenarios is deleted. This strategy recommends a conceptaaiary scenario tree for the weekly load process of a German
algorithm callecbackward reductioifcf. Fig. 1). If the number utility. The original construction is based on an hourly dis-
of preserved scenarios is small (strong reduction) the optintaétization of the weekly time horizon with branching periods
selection of a single scenario may be repeated recursively uniil= 24k for k = 1,...,6 (see [10] for a detailed description).

a prescribed numberof preserved scenarios is selected. Thishe corresponding mean-shifted tree is illustrated in Fig. 2.
strategy provides the basic concept of a second conceptiigjures 3 and 4 displays the reduced trees with 15 preserved
algorithm calledforward selection Numerical tests in [12] scenarios obtained by the forward and backward algorithm.
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Fig. 2. Ternary scenario tree containing 729 (mean-shifted) load scenariosFig. 4. Reduced load scenario tree with 15 preserved scenarios obtained by
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the forward algorithm

I1l. SCENARIO TREE CONSTRUCTION

A scenario tree represents the abstract structure of scenarios.
It shows how the uncertainty unfolds over time. A simple exam-
ple is illustrated in the scenario tree of Fig. 5. Each complete

Fig. 3. Reduced load scenario tree with 15 preserved scenarios obtained by

the backward algorithm

Algorithm 2 — Fast forward selection

Step O: Compute the distances of scenario pairs:
C{l] = ( k u _
ku *— ¢T 5 75 ),k7u— 17...75.
Step 1: Compute

1 1
zL] ::Z,’j;ipkcu'uzlv“‘vs'

Chooseu; € arg  min z,[}].
uefl,...,S}

SetJM = {1,...,S}\{u}.

Step i: Compute

cEjL = min{cgju_l], cgf;l_]l}, kyu e Ji—l

and

P - > pkcEjL, u e Ji-1l,
keJE=T\ {u}

Chooseu; € arg min z,[f].
weJli—1]

SetJll .= Jli=1\ {u,}.

3%
]

Steps+1: J := JI5¢lis the index set of deleted sc
narios. Compute optimal probabilities for the
preserved scenarios from (2).

n6
n3
n7
nl n2 n4 n8
n9
nb nl0

Fig. 5. Scenario tree with 5 scenarios and 10 nodes

path from the root nodel to one of the leaves®6,...,n10
represents a scenario, i.e. the tree consists of 5 scenarios. Ap-
proximations of stochastic processes in form of scenario trees
are useful for the formulation of multiperiod dynamic deci-
sion models as multistage stochastic programs. A multistage
stochastic programming model will determine an optimal deci-
sion for each node of the scenario tree, given the information
available at that point. As there are multiple succeeding nodes
the optimal decisions will not exploit hindsight, but they should
anticipate future events.

Presently, a number of approaches to the generation of sce-
nario trees is available. Here, we mention only those that are
not reviewed in [4]. The paper [2] uses approximations based
on conditional expectations in order to be able to use bounds for
generating scenarios. The approach in [14] is based on solv-
ing certain regression models to match certain presribed mo-
ments of the original measure. Although moment matchingis a
widespread method, Example 1 in [13] shows that it may lead
to strange results. In [16] modern quadrature formulas are pro-
posed for conditional sampling and the papers [17], [13] pro-
pose algorithms for determining scenario trees that are best ap-
proximations with respect to certain probability distances. The
latter idea also serves as a motivation for the following tree con-
struction based on successive reduction.

We assume that finitely many individual paths or scenarios
¢ = {1 T | and corresponding probabilities, i = 1,...,S



of an n-dimensional stochastic process {¢;}]_, are given,
e.g., obtained from nonparametric or parametric models for the i - /
underlying process. Further we assume that all scenarios coin- _

cideatt = 1,i.e.,&} = ... =& =: & This means that= 1 % \‘\.\‘

may be regarded as the root node of a scenario tree consisting
of S branches or that the pat§ i = 1,..., S, form a fan of

scenarios. The general tree generation approach described in / //
[4] recommends the use of a recursive cluster analysis method _
to bundle similar scenarios at all stages. N .
Our scenario construction method fits into this general
scheme by implementing a backward strategy using the sce-
nario reduction principlergrs) on the time horizof{1,...,t} Fig. 6. Construction of a scenario tree by successive scenario reduction
ateach € {1,...,T} as a similarity measure. This means, the
algorithm recursively reduces the number of nodes of the fan IV. GAMS/SCENRED

{¢1}2_, of individual scenarios by modifying the tree structure ) i ) .
and by bundling scenarios according to a successive scenari¢€ General Algebraic Modeling System (GAMS) is a high-
reduction technique (cf. Section Il). The idea is to compal@e! modeling system for mathematical programming prob-
the Kantorovich distance of original and reduced (sub)trees (GinS- It is specifically designed for modeling linear, nonlin-
{1,...t},t = T,T —1,...,2,1, and to delete scenarios if€&r and mixed integer optimization problems. GAMS con-

the reduced tree is still close enough to the original one. B{5tS Of & language compiler and a battery of integrated high-

J; we denote the scenario sets deleted and by, the set performance solvers. GAMS is tailored for complex, large scale
of scenarios that is preserved fat Algorithm 3 describes a modeling applications. More information can be obtained from

particular variant of the method. Fig. 6 highlights the interplafcWWw-gams.com>).
between the reduction and bundling steps. Algorithm 1 and 2 and a fast backward method for

huge scenario sets are contained in the library SCENRED.

Algorithm 3 — Scenario tree construction GAMS/SCENRED [9] was introduced to the GAMS Distribu-
tion 20.6 (May 2002). It takes the original scenarios from the
Let tolerances; > 0,t =1,...,T, be given. modeler, along with parameters controlling the reduction, and

returns a reduced scenario set for use in subsequent solves or

Stepk=1:  Apply the maximal reduction strategyn¢s) | data manipulation.
and Alg. 1 to determine the index sét C

{1,...,S} = Ir41 such that V. PORTFOLIO MANAGEMENT FOR A HYDRO-THERMAL
Z pi min ep(€69) < ex POWER SYSTEM
Pyt ' jdir ' - To test our approach to scenario reduction and scenario
tree construction, we consider the following instances of the
Setlr :=Ipyi \ Jr andg;'pp =i e Ir. portfolio management probl_em of a hyd_ro_—the.rmal generation
Calculate from (2) optimal probabilities., (sub)system of a German utility. The optimization model deter-
i € Iy, for the (preserved) scenarios. mines trading activitities and the production decisions of the
generation system such that the (expected) revenue is maxi-
k=T—t+1: Reduction: mized. A full description of the model and the Lagrangian re-

App|y (mrs) and A|g 1 to determine the in laxation algorithms for its solution is given in [10], [11]

dex setJ; C I+, such that

ZJ pijefnjlnw c(&,¢7) <er. | A. Uncertain electrical load and spot market price

i€ J: t t

Setly == Iy \ J;. The first experiment was designed to test the link between
GAMS and the scenario reduction algorithms. The GAMS

Scenario bundling: model for the weekly portfolio management problem was

For eachj € J; select an index solved with CPLEX 7.5 for a hydro-thermal subsystem com-

i* € argmingey, (€4, €9), a(j(j7rg'+]L prising 4 thermal generation units and two pumped-storage hy-

tow},, and bundle scenaripwith i*, i.e., dro units.

A fan of scenarios served as initial approximation of the
stochastic data process with components electrical load and
spot market price. To extract scenarios for the bivariate data
process we were given historical load profiles and market data
of the European Energy Exchange (EEX). Graphical and clus-
tering methods selected 54 scenarios with identical probabili-
ties to model the distribution of the bivariate stochastic process
for an hourly discretized time horizon of one week in summer.

gg.,app = §tz forr=2,....¢,
gg,app = é.g for T=1+ 17 - 7.11.
Setgaapp = gz—i-l,appv T = 7";4_1, 1 € 1.

Stepk=T:  Set¢] ,,, := & and consider the tree consist
ing of the scenario$¢; ..}, fori € Ir.




Figures 7 and 8 display the components of an reduced tree for 7e«s |
the scenario reduction algorithm. Fig. 9 shows the relative accu-
racy of the reduced scenario trees depending on the number of®*=* |
preserved scenarios. The optimal value of the power manage-
ment model having different numbers of preserved scenariés

and nodes is given in Fig. 10.
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Fig. 7. A tree with 54 scenarios for the component series electrical load
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Test results for solving the stochastic dual based on a reduced load

scenario tree of relative toleraneg,;

daily mean load with regression models for the intra-day
behaviour of the load series. Figure 11 reports the computing
times for solving the stochastic dual based on different load
scenario trees, each having a different numbers of scenarios
(S) and of nodes ). The test runs were performed on an
HP 9000 (780/J280) computer with 180 MHz frequency and
768 MByte main memory under HP-UX 10.20. The trees are
constructed by Algorithm 3 with; := 575, t = 1,...,T,

Fig. 8. A tree with 54 scenarios for the component series spot market pricegnd for different relative tolerances, := —=—, wheresmax
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is the best possible Kantorovich distan@g of the probability
distribution having scenariag, i = 1, ..., 100, with identical
probabilitiesp; = 0.01, to one of its scenarios endowed with
unit mass. Figure 12 and 13 show the scenario tree structure
and the improved accuracy of the dual optimum, respectively,
for decreasing relative tolerances.

VI. CONCLUSIONS

We described algorithms for the reduction and scenario tree
construction to approximate the random data processes of mul-

Relative accuracy for the reduced scenario trees with componeigeriod dynamic decision models under uncertainty. The nu-

merical results for the solution of a portfolio management
model illustrate the usefulness of our reduction concept. The
optimal value of the optimization model can be well approxi-

mated using a small number of scenarios.

Another experiment was designed to test the performance
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