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Abstract A framework for the reduction of scenario trees as inputs of (linear)
multistage stochastic programs is provided such that optimal values and approxi-
mate solution sets remain close to each other. The argument is based on upper bounds
of the Lr -distance and the filtration distance, and on quantitative stability results for
multistage stochastic programs. The important difference from scenario reduction in
two-stage models consists in incorporating the filtration distance. An algorithm is pre-
sented for selecting and removing nodes of a scenario tree such that a prescribed error
tolerance is met. Some numerical experience is reported.
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1 Introduction

Numerical methods for solving applied stochastic programming models (in finance,
production, energy, transportation, etc.) mostly rely on approximating the underlying
probability distribution by a finitely discrete probability measure. This approxima-
tion technique reduces the original infinite-dimensional optimization problem to a
finite-dimensional program. To avoid that these optimization problems are too
high-dimensional, a scenario reduction methodology was suggested in Dupačová et al.
(2003) and further developed in Heitsch and Römisch (2003, 2007). These scenario
reduction methods are based on quantitative stability results for stochastic programs
(see the survey, Römisch 2003, and the recent supplement, Römisch and Wets 2007,
for two-stage models with random recourse) and on the use of distances of prob-
ability distributions relying on Monge–Kantorovich mass transportation problems
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(Rachev and Rüschendorf 1998). Although optimal scenario reduction problems are
combinatorial optimization models of k-median type, and, hence, NP-hard, the forward
and backward heuristics suggested in Dupačová et al. (2003), Heitsch and Römisch
(2003) and refined in Heitsch and Römisch (2007) provide encouraging results and
are often used in practical applications. The general idea was recently extended in
Henrion et al. (2007, 2008) to chance constrained and mixed-integer two-stage sto-
chastic programming models.

An important class of stochastic programs for practical applications are models with
measurability constraints, e.g., multistage stochastic programs. Recently, the stability
behavior of multistage linear stochastic programs was studied in Heitsch et al. (2006).
Its main result states that the distance of optimal values of original and approximate
models can be bounded by the Lr -distance (for some r ≥ 1) and a so-called filtration
distance of the underlying stochastic processes. The main computational approach for
solving multistage models consists in approximating the original stochastic process by
a process having finitely many scenarios exhibiting tree structure. Presently, several
approaches for the generation of such scenario trees are available. Here, we refer to
the survey (Dupačová et al. 2000) and to the original papers (Casey and Sen 2005;
Heitsch and Römisch 2008; Hochreiter and Pflug 2007; Høyland et al. 2003; Kuhn
2005, 2008; Pennanen 2009). If such a scenario tree is available, it may again be of
interest to reduce it by deleting some of its nodes. Due to the stability behavior of
multi-stage models, it is argued in Heitsch et al. (2006, Example 2.7) that scenario
tree reduction in multistage models should be based on Lr -distances as well as on
filtration distances.

In this paper, we take up the latter issue and develop a sound theoretical basis for
scenario tree reduction in multistage stochastic programming models. To do so, we
review stability results for the multistage situation (in Sect. 2) and derive new bounds
for both the Lr -distance and the filtration distances between a scenario tree and its
reduced version (in Sect. 3). These bounds motivate algorithms for reducing scenario
trees. In Sect. 4 we present a specific algorithm based on recursive single node reduc-
tion. In Sect. 5 we report on numerical experience of the tree reduction algorithm
and show that its outcomes strongly depends on the use of both types of distances,
namely, the Lr -distance and the filtration distance. In particular, the results indicate
that applying the scenario reduction techniques from Heitsch and Römisch (2003,
2007) (i.e., methods that are only based on the Lr -distance) to the multistage situation
is not appropriate.

2 A review of stability in multistage stochastic programming

Let ξ = {ξt }T
t=1 be a stochastic process defined on some probability space (Ω,F , P)

and with ξt taking values in R
d . It is assumed that this process enters an optimization

model and that the (stochastic) decision xt at t maps from Ω to R
mt is nonanticipative,

i.e., depends only on ξ t := (ξ1, . . . , ξt ). The latter property is equivalent to the measur-
ability constraint stating that xt is measurable with respect to the σ -field Ft (ξ) ⊆ F
generated by ξ t . We assume that ξ1 is deterministic, i.e., that F1(ξ) = {∅,Ω}. Then
the stochastic process ξ is accompanied by a filtration (Ft (ξ))T

t=1 of σ -fields satisfying

123



Scenario tree reduction for multistage stochastic programs

F1(ξ) = {∅,Ω} ⊆ · · · ⊆ Ft (ξ) ⊆ Ft+1(ξ) ⊆ · · · ⊆ FT (ξ) ⊆ F .

We consider the linear multistage stochastic programming model

min

⎧
⎨

⎩
E

[
T∑

t=1

〈bt (ξt ), xt 〉
] ∣∣
∣
∣
∣
∣

xt ∈ Xt ,

xt is Ft (ξ)-measurable, t = 1, . . . , T,

At,0xt + At,1(ξt )xt−1 = ht (ξt ), t = 2, . . . , T

⎫
⎬

⎭
, (1)

where the subsets Xt of R
mt are nonempty and polyhedral, the cost coefficients bt (ξt )

belong to R
mt , the right-hand sides ht (ξt ) are in R

nt , At,0 ∈ R
nt ×mt are fixed recourse

matrices and At,1(ξt ) ∈ R
nt ×mt−1 technology matrices, respectively. We assume that

costs bt (·), right-hand sides ht (·) and technology matrices At,1(·) depend affinely
on ξt covering the situation that some of the components of bt and ht , and of the
elements of At,1 are random. Note that the two constraints xt ∈ Xt and At,0xt +
At,1(ξt )xt−1 = ht (ξt ) mean xt (ω) ∈ Xt and At,0xt (ω) + At,1(ξt (ω))xt−1(ω) =
ht (ξt (ω)) for P-almost every ω ∈ Ω .

In addition to the pointwise constraint with probability 1, measurability, filtration
or information constraints appear in (1). They are functional and non-pointwise at
least if T > 2 and F1(ξ) � Ft (ξ) � FT (ξ) for some 1 < t < T . The presence
of such qualitatively different constraints constitutes the origin of both the theoretical
and computational challenges of multistage models.

Next we record results of the recent papers (Heitsch et al. 2006; Heitsch and
Römisch 2008). We assume that the stochastic input process ξ belongs to the Banach
space Lr (Ω,F , P; R

s) with s := T d and r ≥ 1. The multistage model (1) is regarded
as an optimization problem in the space Lr ′(Ω,F , P; R

m) with m = ∑T
t=1 mt and

endowed with the norm

‖x‖r ′ :=
(

T∑

t=1

E[|xt |r ′ ]
) 1

r ′

(1 ≤ r ′ < ∞) or ‖x‖∞ := max
t=1,...,T

ess sup |xt |,

where the number r ′ is defined by

r ′ :=

⎧
⎪⎪⎨

⎪⎪⎩

r
r−1 , if only costs are random,

r, if only right-hand sides are random,

r = 2, if only costs and right-hand sides are random,

∞, if all technology matrices are random and r ≥ T .

(2)

The choice of r and the definition of r ′ are motivated by the knowledge on existing
moments of the input process and by having the stochastic program well defined (in
particular, such that 〈bt (ξt ), xt 〉 is integrable for every decision x and t = 1, . . . , T ).

Next we need to introduce some notations. Let F denote the objective function
defined on Lr (Ω,F , P; R

s) × Lr ′(Ω,F , P; R
m) → R by F(ξ, x) := E[∑T

t=1〈bt (ξt ), xt 〉], let
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Xt (xt−1; ξt ) := {xt ∈ Xt |At,0xt + At,1(ξt )xt−1 = ht (ξt )}

denote the t th feasibility set for every t = 2, . . . , T and

X (ξ) :=
{

x = (x1, x2, . . . , xT ) ∈ ×T
t=1Lr ′(Ω,Ft (ξ), P; R

mt )|
x1 ∈ X1, xt ∈ Xt (xt−1; ξt )

}

the set of feasible elements of (1) with input Ξ . Then the multistage stochastic program
(1) may be rewritten as

min{F(ξ, x) : x ∈ X (ξ)}. (3)

Furthermore, let v(ξ) denote its optimal value and, for any α ≥ 0,

Sα(ξ) := {x ∈ X (ξ) : F(ξ, x) ≤ v(ξ) + α} and S(ξ) := S0(ξ)

denote the α-approximate solution set and the solution set of the stochastic program
(3) with input ξ , respectively.

The following conditions are imposed on (3):

(A1) ξ ∈ Lr (Ω,F , P; R
s), i.e.,

∫

Ω
|ξ(ω)|r dP(ω) < ∞, for some r ≥ 1.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr (Ω,F , P; R
s) with ‖ξ̃ −ξ‖r ≤ δ,

any t = 2, . . . , T and any x1 ∈ X1(ξ̃1), xτ ∈ Xτ (xτ−1; ξ̃τ ), τ = 2, . . . ,

t −1, there exists an Ft (ξ̃ )-measurable xt ∈ Xt (xt−1; ξ̃t ) (relatively complete
recourse locally around ξ ).

(A3) The optimal values v(ξ̃ ) of (3) with input ξ̃ are finite for all ξ̃ in a neigh-
borhood of ξ and the objective function F is level-bounded locally uniformly
at ξ , i.e., for some α > 0 there exist a constant δ > 0 and a bounded sub-
set B of L∞(Ω,F , P; R

m) such that Sα(ξ̃ ) is contained in B for all ξ̃ ∈
Lr (Ω,F , P; R

s) with ‖ξ̃ − ξ‖r ≤ δ.

The following stability result states that multistage models behave stable at some
stochastic input process if both its probability distribution and its filtration are approx-
imated simultaneously in terms of the Lr -distance and of one of the filtration distances

Df,∞(ξ, ξ̃ ) := sup
‖x‖∞≤1

T −1∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖r ′ , (4)

D∗
f,∞(ξ, ξ̃ ) := sup

‖x‖∞≤1

T∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖r ′ , (5)

where Ft (ξ) and Ft (ξ̃ ) denote the σ -fields generated by ξ t and ξ̃ t , respectively, and
E[·|Ft (ξ)] and E[·|Ft (ξ̃ )] the corresponding conditional expectations.
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Fig. 1 Example scenario tree ξ

with |It | = 6, |It,i | = 3 and
|IT | = 11

(t , i)
It,i

t = 1 t T = 4

Theorem 1 Let (A1), (A2) and (A3) be satisfied and X1 be bounded.
Then there exist positive constants L and δ such that the estimate

|v(ξ) − v(ξ̃ )| ≤ L(‖ξ − ξ̃‖r + Df,∞(ξ, ξ̃ )) (6)

holds for all random elements ξ̃ ∈ Lr (Ω,F , P; R
s) with ‖ξ̃ − ξ‖r ≤ δ.

Furthermore, if the solution sets S(ξ) and S(ξ̃ ) are nonempty, there exist L̄ > 0
and ε̄ > 0 such that the estimate

dl∞(Sε(ξ), Sε(ξ̃ )) ≤ L̄

ε
(‖ξ − ξ̃‖r + D∗

f,∞(ξ, ξ̃ )) (7)

holds for any ε ∈ (0, ε̄). Here, dl∞ denotes the Pompeiu–Hausdorff distance of
bounded subsets of Lr ′ .

The first part of Theorem 1 is essentially Heitsch et al. (2006, Theorem 2.1), where
compared to Heitsch et al. (2006), condition (A3) allows to make use of the filtration
distances Df,∞ or D∗

f,∞ (cf. the discussion in Heitsch and Römisch 2008, Sect. 3).
The second part of Theorem 1 is proved in Heitsch and Römisch (2006).

Finally, we mention that Theorem 1 remains valid if the expectation E in the objec-
tive of (1) is replaced by a multi-period polyhedral risk functional satisfying a certain
uniform level boundedness property (see Eichhorn and Römisch 2008). Multi-period
polyhedral risk functionals and their incorporation into multi-stage stochastic pro-
gramming models are studied in Eichhorn and Römisch (2005).

3 Bounding the Lr -minimal and filtration distance

Let ξ = {ξt }T
t=1 be a stochastic process on the probability space (Ω,F , P) hav-

ing a finite number of scenarios ξ i with probabilities pi , i = 1, . . . , N , in form of
a scenario tree. Let It denote the index set of realizations of ξt . If we set Ati :=
(ξ1, . . . , ξt )

−1({(ξ i
1, . . . , ξ

i
t )}) for every i ∈ It , the system {Ati }i∈It is a partition of
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Fig. 2 Example scenario tree
ξ red with |I red

t | = 5, |Jt, j | = 2

and |I red
T | = 8

(t, j)

t = 1 t T = 4

Ω and generates the σ -field Ft (ξ). We set pi
t := P(Ati ), i ∈ It , t = 1, . . . , T , and

have, in particular, that IT = {1, . . . , N } and pi
T = pi for every i ∈ IT . Furthermore,

we have

ξt =
∑

i∈It

ξ i
t 1lAti (t = 1, . . . , T ),

where 1lA denotes the characteristic function of a subset A of Ω . The tree structure of
ξ implies that I1 is a singleton and that

I1 ⊆ I2 ⊆ · · · ⊆ It ⊆ It+1 ⊆ · · · ⊆ IT = {1, . . . , N }

holds. Moreover, if It,i ⊆ It+1 denotes the index set of successors to ξ i
t at t + 1, the

relations

pi
t =

∑

j∈It,i

p j
t+1 (i ∈ It )

are valid for every t = 1, . . . , T − 1. Any node of the tree corresponds to a pair
(t, i) ∈ {1, . . . , T } × It (Fig. 1).

Now, let ξ red be a stochastic process on (Ω,F , P) that we regard as reduced sce-
nario tree obtained from ξ . If I red

t denotes the index set of realizations of ξ red
t , the

latter means

I red
1 = I1 and I red

t ⊆ It (t = 2, . . . , T ),

where at least for some t ∈ {2, . . . , T } we have I red
t ⊂ It . Let ξ j,red, j ∈ I red

T , denote
the scenarios of ξ red. Let us further denote by Jt := It \ I red

t the index set of all with-

drawn realizations at time t and by Et j the set Et j :=(ξ red
1 , . . . , ξ red

t )−1({(ξ j
1 , . . . , ξ

j
t )})

for every j ∈ I red
t . The system {Et j } j∈I red

t
forms a partition of Ω and generates the
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σ -field Ft (ξ
red). Moreover, for every j ∈ I red

t , let Jt, j ⊂ It denote the index set such

that ξ i
t = ξ

j
t = ξ

j, red
t holds for all i ∈ Jt, j , i.e., the index set of all scenarios in It

which have been identified with ξ
j

t during the reduction process (Fig. 2). The index
sets {Jt, j } j∈I red

t
form a partition of It and it holds

Et j =
⋃

i∈Jt, j

Ati ,

π
j

t := P(Et j ) =
∑

i∈Jt, j

pi
t ( j ∈ I red

t ).

If the assumptions of Theorem 1 are satisfied for some 1 ≤ r < +∞, the distances
of optimal values and ε-approximate solution sets get small if both distances

‖ξ − ξ red‖r and D∗
f,∞(ξ, ξ red) (8)

are small. Hence, if a tolerance ε > 0 is given, it is reasonable to require

w1‖ξ − ξ red‖r + w2 D∗
f,∞(ξ, ξ red) ≤ ε, (9)

where wi , i = 1, 2, denote positive weighting factors such that w1‖ξ − ξ red‖r and
w2 D∗

f,∞(ξ, ξ red) belong to (0, 1].
The condition (9) appears as a natural condition for reducing the scenario tree ξ .

A canonical choice for the factors w1 and w2 is obtained by selecting i∗ ∈ IT such that
the corresponding scenario ξ i∗ represents the best approximation of ξ with respect to
the Lr -distance. More precisely, if ξ∗ denotes the corresponding deterministic scenario
process, i.e., ξ∗(ω) = ξ i∗ , for all ω ∈ Ω , we have

‖ξ − ξ∗‖r ≤ ‖ξ − ξ̃∗‖r ,

for all deterministic processes ξ̃∗ consisting of only one given scenario, i.e., for all
processes with ξ̃∗(ω) = ξ i , for all ω ∈ Ω , where i ∈ IT . Then the weighting factors
are defined by

w1 = 1

‖ξ − ξ∗‖r
and w2 = 1

D∗
f,∞(ξ, ξ∗)

. (10)

Next we derive bounds for both distances in (9). They are of the form

‖ξ − ξ red‖r =
(

T∑

t=2

E

[
|ξt − ξ red

t |r
]
) 1

r

, (11)

D∗
f,∞(ξ, ξ red) =

T∑

t=2

sup
xt ∈L∞(Ft (ξ))

‖xt ‖∞≤1

‖xt − E[xt |Ft (ξ
red)]‖r ′ , (12)
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where L∞(Ft (ξ)) = L∞(Ω,Ft (ξ), P; R
mt ). The latter formula is a consequence of

the identity

D∗
f,∞(ξ, ξ red) = sup

‖x‖∞≤1

T∑

t=2

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ
red)]‖r ′

= sup
‖x‖∞≤1

T∑

t=2

‖E[xt |Ft (ξ)] − E[E[xt |Ft (ξ)]|Ft (ξ
red)]‖r ′

= sup
‖x‖∞≤1

xt ∈L∞(Ft (ξ))

T∑

t=2

‖xt − E[xt |Ft (ξ
red)]‖r ′ ,

which is due to the inclusion Ft (ξ
red) ⊆ Ft (ξ), and the fact that the condition

‖x‖∞ ≤ 1 is equivalent to ‖E[xt |Ft (ξ)]‖∞ ≤ 1 for every t = 1, . . . , T .
To derive explicit expressions for (12), we use the measurability of xt with respect

to Ft (ξ
red) and denote the scenarios xt by xi

t , i ∈ It , for every t = 2, . . . , T . We
obtain for the conditional expected values

E[xt |Et j ] =
∫

Et j
xtP(dω)

P(Et j )
= 1

π
j

t

∑

i∈Jt, j

pi
t xi

t

for every j ∈ I red
t and t = 2, . . . , T . For 1 ≤ r ′ < ∞ we get from (12)

D∗
f,∞(ξ, ξ red) =

T∑

t=2

sup
‖xt ‖∞≤1

⎛

⎜
⎝E

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

∑

i∈It

x i
t 1lAti −

∑

j∈I red
t

E[xt |Et j ]1lEt j

∣
∣
∣
∣
∣
∣

r ′⎤

⎥
⎦

⎞

⎟
⎠

1
r ′

and continue

D∗
f,∞(ξ, ξ red)=

T∑

t=2

sup
‖xt ‖∞≤1

⎛

⎜
⎝E

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

∑

j∈I red
t

∑

i∈Jt, j

x i
t 1lAti−

∑

j∈I red
t

E[xt |Et j ]
∑

i∈Jt, j

1lAti

∣
∣
∣
∣
∣
∣

r ′⎤

⎥
⎦

⎞

⎟
⎠

1
r ′

=
T∑

t=2

sup
‖xt ‖∞≤1

⎛

⎜
⎝
∑

j∈I red
t

∑

i∈Jt, j

pi
t

∣
∣
∣
∣
∣
∣
xi

t − 1

π
j

t

∑

k∈Jt, j

pk
t xk

t

∣
∣
∣
∣
∣
∣

r ′⎞

⎟
⎠

1
r ′

. (13)
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3.1 The Lr -distance

Now we start to discuss the Lr -distance ‖ξ − ξ red‖r between the two processes ξ and
ξ red. According to our notations we directly obtain from (11)

‖ξ − ξ red‖r
r =

T∑

t=2

∫

Ω

|ξt − ξ red
t |r =

T∑

t=2

∑

j∈I red
t

∑

i∈Jt, j

∫

Ati

|ξt − ξ red
t |r

=
T∑

t=2

∑

j∈I red
t

∑

i∈Jt, j

pi
t |ξ i

t − ξ
j

t |r . (14)

This means that the Lr -distance between a given process and a reduced one depends
on the probabilities of all withdrawn scenario components and on their distances to
some of the remaining scenario components.

3.2 The filtration distance

Next we derive an estimate for D∗
f,∞(ξ, ξ red) given by (13) in case of r ′ < ∞ and

‖xt‖∞ := maxi∈It |xi
t | for every xt ∈ L∞(Ft (ξ)).

Proposition 1 Consider the �r ′ -norms

|yt | :=
( mt∑

s=1

|yt,s |r ′
) 1

r ′

in R
mt for every t = 2, . . . , T . Then we have

D∗
f,∞(ξ, ξ red) ≤ max

t=2,...,T
2m

1
r ′
t

T∑

t=2

⎛

⎝
∑

j∈I red
t

max

{

f j
t,r ′

(
∑

i∈J

pi
t

)

: J ⊂ Jt, j

}⎞

⎠

1
r ′

, (15)

where the function f j
t,r ′ is defined by f j

t,r ′(p) := p(π
j

t −p)r ′+ (π
j

t −p)pr ′

(π
j

t )r ′ for every p ∈
[0, π

j
t ], j ∈ I red

t , t = 2, . . . , T .

Proof From (13) we obtain

D∗
f,∞(ξ, ξ red) =

T∑

t=2

sup
‖xt ‖∞≤1

⎛

⎜
⎝
∑

j∈I red
t

∑

i∈Jt, j

pi
t

∣
∣
∣
∣
∣
∣
xi

t −
∑

k∈Jt, j

pk
t

π
j

t

xk
t

∣
∣
∣
∣
∣
∣

r ′⎞

⎟
⎠

1
r ′

.

Let xi
t,s , s = 1, . . . , mt , denote the components of xi

t ∈ R
mt for every i ∈ It and

t = 2, . . . , T . We may continue
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D∗
f,∞(ξ, ξ red) =

T∑

t=2

sup
‖xt ‖∞≤1

⎛

⎜
⎝
∑

j∈I red
t

∑

i∈Jt, j

pi
t

mt∑

s=1

∣
∣
∣
∣
∣
∣
xi

t,s −
∑

k∈Jt, j

pk
t

π
j

t

xk
t,s

∣
∣
∣
∣
∣
∣

r ′⎞

⎟
⎠

1
r ′

=
T∑

t=2

sup
‖xt ‖∞≤1

⎛

⎜
⎝

mt∑

s=1

∑

j∈I red
t

π
j

t

∑

i∈Jt, j

pi
t

π
j

t

∣
∣
∣
∣
∣
∣
xi

t,s −
∑

k∈Jt, j

pk
t

π
j

t

xk
t,s

∣
∣
∣
∣
∣
∣

r ′⎞

⎟
⎠

1
r ′

.

Hence, to estimate the filtration distance we have to solve maximum problems of the
form

max

⎧
⎨

⎩

∑

i∈J

λi

∣
∣
∣
∣
∣
yi −

∑

k∈J

λk yk

∣
∣
∣
∣
∣

r ′

: y ∈ R
|J |, max

i∈J
|yi | ≤ 1

⎫
⎬

⎭
, (16)

where J is a given finite index set with cardinality |J | and λi > 0, i ∈ J , are given
with

∑
i∈J λi = 1. Let y( j), j = 1, . . . , 2|J |, denote the vertices of the polytope

Y := {y ∈ R
|J | : maxi∈J |yi | ≤ 1}. Any element y ∈ Y can be represented as convex

combination of the vertices, i.e.,

y =
2|J |
∑

j=1

α j y( j), where α j ≥ 0 and
2|J |
∑

j=1

α j = 1.

Since the objective function g(y) := ∑
i∈J λi

∣
∣yi −∑k∈J λk yk

∣
∣r

′
in (16) is convex,

one obtains

g(y) = g

⎛

⎝
2|J |
∑

j=1

α j y( j)

⎞

⎠ ≤
2|J |
∑

j=1

α j g(y( j)) ≤ max
j=1,...,2|J |

g(y( j)).

Hence, the maximum in (16) is attained at some y∗ ∈ Y with y∗
i ∈ {+1,−1} for all

i ∈ J . Let J+ ⊆ J and J− ⊆ J denote the index sets, where y∗ is positive and
negative, respectively. Furthermore, let

λ+ =
∑

i∈J+
λi and λ− =

∑

i∈J−
λi .

Then we have λ+ + λ− = 1, and, we obtain

∑

i∈J

λi

∣
∣
∣
∣
∣
y∗

i −
∑

k∈J

λk y∗
k

∣
∣
∣
∣
∣

r ′

=
∑

i∈J+
λi (1 − λ+ + λ−)r ′ +

∑

i∈J−
λi (1 + λ+ − λ−)r ′

= 2r ′
λ+(1 − λ+)r ′ + 2r ′

(1 − λ+)(λ+)r ′
.
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If we solve the problem (16) for all s ∈ {1, . . . , mt }, j ∈ I red
t with J := Jt, j and

λi := pi
t

π
j

t
we get as final estimate for the filtration distance

D∗
f,∞(ξ, ξ red) ≤ max

t=2,...,T
2m

1
r ′
t

T∑

t=2

⎛

⎝
∑

j∈I red
t

M j
t,r ′

⎞

⎠

1
r ′

, where

M j
t,r ′ := max

{
p(π

j
t − p)r ′ + (π

j
t − p)pr ′

(π
j

t )r ′ : J ⊂ Jt, j , p =
∑

i∈J

pi
t

}

.

��

Proposition 1 says that the filtration distance between the given process ξ and the
reduced one ξ red only depends on the particular partition structure of the scenarios of
ξ and on the choice of representative scenarios of ξ red. The typical cases r ′ = 1 and
r ′ = 2 are now discussed in more detail.

The filtration distance for r ′ = 1 and r ′ = 2

In case r ′ = 1 the estimate of the filtration distance is of the form

D∗
f,∞(ξ, ξ red) ≤ max

t=2,...,T
2mt

T∑

t=2

∑

j∈I red
t

M j
t,1, where

M j
t,1 := max

{
2p(π

j
t − p)

π
j

t

∣
∣
∣
∣
∣
J ⊂ Jt, j , p =

∑

i∈J

pi
t

}

≤ π
j

t

2
(17)

This allows the following interpretation. For any scenario cluster Jt, j defined by the

realization j ∈ I red
t , at some stage t , the contribution M j

t,1 to the total filtration dis-

tance depends on the total probability π
j

t of the set Jt, j as well as on the partitioning

of the probability weights. Note that M j
t,1 is always bounded from above by π

j
t .

Example: Let Jt, j = {k1, . . . , kn} and pk1
t + · · · + pkn

t = π
j

t .

(a) In case pki
t = p

k j
t for all i, j = 1, . . . , n we obtain M j

t,1 = n2−1
n2

π
j

t
2 and

M j
t,1 = π

j
t

2 if n is odd or even, respectively.

(b) In case of one dominant probability in the sense that p
k j0
t = λ

π
j

t
2 with λ ∈

[1, 2] we obtain M j
t,1 = λ(2 − λ)

π
j

t
2 . For example, if λ = 1.95 we have

M j
t,1 = 0.0975 π

j
t

2 .
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Fig. 3 Objective function

f j
t,r ′ (p) to determine M j

t,r ′ in

cases r ′ = 1 and r ′ = 2

t
j

j
t

2

4

j
t

j
t

2

1
2

 π

 π

 π

 π 0

Likewise, in case r ′ = 2 we obtain from Proposition 1

D∗
f,∞(ξ, ξ red) ≤ max

t=2,...,T
m

1
2
t

T∑

t=2

⎛

⎝
∑

j∈I red
t

M j
t,2

⎞

⎠

1
2

, where

M j
t,2 := max

{
p(π

j
t − p)

π
j

t

∣
∣
∣
∣
∣
J ⊂ Jt, j , p =

∑

i∈J

pi
t

}

≤ π
j

t

4
. (18)

Figure 3 shows a plot of the objective in problem (17) and (18), respectively, for
determining M j

t,1 and M j
t,2.

4 Scenario tree reduction in multistage models

In this section we are going to describe a simple scenario reduction algorithm which
is based on recursive single node reduction. For a given tree structure of ξ , the crite-
rion (9), the representation (14), and the estimate (15) suggest the following reduction
strategy of ξ given some tolerance ε > 0.

Algorithm (Single node reduction)

[Initialization]
The reduction procedure is initialized by starting from the initial process, i.e., by

setting

I red
t := It for all t = 1, . . . , T,

I red
t,i := It,i for all t = 1, . . . , T − 1, i ∈ It ,

Jt, j := { j} for all t = 1, . . . , T, j ∈ It ,

q j
t := p j

t for all t = 1, . . . , T, j ∈ It ,

εappr := 0,

where εappr denotes the approximation error of the reduction process.
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[Node selection]
The node selection aims at determining an acceptable pair of nodes. A pair (t, j)

and (τ, i) is called acceptable whenever t = τ , i �= j , the unique predecessors of both
nodes coincide, and, simultaneously, the approximation error is small enough. To this
end, we search for some (t, j) ∈ {2, . . . , T }× I red

t such that there exists i ∈ I red
t with

i �= j , i, j ∈ I red
t−1,k for some k ∈ I red

t−1 and such that the pair (t, j) and (t, i) of nodes
satisfies the estimate

εstep ≤ ε − εappr, where

εstep := w1

(
qi

t

) 1
r |ξ i

t − ξ
j

t | + w2

(
qi

t (q
j

t )r ′ + (qi
t )

r ′
q j

t

) 1
r ′

qi
t + q j

t

. (19)

If such a pair cannot be found, go to the termination step, otherwise continue with the
following reduction step.

[Reduction]
In this step we perform the node reduction according to the selection of acceptable

nodes before. We adjust the relevant index sets and probabilities of the scenario tree
by enlarging the set Jt, j , reducing the set It , updating the successor information and
changing the probabilities. The new index sets and probabilities are given by

Jt, j := Jt, j ∪ Jt,i ,

I red
t := It \ {i},

I red
t, j := It, j ∪ It,i ,

q j
t := q j

t + qi
t .

Finally, the approximation error is updated by

εappr := εappr + εstep,

and the iteration is continued by a new node selection step.

[Termination]
Whenever the termination step is reached all relevant index sets giving the structure

of the reduced scenario tree process are stored as I red
t , I red

t, j and Jt, j (cf. Sect. 3). It
remains to define the (node) probabilities by

π
j

t := q j
t for all t = 1, . . . , T, j ∈ I red

t .

The process ξ red is well-defined now by the given index sets and probabilities.
We conclude this section with some comments on the above algorithm. In fact, we

obtain for the probabilities of the scenario tree process ξ red that

π
j

t =
∑

i∈Jt, j

pi
t for all t = 1, . . . , T, j ∈ I red

t .
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Moreover, the approximation error between the initial scenario tree process and the
reduced one can be bounded by εappr. More precisely, it holds

w1‖ξ − ξ red‖r + w2 D∗
f,∞(ξ, ξ red) ≤ εappr,

which is a direct consequence of (19) and the triangle inequality for both the
Lr -distance and the filtration distance D∗

f,∞. Note that the reduction algorithm also
can be easily performed with respect to only one distance by setting the weighting
factors w1 = 0 and w2 = 0, respectively. If we define w1 = 0 in condition (19) the
term controlling the Lr -distance disappears. On the other hand, when using w2 = 0
the filtration term disappears and, hence, the reduction is only performed with respect
to the Lr -distance.

Table 1 Structure of the scenario tree processes ξ red obtained by the single node reduction algorithm
starting from the input tree containing 221 nodes and terminating with trees containing 150 and 100 nodes,
respectively

Nodes Reduction Nodes (per Stage) Scenarios

w.r.t. 1 2 3 4 5 6

150 Lr only 1 8 15 23 40 63 63

150 Lr and D∗
f,∞ 1 8 16 23 41 61 61

150 D∗
f,∞ only 1 8 16 24 41 60 60

100 Lr only 1 6 12 17 25 39 39

100 Lr and D∗
f,∞ 1 8 15 19 25 32 32

100 D∗
f,∞ only 1 8 16 20 26 29 29

Fig. 4 Structure of the trivariate
initial scenario tree ξ serving as
input for the single node
reduction algorithm
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Fig. 5 Illustration of the reduced (trivariate) scenario trees ξ red. The trees are obtained by the single node
reduction algorithm until 150 (above) and 100 (below) remaining nodes are reached. The reduction is car-
ried out with respect to the Lr -distance only (left), both the Lr - and the D∗

f,∞-distance (middle), and the
D∗

f,∞-distance only (right)

5 Numerical experience

Finally, we report on some preliminary numerical experience for scenario tree reduc-
tion in multistage stochastic programs. For testing the single node reduction algorithm
of the previous section, we consider a stochastic optimization model for electricity
portfolios of a German municipal power company. The portfolio consists of the own
(thermal) electricity production, the spot market contracts, supply contracts and elec-
tricity futures. For details of the optimization model we refer to Eichhorn and Römisch
(2005). It takes into account the stochastic nature of the input parameters for every
hour of the underlying time horizon, namely, the electricity demand, the heat demand,
the EEX spot prices, and base and peak future prices (for each month). Here, we
focus on the input scenario tree process and assume that it is obtained by the scenario
tree generation method of Heitsch and Römisch (2008). Since the future prices are
considered as fair prices and can be derived from the spot prices, the input scenarios
correspond to a trivariate time discrete stochastic input process whose components are
electricity demand, heat demand, and (EEX) spot prices.
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For our purposes a generated scenario tree process ξ is singled out and reduced by
the algorithm in Sect. 4 until a prescribed number of nodes is reached. To study, in
particular, the impact of the filtration distance, scenario trees ξ red are computed by
the single node reduction algorithm, where the reduction is done with respect to the
Lr -distance and the D∗

f,∞-distance separately as well as with respect to the sum of
both distances as advised by the stability analysis of Sect. 2.

Due to modeling reasons the input scenario tree exhibits a monthly branching
structure. For our numerical test we considered a time horizon of 6 months which cor-
respond, hence, to six stages of the stochastic program (Table 1). In order to cope with
this monthly structure, each component of the scenarios (corresponding to electricity
demand, heat demand or spot prices) is represented by 6 vectors, where each vector
contains the inputs of one month in hourly discretization. The tree structure of the
input process is illustrated in Fig. 4.

Figure 5 illustrates the results of the scenario tree reduction by applying the sin-
gle node reduction algorithm until 150 and 100 nodes remain, respectively. They
show that the filtration distance influences the structure of the reduced scenario trees
noticeably. The incorporation of the filtration distance leads to a smaller number of
remaining scenarios in both cases. The opposite effect appears when using the Lr -dis-
tance only.

6 Conclusions

Summarizing our theoretical arguments and preliminary numerical experience indi-
cates that the incorporation of the filtration distance into the reduction of scenario trees
is indispensable. This implies, in particular, that deleting scenarios in input trees for
multi-stage models according to the methodology presented in Dupačová et al. (2003)
and Heitsch and Römisch (2003, 2007) is not appropriate as the information (filtration)
structure is not taken into account. The numerical results in Sect. 4 are obtained by a
simple straightforward strategy of reducing single nodes recursively. But, the estimates
(14) and (15) for the Lr - and filtration distance offer further potential for algorithmic
extensions.
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