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Abstract— Portfolio and risk management problems of power
utilities may be modeled by multistage stochastic programs. These
models use a set of scenarios and corresponding probabilities
to model the multivariate random data process (electrical load,
stream flows to hydro units, and fuel and electricity prices). For
most practical problems the optimization problem that contains
all possible scenarios is too large. Due to computational complex-
ity and to time limitations this program is often approximated by
a model involving a (much) smaller number of scenarios. The pro-
posed reduction algorithms determine a subset of the initial sce-
nario set and assign new probabilities to the preserved scenarios.
The scenario tree construction algorithms successively reduce the
number of nodes of a fan of individual scenarios by modifying the
tree structure and by bundling similar scenarios. Numerical ex-
perience is reported for constructing scenario trees for the load
and spot market prices entering a stochastic portfolio management
model of a German utility.

Index Terms— Stochastic programming, scenario reduction,
scenario tree construction.

I. INTRODUCTION

Economic needs and the ongoing liberalization of European
electricity markets stimulate the interest of power utilities in de-
veloping models and optimization techniques for the generation
and trading of electric power under uncertainty. Utilities partic-
ipating in deregulated markets observe increasing uncertainty
in electrical load (i.e., demand for electric power) and prices
for fuel and electricity on spot and contract markets. Therefore,
many different optimization models for the operation and plan-
ning of power utilities use scenarios to deal with uncertainty re-
lated to economic and enviromental parameters, cf. [1], [6], [7],
[8], [10], [15], [18], [21], [22] and the state-of-the-art survey
[24]. Each scenario corresponds to a particular outcome of the
random quantity, i.e., scenarios are realizations (trajectories) of
a certain multidimensional stochastic process, the data process
of the optimization model. Typical components of the data pro-
cess are the electrical load, stream inflows in hydro plants, and
prices for fuel and electricity on wholesale markets.

The scenarios and their probabilities form an discrete ap-
proximation of the probability distribution of the data process.
Clearly, the set of scenarios chosen for the optimization model
might bias its solution. A survey of methods for generating sets
of scenarios that form an approximation of the underlying ran-
dom data process is given in [4]. Relations to the stability of op-
timal values and solutions of scenario-based optimization mod-
els have also been studied by several authors (see [5], Chapter 8
in [20] and the references therein). Additional features of such
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scenario sets in dynamic decision models are that the process is
deterministic at the first time period and that it has to benonan-
ticipative. The latter means that the random data and decision
processes at any time do not depend on future realizations of
the data process. These requirements lead to a special form of
the finite scenario set, namely, to a tree structure. Ascenario
treemay be represented by a finite set of nodes. It starts from
the root node at the first period and eventually branches into
nodes at the next period. Each node has a unique predecessor
node, but possibly several successors. The branching continues
up to nodes at the final period whose number corresponds to the
number of scenarios.

Sampling from historical time series or from statistical mod-
els (e.g., time series or regression models) is the most popular
method for generating data scenarios. Statistical models for the
data processes entering power operation and planning models
have been proposed, e.g., in [3], [10], [11], [21], [23].

The computational effort for solving scenario-based opti-
mization models depends on the number of scenarios even if
decomposition methods are used that exploit special structures.
Hence, it is natural to look for scenario-based approximations
of the random data process that have a small number of sce-
narios, but still represent reasonably good approximations. Our
approach to scenario reduction controls the goodness-of-fit of
the approximation by a certain distance of probability distribu-
tions, aprobability metric. It is recommended to select the spe-
cific probability metric out of a certain family of Kantorovich or
transportation metrics such that the optimal values and solution
sets of the stochastic programs behave stable with respect to
perturbations of the underlying probability distributions mea-
sured in terms of the specified metric. Transportation metrics
represent optimal values of linear transportation problems, i.e.,
special linear programs. It turns out that the transportation dis-
tance between a scenario-based approximation and another one,
based on a subset of scenarios and representing the best possi-
ble approximation, can be computed explicitly without solving
linear programs. The latter formula trades off scenario prob-
abilities and distances of scenarios considered as elements of
Euclidean spaces.

The second part of the paper addresses the question of sce-
nario tree generation for multiperiod dynamic decision mod-
els under uncertainty. Such dynamic stochastic programs are
appropriate optimization models when decisions, such as re-
balancing a power portfolio, are taken at several discrete time
points called stages. For example, the portfolio manager starts
with a given portfolio and a set of scenarios about future states
of the system which he/she incoorporates into an investment de-
cision. The model specifies a sequence of decisions at discrete
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time points. The precise composition of the portfolio depends
on transactions at the previous stage and on scenarios realized
in the interim. Hence, another set of investment decisions is
made that incorporates the current status of the portfolio and
new information on future scenarios.

The portfolio manager may base his/her decisions on inde-
pendently generated scenarios for the parameters of the system
and of the economy. Although such a fan of individual scenar-
ios represents a very specific scenario tree, its tree structure is
not appropriate for the stagewise decision process and, in ad-
dition, contains a large number of nodes. What is needed is a
scenario tree where information is revealed in all stages of the
model. We propose an algorithm for the construction of sce-
nario trees that reduces the number of nodes of an original fan
of individual scenarios by modifying the tree structure and by
bundling similar scenarios. The whole procedure is based on a
recursive reduction argument using transportation metrics.

The paper is organized as follows. InxII we give a descrip-
tion of our concept for the reduction of scenarios modeling the
stochastic data processes of stochastic programs. InxIII we
present our procedure for generating scenario trees and report
on numerical tests for constructing scenario trees for the load
and spot market prices entering a stochastic portfolio manage-
ment model of a German utility.

II. SCENARIO REDUCTION

We briefly describe a universal and general concept devel-
oped in [5], [12] for the reduction of scenarios modeling the
stochastic data processes in stochastic programs. It imposes
no requirements on the stochastic data processes (e.g. the de-
pendence structure or the dimension of the process) or on the
structure of the scenarios (e.g. tree-structured or not).

A. Nomenclature

�, f�tg
T
t=1,

~�, f~�tgTt=1

n-dimensional stochastic processes
with parameter setf1; : : : ; Tg

�i, ~�j scenarios (sample path of�, ~�)
pi, qj scenario probabilities, i.e.,pi � 0,

qj � 0,
P

i pi =
P

j qj = 1

P , Q probability distribution of the pro-
cesses� and~�, resp.

S number of scenarios in the initial sce-
nario set

J index set of deleted scenarios
#J cardinality of the index set J; i.e., the

number of deleted scenarios
s = S �#J number of preserved scenarios
" tolerance for the reduction
ct(�

i; �j) distance between scenariof�igt�=1,
f�jgt�=1

B. Theoretical background

Assume that the probability distributionP of the n-
dimensional stochastic data process� = f�tg

T
t=1 (with possible

components electrical load, stream flows to hydro units, and

fuel and electricity prices) is approximately given by finitely
many scenarios�i = f�itg

T
t=1, i = 1; : : : ; S, and their probabil-

ities pi,
PS

i=1 pi = 1.
The scenario reduction algorithms developed in [5], [12] de-

termine a scenario subset (of prescribed cardinality or accuracy)
and assign new probabilities to the preserved scenarios such
that the corresponding reduced probability measureQ is the
closest to the original measureP in terms of a certain probabil-
ity distance betweenP andQ. The probability distance trades
off scenario probabilities and distances of scenario values. In
the context of stochastic power management models, we use
the Kantorovich distanceDK of (multivariate) probability dis-
tributions (cf. [19], Section 5).

For discrete probability distributions with finitely many sce-
narios the Kantorovich distanceDK is just the optimal value
of a linear transportation problem. LetQ be the distribution
of another n-dimensional stochastic process~� with scenarios
~�j 2 RnT and probabilitiesqj , j = 1; : : : ; ~S. Then

DK(P;Q) = inf

8<
:

SX
i=1

~SX
j=1

�ijcT (�
i; ~�j) :

�ij � 0;

SX
i=1

�ij = qj ;

~SX
j=1

�ij = pi;8i;8j

9=
; ;

wherect(�i; ~�j) :=
Pt

�=1 j�
i
� �

~�j� j, t = 1; : : : ; T , andj:j de-
notes some norm onRn , i.e.,cT measures the distance between
scenarios on the whole time horizonf1; : : : ; Tg.
Now, letQ be the reduced probability distribution of�, i.e., the
support ofQ consists of scenarios�j for j 2 f1; : : : ; Sg n J
andJ denotes some index set of deleted scenarios. For fixed
J � f1; : : : ; Sg, the scenario setQ based on the scenarios
f�jgj 62J having minimalDK-distance toP may be computed
explicitly ([5], Theorem 3.1). The minimal distance is

DK(P;Q) =
X
i2J

pimin
j 62J

cT (�
i; �j) (1)

and the probabilityqj of the (preserved) scenarios�j , j 62 J , of
Q is given by the rule

qj := pj +
X

i2J(j)

pi; where (2)

J(j) := fi 2 J : j = j(i)g ; j(i) 2 argmin
j 62J

cT (�
i; �j); 8i 2 J:

The interpretation of theoptimal redistribution rule(2) is that
the new probability of a preserved scenario is equal to the sum
of its former probability and of all probabilities of deleted sce-
narios that are closest to it with respect tocT . All deleted sce-
narios have probability zero.

The optimal choice of an index setJ for scenario reduction
with fixed cardinality#J is given by the solution of theoptimal
reduction problem

min

(X
i2J

pimin
j2J

cT (�
i; �j) : J � f1; : : : ; Sg;#J = S � s

)
;

(3)



wheres = S �#J > 0 is the number of preserved scenarios.
It is well-known that (3) represents a set-covering problem. It
may be formulated as a 0-1 integer program and is NP-hard.

From (1) and (3) we deduce the followingmaximal reduction
strategyto determine a reduced probability distributionQ of �
such that the set of deleted scenarios has maximal cardinality
and thatDK(P;Q) < " holds, i.e.,Q is close to the original
distributionP with given accuracy" > 0:

Maximal reduction strategy(mrs):

Determine an index setJ with maximal cardinality#J

such that X
i2J

pimin
j 62J

cT (�
i; �j) � ":

The redistribution rule (2) yields the probabilitiesqj , j 62
J , of the preserved scenarios.

C. Algorithms

Since efficient solution algorithms for (3) are hardly avail-
able in general, (fast) heuristic algorithms were developed that
exploit the structure of the objective. In the specific cases of
#J = 1 (deleting one scenario) and#J = S � 1 (keeping one
scenario), solving (3) becomes quite easy.

Special case 1: Deleting one scenario
If #J = 1, the problem (3) takes the form

min
l2f1;:::;Sg

plmin
j 6=l

cT (�
l; �j): (4)

If the minimum is attained atl� 2 f1; : : : ; Sg, i.e., the
scenario �l� is deleted, the redistribution rule (2) yields
the probability distribution of the reduced measureQ. If
j� 2 argminj 6=l� cT (�

l� ; �j), then it holds thatqj� = pj� + pl�
andql = pl for all l 62 fl�; j�g.

Special case 2: Optimal selection of a single scenario
If #J = S � 1, the problem (3) is of the form

min
u2f1;:::;Sg

SX
i=1

picT (�
i; �u) : (5)

If the minimum is attained atu� 2 f1; : : : ; Sg, only the
scenario�u� is kept and the redistribution rule (2) provides
qu� = pu� +

P
i6=u�

pi = 1.

General case
Of course, the optimal deletion of a single scenario may
be repeated recursively until a prescribed numberS � s of
scenarios is deleted. This strategy recommends a conceptual
algorithm calledbackward reduction(cf. Fig. 1). If the number
of preserved scenarios is small (strong reduction) the optimal
selection of a single scenario may be repeated recursively until
a prescribed numbers of preserved scenarios is selected. This
strategy provides the basic concept of a second conceptual
algorithm calledforward selection. Numerical tests in [12]

Fig. 1. Delete 2 of 5 scenarios with a backward reduction algorithm

have shown that the following particular variants of backward
reduction (Algorithm 1) and forward selection algorithms
(Algorithm 2) provide more accurate solutions of the optimal
reduction problem (3) than the described ad-hoc variants.

Algorithm 1 — Simultaneous backward reduction

Step 0: Compute the distances of scenario pairs:

ckj := cT (�
k; �j), k; j = 1; : : : ; S.

Sort the recordsfckj : j = 1; : : : ; Sg,
k = 1; : : : ; S

Step 1: Compute

c
[1]
ll := min

j 6=l
clj , l = 1; : : : ; S and

z
[1]
l := plc

[1]
ll , l = 1; : : : ; S.

Choosel1 2 arg min
l2f1;:::;Sg

z
[1]
l .

SetJ [1] := fl1g.

Step i: Compute

c
[i]
kl := min

j 62J[i�1][flg
ckj

for l 62 J [i�1], k 2 J [i�1] [ flg and

z
[i]
l :=

P
k2J[i�1][flg

pkc
[i]
kl , l 62 J [i�1].

Chooseli 2 arg min
l 62J[i�1]

z
[i]
l .

SetJ [i] := J [i�1] [ flig.

Step S-s+1: J := J [S�s] is the index set of deleted sce-
narios. Compute optimal probabilities for
the preserved scenarios from (2).

The scenario reduction algorithms were used to reduce a
ternary scenario tree for the weekly load process of a German
utility. The original construction is based on an hourly dis-
cretization of the weekly time horizon with branching periods
tk = 24k for k = 1; : : : ; 6 (see [10] for a detailed description).
The corresponding mean-shifted tree is illustrated in Fig. 2.
Figures 3 and 4 displays the reduced trees with 15 preserved
scenarios obtained by the forward and backward algorithm.
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Fig. 2. Ternary scenario tree containing 729 (mean-shifted) load scenarios
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Fig. 3. Reduced load scenario tree with 15 preserved scenarios obtained by
the backward algorithm

Algorithm 2 — Fast forward selection

Step 0: Compute the distances of scenario pairs:

c
[1]
ku := cT (�

k; �u), k; u = 1; : : : ; S.

Step 1: Compute

z
[1]
u :=

P
k=1
k 6=u

pkc
[1]
ku, u = 1; : : : ; S.

Chooseu1 2 arg min
u2f1;:::;Sg

z
[1]
u .

SetJ [1] := f1; : : : ; Sgnfu1g.

Step i: Compute

c
[i]
ku := minfc

[i�1]
ku ; c

[i�1]
kui�1

g, k; u 2 J [i�1]

and

z
[i]
u :=

P
k2J[i�1]nfug

pkc
[i]
ku, u 2 J [i�1].

Chooseui 2 arg min
u2J[i�1]

z
[i]
u .

SetJ [i] := J [i�1]nfuig.

Step s+1: J := J [S�s] is the index set of deleted sce-
narios. Compute optimal probabilities for the
preserved scenarios from (2).
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Fig. 4. Reduced load scenario tree with 15 preserved scenarios obtained by
the forward algorithm

III. SCENARIO TREE CONSTRUCTION

A scenario tree represents the abstract structure of scenarios.
It shows how the uncertainty unfolds over time. A simple exam-
ple is illustrated in the scenario tree of Fig. 5. Each complete
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Fig. 5. Scenario tree with 5 scenarios and 10 nodes

path from the root noden1 to one of the leavesn6; : : : ; n10
represents a scenario, i.e. the tree consists of 5 scenarios. Ap-
proximations of stochastic processes in form of scenario trees
are useful for the formulation of multiperiod dynamic deci-
sion models as multistage stochastic programs. A multistage
stochastic programming model will determine an optimal deci-
sion for each node of the scenario tree, given the information
available at that point. As there are multiple succeeding nodes
the optimal decisions will not exploit hindsight, but they should
anticipate future events.

Presently, a number of approaches to the generation of sce-
nario trees is available. Here, we mention only those that are
not reviewed in [4]. The paper [2] uses approximations based
on conditional expectations in order to be able to use bounds for
generating scenarios. The approach in [14] is based on solv-
ing certain regression models to match certain presribed mo-
ments of the original measure. Although moment matching is a
widespread method, Example 1 in [13] shows that it may lead
to strange results. In [16] modern quadrature formulas are pro-
posed for conditional sampling and the papers [17], [13] pro-
pose algorithms for determining scenario trees that are best ap-
proximations with respect to certain probability distances. The
latter idea also serves as a motivation for the following tree con-
struction based on successive reduction.

We assume that finitely many individual paths or scenarios
�i = f�itg

T
t=1 and corresponding probabilitiespi, i = 1; : : : ; S



of an n-dimensional stochastic process� = f�tg
T
t=1 are given,

e.g., obtained from nonparametric or parametric models for the
underlying process. Further we assume that all scenarios coin-
cide att = 1, i.e.,�11 = : : : = �S1 =: ��1 . This means thatt = 1
may be regarded as the root node of a scenario tree consisting
of S branches or that the paths�i, i = 1; : : : ; S, form a fan of
scenarios. The general tree generation approach described in
[4] recommends the use of a recursive cluster analysis method
to bundle similar scenarios at all stages.

Our scenario construction method fits into this general
scheme by implementing a backward strategy using the sce-
nario reduction principle (mrs) on the time horizonf1; : : : ; tg
at eacht 2 f1; : : : ; Tg as a similarity measure. This means, the
algorithm recursively reduces the number of nodes of the fan
f�igSi=1 of individual scenarios by modifying the tree structure
and by bundling scenarios according to a successive scenario
reduction technique (cf. Section II). The idea is to compare
the Kantorovich distance of original and reduced (sub)trees on
f1; : : : ; tg, t = T; T � 1; : : : ; 2; 1, and to delete scenarios if
the reduced tree is still close enough to the original one. By
Jt we denote the scenario sets deleted att and byIt the set
of scenarios that is preserved att. Algorithm 3 describes a
particular variant of the method. Fig. 6 highlights the interplay
between the reduction and bundling steps.

Algorithm 3 — Scenario tree construction

Let tolerances"t > 0, t = 1; : : : ; T , be given.

Step k=1: Apply the maximal reduction strategy (mrs)
and Alg. 1 to determine the index setJT �
f1; : : : ; Sg = IT+1 such thatX

i2JT

pi min
j 62JT

cT (�
i; �j) � "T

SetIT := IT+1 n JT and�iapp := �i, i 2 IT .
Calculate from (2) optimal probabilities�i

T ,
i 2 IT , for the (preserved) scenarios.

k=T–t+1: Reduction:
Apply (mrs) and Alg. 1 to determine the in-
dex setJt � It+1 such thatP

i2Jt

pi min
j2It+1nJt

ct(�
i; �j) � "t .

SetIt := It+1 n Jt.

Scenario bundling:
For eachj 2 Jt select an index
i� 2 argmini2It ct(�

i; �j), add�j
t+1

to �i�

t+1 and bundle scenarioj with i�, i.e.,
�
j
t;app := �i

�

t for � = 2; : : : ; t,
�
j
t;app := �

j
t for � = t+ 1; : : : ; T .

Set�it;app := �it+1;app, �i
t := �i

t+1, i 2 It.

Step k=T: Set�i1;app := ��1 and consider the tree consist-
ing of the scenariosf�it;appg

T
t=1 for i 2 IT .

Fig. 6. Construction of a scenario tree by successive scenario reduction

IV. GAMS/SCENRED

The General Algebraic Modeling System (GAMS) is a high-
level modeling system for mathematical programming prob-
lems. It is specifically designed for modeling linear, nonlin-
ear and mixed integer optimization problems. GAMS con-
sists of a language compiler and a battery of integrated high-
performance solvers. GAMS is tailored for complex, large scale
modeling applications. More information can be obtained from
(<www.gams.com> ).

Algorithm 1 and 2 and a fast backward method for
huge scenario sets are contained in the library SCENRED.
GAMS/SCENRED [9] was introduced to the GAMS Distribu-
tion 20.6 (May 2002). It takes the original scenarios from the
modeler, along with parameters controlling the reduction, and
returns a reduced scenario set for use in subsequent solves or
data manipulation.

V. PORTFOLIO MANAGEMENT FOR A HYDRO-THERMAL

POWER SYSTEM

To test our approach to scenario reduction and scenario
tree construction, we consider the following instances of the
portfolio management problem of a hydro-thermal generation
(sub)system of a German utility. The optimization model deter-
mines trading activitities and the production decisions of the
generation system such that the (expected) revenue is maxi-
mized. A full description of the model and the Lagrangian re-
laxation algorithms for its solution is given in [10], [11].

A. Uncertain electrical load and spot market price

The first experiment was designed to test the link between
GAMS and the scenario reduction algorithms. The GAMS
model for the weekly portfolio management problem was
solved with CPLEX 7.5 for a hydro-thermal subsystem com-
prising 4 thermal generation units and two pumped-storage hy-
dro units.

A fan of scenarios served as initial approximation of the
stochastic data process with components electrical load and
spot market price. To extract scenarios for the bivariate data
process we were given historical load profiles and market data
of the European Energy Exchange (EEX). Graphical and clus-
tering methods selected 54 scenarios with identical probabili-
ties to model the distribution of the bivariate stochastic process
for an hourly discretized time horizon of one week in summer.



Figures 7 and 8 display the components of an reduced tree for
the scenario reduction algorithm. Fig. 9 shows the relative accu-
racy of the reduced scenario trees depending on the number of
preserved scenarios. The optimal value of the power manage-
ment model having different numbers of preserved scenarios
and nodes is given in Fig. 10.
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Fig. 7. A tree with 54 scenarios for the component series electrical load

5

10

15

20

25

30

35

40

45

0 24 48 72 96 120 144 168

Fig. 8. A tree with 54 scenarios for the component series spot market price
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Fig. 9. Relative accuracy for the reduced scenario trees with components
electrical load and spot market price

B. Uncertain electrical load

Another experiment was designed to test the performance
of the link between the Lagrangian relaxation algorithm and
the scenario tree construction algorithm. The portfolio man-
agement problem was now solved for 25 thermal generation
units and 7 pumped-storage hydro units using the Lagrangian
relaxation algorithm described in [10]. The tree construction
started with an initial fanfdig100i=1 of load scenarios. They
were simulated from the statistical model for the load process
developed in [11]. It combines a time series model for the
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Fig. 10. Optimum of the portfolio management model based on scenario trees
with components electrical load and spot market price with different relative
accuracy

"rel S N Variables Nonzeros time[s]
binary continuous

0.6 1 168 4200 7728 44695 7.83
0.1 67 515 12875 23690 137459 17.09
0.05 81 901 22525 41446 240233 37.82
0.01 94 2660 66500 122360 708218 150.14
0.005 96 3811 95275 175306 1014398 291.65
0.001 100 9247 231175 425362 2460402 1176.38

Fig. 11. Test results for solving the stochastic dual based on a reduced load
scenario tree of relative tolerance"rel

daily mean load with regression models for the intra-day
behaviour of the load series. Figure 11 reports the computing
times for solving the stochastic dual based on different load
scenario trees, each having a different numbers of scenarios
(S) and of nodes (N ). The test runs were performed on an
HP 9000 (780/J280) computer with 180 MHz frequency and
768 MByte main memory under HP-UX 10.20. The trees are
constructed by Algorithm 3 with"t := "

2T�t+1 , t = 1; : : : ; T ,
and for different relative tolerances"rel := "

"max
, where"max

is the best possible Kantorovich distanceDK of the probability
distribution having scenariosdi, i = 1; : : : ; 100, with identical
probabilitiespi = 0:01, to one of its scenarios endowed with
unit mass. Figure 12 and 13 show the scenario tree structure
and the improved accuracy of the dual optimum, respectively,
for decreasing relative tolerances.

VI. CONCLUSIONS

We described algorithms for the reduction and scenario tree
construction to approximate the random data processes of mul-
tiperiod dynamic decision models under uncertainty. The nu-
merical results for the solution of a portfolio management
model illustrate the usefulness of our reduction concept. The
optimal value of the optimization model can be well approxi-
mated using a small number of scenarios.
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