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Consequences of uncertain friction for the transport of natural
gas through passive networks of pipelines

Holger Heitsch, Nikolai Strogies

Abstract

Assuming a pipe-wise constant structure of the friction coefficient in the modeling of natural gas
transport through a passive network of pipes via semilinear systems of balance laws with asso-
ciated linear coupling and boundary conditions, uncertainty in this parameter is quantified by a
Markov chain Monte Carlo method. Here, information on the prior distribution is obtained from
practitioners. The results are applied to the problem of validating technical feasibility under random
exit demand in gas transport networks. In particular, the impact of quantified uncertainty to the
probability level of technical feasible exit demand situations is studied by two example networks of
small and medium size. The gas transport of the network is modeled by stationary solutions that
are steady states of the time dependent semilinear problems.

1 Introduction

The transport of natural gas through a single pipe can be modeled by a simplification of the full Euler
equations, describing the conservation of mass as well as balance of momentum and energy in fluid
dynamics. An overview on existing models for transport of natural gas can be found in [6] and we employ
the notation of this work. Assuming a heat flux through the pipe walls compensating discontinuities of
temperature in case of shock- and rarefaction waves, energy is no longer a balanced quantity (see
[20, Section 14.6]). Working under such a regime, an associated system approximately describing the
underlying physics is given by the fully nonlienar system of balance laws

ρt + qx = 0,

qt + (p(ρ) + q2

ρ
)x = λ q|q|

ρ
− gρh′,

(ISO 1)

which is a well known model for gas transport, see, e.g., [5, 12, 17]. Here, ρ, q, g, h′ denote density,
volume flow, gravitational constant and slope of the pipe, respectively. Further, p(ρ) represents the
pressure depending on the density of the natural gas, usually described by an equation of state, and λ
is the friction coefficient, also known as Darcy friction factor, quantifying the influence of friction at the
pipe wall on the flow behavior. A priory, the friction coefficient is assumed to be a function of the spatial
position accounting for local effects in the internal coating of the pipe or local changes in the diameter
caused by pollution.

Assuming additional simplifications in (ISO 1), like considering only planar networks with h′ ≡ 0, ne-
glecting the influence of q

2

ρ
in the flux term and utilizing the simplified pressure law p(ρ) = a2ρ, where
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H. Heitsch, N. Strogies 2

a > 0 denotes the constant speed of sound, we obtain a semilinear system of first-order partial differ-
ential equations. Defined on a pipe which is represented by the interval (xL, xR) with xL < xR, it is
given by

ρt + qx = 0,

qt + a2ρx = −λq|q|
ρ
,

on (0, T )× (xL, xR), (ISO 2)

where T > 0 represents the time horizon. A brief discussion of the above mentioned simplifications
can be found in [12, 22]. To obtain a well posed forward problem, we in addition consider the initial
conditions

ρ(0, ·) = ρ0(·), q(0, ·) = q0(·) for x ∈ (xL, xR), (IC)

and boundary conditions. System (ISO 2) is strictly hyperbolic with one strictly negative and one strictly
positive eigenvalue. Consequently, conditions on linear combinations of the state variables ρ and q are
required at both ends of the pipe. In other words, there have to exist certain vectors cL, cR ∈ R2 and
functions dL, dR ∈ L∞(0, T ) such that

c>L(ρ(t, xL), q(t, xL)) = dL(t), c>R(ρ(t, xR), q(t, xR)) = dR(t). (BC)

Besides the time-dependent models, a stationary model is considered as well, where the boundary data
are constant. It is obtained by neglecting the time derivatives in system (ISO 2). The resulting ordinary
differential equations

qx = 0, ρx = − λ
a2
q|q|
ρ
,

with associated initial conditions q(xL) = q, ρ(xL) = ρ that are obtained from the original boundary
conditions, can be solved explicitly, providing

q(x) ≡ q, ρ(x) =

√
ρ(xL)2 − 2λ̄(x) q|q|

a2
(ISO-ALG)

with λ̄(x) =
∫ x
xL
λ(τ)dτ . Note that the initial conditions can be imposed at arbitrary spatial positions

along the pipe. In particular, data for volume flow and density do not necessarily have to be imposed at
the same position.

In the context of obtaining information on the friction coefficient out of measurements, for example,
measurements of pressure at certain points in the network, the Bayesian framework is based on the
uncertainty-to-observation operator G which maps the underlying unknown (the friction coefficient) onto
the measurement data y. It represents a composition of the solution operator associated to the underly-
ing PDE problem (ISO 2), extended to a passive network as discussed below, applied to the coefficient
λ and a data formation operator. In case of density being measured at finitely many points in time
tj ∈ [0, T ], j = 1, ..., K , and at a position x̄ within the network, we consider

G(λ) = (ρ(t1, x̄), ..., ρ(tK , x̄))>. (1)
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Consequence of uncertain friction in gas networks 3

Since the measuring process introduces errors to the observation, we find

y = G(λ) + η ⇔ η = y − G(λ), (2)

with η ∈ RK denoting the measurement error. In the work at hand, we assume this error to be Gaussian
noise with mean zero, associated covariance matrix Γ ∈ RK×K and probability density function (PDF)
denoted by πDL. Given a friction coefficient λ, the probability of obtaining measurement data y is given
according to

P (y|λ) = πDL(y − G(λ)), (3)

also called likelihood of the data. Now, using Bayes’ theorem, we can incorporate available “prior”
knowledge on λ and provide its probability, given the measured data y, as

P (λ|y) ∝ P (y|λ)P (λ). (4)

Our knowledge on the distribution of λ, i.e., P (λ), is called prior and the probability of λ given the data
y, i.e., P (λ|y), is called posterior. Both probability distributions are equipped with associated PDF’s
πPR and πPO.

The Bayesian approach to inverse problems involving a partial differential equation has been inten-
sively studied in the last years. For an overview we refer to [2] and the references therein. In particular
we mention [4], where a Multi-Level Markov chain Monte Carlo method has been investigated that al-
lows for incorporating mesh-refinement strategies for the partial differential equation. To the best of
our knowledge, besides the investigations in [13, 18], where the first one merely considers a single pipe
while allowing for a spatially distributed friction coefficient and the latter one not employing the Bayesian
approach, obtaining information on distributions of the friction coefficient has not been subject of inves-
tigation so far.

2 Results for the state equations

This section is dedicated to discussions on notions of solutions for the underlying system in both the time
independent and dependent setting and the extension of the respective ordinary, and partial differential
equations to passive networks of pipelines.

2.1 Steady states

As outlined above, the time independent model of gas flow results in an algebraic solution representing
the connection between density and flow along a pipe as described in (ISO-ALG). As consequence, in
a passive gas network there exists a explicit characterization of gas flow feasibility that is based on the
algebraic formulation of mass and momentum conservation, respectively, the Kirchhoff’s first and sec-
ond law. Feasibility of gas load (or nomination) is equivalent to the existence of a pressure-flow profile
fulfilling that Kirchhoff’s laws and meeting nodal bounds on the pressure. For a characterization of the
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H. Heitsch, N. Strogies 4

set of all capacities that can be realized, functional relations in the nomination space are sought, that
hold if and only if the nomination is feasible. These functional relations become closer and closer cou-
pled among each other the more intertwined cycles there are in the network. In what follows, a general
characterization is derived that still contains as many implicit indeterminates as there are fundamental
cycles in the network.

The gas transportation network is considered as a connected directed graph G = (V , E), with |V| =
n + 1 nodes and |E| = m ≥ n edges. Assume the network is in steady state let be q ∈ Rm the flow
along the edges of G and (p0, p) ∈ Rn+1 the pressure at nodes in V . The network topology let be
given by I ∈ Rn×m, a reduced node-arc incidence matrix of G. Inflows and outflow are described by a
balanced load vector (b0, b) ∈ Rn+1, i.e., it holds −1>b = b0, where 1 denotes the vector of all ones
in suitable dimension, here n. Moreover, we make the sign convention that bi ≤ 0 at injection points
(entries) and bi ≥ 0 at withdrawal points (exits). Mass, or mass flow, conservation at each node in V
(Kirchhoff’s first law) now reads

Iq = b. (5)

Denoting with o(e) ∈ V and π(e) ∈ V the origin and head of some edge e ∈ E , respectively, then
the pressure drop between the ends of pipe e ∈ E causes a constant flow along the pipe due to the
condition (Kirchhoff’s second law)

(pk)
2 − (p`)

2 = Λe|qe|qe, (6)

where k = o(e) and ` = π(e). The latter equation is equivalent to (ISO-ALG), but formulated in
terms of pressure values rather than density right now. Here, the the so-called roughness coefficient Λe

combines constant parameters and the integral friction coefficient λe of some pipe e ∈ E . In particular,
with the law p = a2ρ we have

Λe = Λe(λe) = 2a2leλe, (7)

where le denotes the length of pipe e, and a is the speed of sound again. With technical lower and upper
pressure limits pmin, pmax we are led to introduce the following set Mfeas of feasible load (nomination)
vectors.

Definition 1. A load vector (b0, b) is feasible load vector, if and only if (b0, b) is contained in the
feasibility set Mfeas defined as

Mfeas :=
{

(b0, b)
∣∣−1>b = b0; ∃(q, p) with p ∈

[
pmin, pmax

]
and (5), (6)

}
. (8)

The following provides a characterization of the set Mfeas, where all pressure variables and “most of”
the flow variables are eliminated. With the notation Λ := diag{Λe | e ∈ E} for roughness, from [11]
we take the following result.

Theorem 1 ([11, Theorem 1]). Let I = (IB, IN) be a partition into basis and nonbasis submatrices
of the incidence matrix I . Let ΛB,ΛN and qB, qN be according partitions of Λ and q. Define

h : Rn × R|N | → Rn, h(u, v) :=
(
I>B
)−1

ΛB

∣∣I−1
B (u− INv)

∣∣(I−1
B (u− INv)

)
. (9)
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Consequence of uncertain friction in gas networks 5

Then, Mfeas consists of all (b0, b) with −1>b = b0 for which there is a z ∈ R|N | such that

I>Nh(b, z) = ΛN |z|z (10)

(pmin0 )2 ≤ min
k=1,...,n

[
(pmaxk )2 + hk(b, z)

]
(11)

(pmax0 )2 ≥ max
`=1,...,n

[
(pmin` )2 + h`(b, z)

]
(12)

min
k=1,...,n

[
(pmaxk )2 + hk(b, z)

]
≥ max

`=1,...,n

[
(pmin` )2 + h`(b, z)

]
. (13)

Up to finding an auxiliary variable z satisfying (10), Theorem 1 identifies fully explicit feasibility condi-
tions with respect to the load vector (b0, b) and the side constraints (pressure bounds). Therefore, the
feasibility test for balanced (b0, b) reduces to determining the unique z solving (10) and then checking
the inequality system (11), (12), (13). Observe that the dimension of z corresponds to the number of
columns of the nonbasis part IN of the reduced incidence matrix I , hence to the number of funda-
mental cycles in the network. Obviously, the situation should be particularly comfortable for networks
without cycles, as is illustrated now.

Special case of tree networks

Suppose G = (V , E) is a tree (trivially a spanning tree of itself). Fix an arbitrary leaf node as root and
number it by 0. Direct all edges in E away from the root. The incidence matrix I of G already is the
basis matrix IB so that there is no nonbasis portion IN . Using depth-first search, number the nodes so
that numbers increase along any path from the root to one of the leaves. For k, ` ∈ V , denote k � ` if,
in G, the unique directed path from the root to k, denoted Π(k), passes through `. Since IN vacuous
and Λ = ΛB , one obtains for h as defined in (9)

h(b, z) = h(b) =
(
I−1
)>

Λ
∣∣I−1b

∣∣(I−1b
)

and componentwise, for k = 1, . . . , n, and emphasizing the implicit dependency of the friction coeffi-
cients λe according to (7),

hk(b, λ) =
∑
e∈Π(k)

2a2leλe

∣∣∣∣∣∣
∑

t∈V,t�π(e)

bt

∣∣∣∣∣∣
 ∑
t∈V,t�π(e)

bt

 , k = 0, . . . , n, (14)

as shown in [11]. To reduce technicality we assume that the network has the node 0 as the only entry
and all remaining nodes as exits, again with all edges directed away from 0. Then in (14) flow and edge
directions conform, leading to

hk(b, λ) =
∑
e∈Π(k)

2a2leλe

 ∑
t∈V,t�π(e)

bt

2

, k = 0, . . . , n. (15)

Now, Theorem 1 specializes as follows:
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Corollary 1. If the network is a tree with a single entry as its root, then the set of feasible load vectors
is given by

Mfeas =

{
(−1>b, b)

∣∣∣∣0 ≤ min
k=0,...,n

{
(pmaxk )2 + hk(b, λ)

}
− max

`=0,...,n

{
(pmin` )2 + h`(b, λ)

}}
, (16)

where hk(b, λ), k = 0, . . . , n, is as in (15). Note that h0(·, ·) ≡ 0 here.

2.2 Time dependent problems

The state system (ISO 2) can be written as

yt + Ayx = g(y), (17)

with y := (ρ, q)> denoting the state vector. Here g(y) and the A are defined by

g(y) = (0,−λ q|q|
ρ

)> and A =

(
0 1
a2 0

)
.

The eigenvalues of A, given by σ1 = −a < a = σ2, define characteristic lines. Indeed, given a
position x ∈ (xL, xR) and a point in time τ ∈ (0, T ), the characteristics passing through (τ, x) are
defined as solutions to the ordinary differential equations

ṡi(t; τ, t) = σi

with si(·; τ, x) : R → R satisfying si(τ ; τ, x) = (τ, x). The index i relates characteristic and
eigenvalue. Since the domain Q is bounded, we define the times ti(τ, x) ∈ [0, τ ] and ti(τ, x) ∈
[τ, T ], specifying the time, the i-th characteristic passing through (τ, x) satisfies (t, si(t; τ, x)) ∈ Q,
i.e., we either have si(ti(τ, x); τ, x) = x, x ∈ [xL, xR], in case the characteristic intersects with
{0} × [xL, xR] or s1(t1(τ, x); τ, x) = xR or s2(t2(τ, x); τ, x) = xL if the characteristic intersects
with the boundary (0, T ) × {xR} or (0, T ) × {xL}, respectively. The time ti(τ, x) is defined cor-
respondingly. Once more, the value a represents the speed of sound in the model, i.e., the speed
information is propagated with through the spatial domain.

Based on a transformation of the representation (17), we consider broad solutions for (ISO 2) as follows.
Due to strict hyperbolicity of (ISO 2), there exist a matrix L ∈ Rn×n such that A = LDL−1 where
D = diag(σi) ∈ R2×2. Multiplying (17) from the left by L−1, using the linearity of differentiation and
setting T (y) := L−1y and f(y) := L−1g(y), we obtain

(T (y))t +D(T (y))x = f(y),

a system of scalar, linear transport equations, merely coupled by the source term on the right hand
side. Given (ISO 2), the transformation matrices are

L = ca

(
1 1
−a a

)
, L−1 = (2ca)

−1

(
1 −a−1

1 a−1

)
.
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Consequence of uncertain friction in gas networks 7

Also note that the linear transport equations even have constant coefficients. In case of a single equation
of this type, it is well known that solutions are described by ordinary differential equations along the
characteristic line, defined by the constant coefficient. The concept of broad solutions extends this
property to systems in that the transformed components of T (y) are absolutely continuous functions
along the corresponding characteristic lines. Broad solutions to semilinear systems of balance laws for
unbounded domains have been studied for example in [1, 21], while in [14, 15] bounded domains have
been considered. We recall the definition from [18] as follows.

Definition 2. A broad solution of (ISO 2) is a function y = LT (y) : Q → R2 such that, for almost
every (τ, x) ∈ Q, the map t 7→ Ti(y)[t, si(t; τ, x)] is an absolutely continuous function satisfying

1 at almost every (τ, x) ∈ Q the ordinary differential equations

d

dt
Ti(y)[t, si(t; τ, x)] = fi(t, si(t; τ, x), y(t, si(t; τ, x))) (18)

almost everywhere on (ti(τ, x), ti(τ, x)) for i = 1, 2,

2 the initial condition at x ∈ (xL, xR)

Ti(y)[0, x] = ciy0(x),

3 the boundary condition at xL in the sense that for almost every t ∈ (0, T ) we have

T2(y)[t, xL] = c2C
−1
L

(
T1(y)[t, xL]
dL(t)

)
,

4 the boundary condition at xR in the sense that for almost every t ∈ (0, T ) we have

T1(y)[t, xR] = c1C
−1
R

(
T2(y)[t, xR]
dR(t)

)
,

5 in case of a network, 1 and 2 hold true on all pipes of the network, 3 and 4 are satisfied at entry-
and exit nodes (cf. Sect. 2.1), and in addition, coupling conditions (20) and (21) are satisfied at
interior nodes (nodes with no consumption) of the network.

The lateral boundaries ofQ are approached by exactly one of the characteristics for every t ∈ (0, T ).
To be able to reconstruct the original variables at the boundary, the matrices

CL =

(
c1

cL

)>
, CR =

(
c2

cR

)>
have to be invertible, restricting the possible linear combinations of y that can be prescribed. Here,
c1, c2 ∈ R2 denote the rows of L−1.

As it can be seen in [18, Proposition 2], solutions as in (ISO-ALG) (corresponding to Definition 1 in
Sect. 2.1) form steady states for the time dependent problem (ISO 2) in the sense of Definition 2.

The coupling conditions (20) and (21) allow for reconstructing the original state variables from the
transformed variables T (i) as the following example demonstrates.
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In

Exit 1

Exit 2

l(1) = 10 000

l(3) = 30 000
l(2) = 20 000

Figure 1: Sketch of a basic passive network.

Example. Consider the internal node of the Y-shaped network depicted in Fig. 1. Here, nL = {1},
nR = {2, 3} (sets of incoming/outgoing pipes) and consequently, the second component of T from

pipe 1, T (1)
2 , and the first component of T from pipe 2 and 3, T (2)

1 and T (3)
1 , respectively, approach

the junction. As a consequence, the original state variables {(ρ(i), q(i))}3
i=1 have to satisfy the linear

system
(2ca)

−1 (2caa)−1 0 0 0 0
0 0 (2ca)

−1 (2caa)−1 0 0
0 0 0 0 (2ca)

−1 (2caa)−1

1 0 −1 0 0 0
1 0 0 0 −1 0
0 1 0 −1 0 −1




ρ(1)

q(1)

ρ(2)

q(2)

ρ(3)

q(3)

 =



T (1)
2

T (2)
1

T (3)
1

0
0
0


(19)

at the junction, and T (1)
2 , T (2)

1 , T (3)
1 are obtained as linear combinations of the solution according to

the transformation matrix L.

Concerning the existence of broad solutions of (ISO 2) and their properties, we restrict ourselves to
briefly recalling the results from [18]. Under certain conditions, we assume to be satisfied in the cases
at hand, existence is established in Proposition 4 and Remark 1 of [18]. Further, the Lipschitz continuous
dependency of the trace evaluation of ρ on the friction coefficient λ is proven in Proposition 6 of [18]
where the latter result depends on Proposition 5 and Proposition 3 of the given reference. In particular,
all of the given results also apply for passive networks of pipelines as discussed next.

2.3 Extension to passive networks

So far, the physical process of natural gas being transported is merely introduced on a single pipe.
An extension to passive networks, represented as directed graph G = (V , E) with the notation of
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Consequence of uncertain friction in gas networks 9

Sect. 2.1, is obtained as follows. We restrict ourselves to tree networks with single entry (root of the
tree), interior nodes (no consumption), and exit nodes assuming they are all leaves of the tree. Every
edge e ∈ E models a pipe on its associated domain (x

(e)
L , x

(e)
R ), where the transport equation (ISO 2)

has to hold. In addition, for every node k ∈ V , there exist index sets nkL, nkR denoting its incoming and
outgoing edges, respectively. Besides entry and exit nodes with assumed only one adjacent pipeline,
i.e., nkL is empty set, nkR is singleton and vice versa, respectively, internal nodes connect at least two
pipes, and thus, they correspond to points of pipe interaction. The type of such interactions is limited to
junctions only, rendering the network passive in that no active elements like, e.g., compressors or valves
are considered. As in the single-pipe scenario, entries and exits of the network require the definition of
boundary conditions while, in order to obtain a well posed system of partial differential equations, initial
conditions have to be introduced as well. In case of junctions, additional coupling conditions have to be
imposed, characterizing the interplay of solutions to (ISO 2) on each of the adjacent pipes. On the one
hand, the volume flow has to be balanced such that Kirchhoff’s circuit law∑

e∈nk
L

q(e)(x
(e)
R ) + dqk =

∑
e∈nk

R

q(e)(x
(e)
L ) (20)

holds true. Here, dqk denotes possible injection or extraction of gas at the corresponding node. On the
other hand, the pressure has to be conserved, i.e., we require

p(e)(x
(e)
R ) = pk = p(e′)(x

(e′)
L ) for all e ∈ nkL and e′ ∈ nkR. (21)

As a consequence of the particular form (ISO-ALG) for steady states on single pipes, the representation
of steady states for networks reduces to real numbers for every node and pipe where the numbers
associated to pipes describe the constant volume flow along this element. This is due to the fact, that the
data fixing the solution can be imposed at arbitrary position, and the numbers for the junctions describe
pressure or density. The validation of feasibility of the solution now consist of checking the coupling
conditions, and verifying, that the drop of density between two nodes can be described according to
(ISO-ALG) along each pipe, i.e., if

ρ(x
(e)
L )2 − ρ(x

(e)
R )2 = 2λ̄(x

(e)
R ) q

(e)|q(e)|
a2

holds for e ∈ E . We immediately observe that in case of stationary solutions, the drop of density merely
depends on λ̄(x

(e)
R ). Thus, instead of considering distributed frictions coefficients as in [13, 18], we

restrict the discussion on pipe-wise constant coefficients λe ∈ R, and thus, λ̄(x
(e)
R ) = λe(x

(e)
R − x

(e)
L )

(cf. formula (7) Sect. 2.1). This is sufficient as we concentrate on a particular representative of all
functions with the same integral value.

When considering networks of pipelines for gas transport in the time dependent setting, an important
fact lies in the lack of observeability of distributed information along the pipes for a fixed point in time.
On the one hand, this introduces the requirement of taking measurements of the state at a fixed spatial
position like entry- or exit nodes for several times. On the other hand, it implies a lack of knowledge about
the initial state within the pipes which is a more severe drawback. The structure of broad solutions as
solution of ordinary differential equations with an initial condition depending on distributed information
on the initial state of the system strictly requires corresponding knowledge. As in [7, 18], we assume
the initial conditions of the time dependent PDE-problems to be given as steady states that can be
computed efficiently (see, e.g. [19]).
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3 Uncertainty quantification for the semilinear model

This section introduces the Bayesian approach to inverse problems, clarifies the involved probability
distributions and provides an algorithm for sampling from the posterior distribution.

The Bayesian approach to inverse problems as, e.g., discussed in [2], is based on the following theorem.

Theorem 2 (Bayes’ Theorem). Assume that

Z :=

∫
Rn

πDL(y − G(λ))πPR(λ)dλ > 0. (22)

Then λ|y is a random variable with Lebegue density πPO(λ) given by

πPO(λ) =
1

Z
πDL(y − G(λ))πPR(λ).

The result is suited to finite dimensional problems, but similar principles hold in case of a function space
setting, where merely a Radon-Nikodym density of measures associated to posterior and prior density is
given (see [2] for details). In case of pipewise constant friction coefficients and a finite number of density
measurements, the inverse problem renders finite dimensional in that input as well as observations are
finite dimensional objects. However, we still have to consider solutions to the state system that are given
in their associated function spaces.

Concerning the data likelihood we assume the measurement errors at each spatial position and time
to be independent and identically distributed according to a normal distribution with mean zero and a
variance of 0.001.

Based on consultations with industry partners, the friction coefficients within a newly produced pipes
can be assumed to be distributed according to a truncated normal distribution, i.e., a distribution that is
derived from that of a normally distributed random variable by bounding it from above or below and a
probability density function given as

πTN(λ) =
φ
(
λ−µ
σ

)
σ
(
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)) . (23)

Here, φ and Φ denote the probability and cumulative density functions of the standard normal distribu-
tion, respectively, where µ = 0.018172 and σ = 0.0005 are mean and variance. The truncation is set
up by values anew = 0.01813 and bnew = 0.018206 denoting the respective upper and lower bounds.
While operating, the flow-performance of pipes worsens in that the friction coefficient increases. In order
to incorporate this knowledge into the prior-modeling, we allow for an increased upper bound truncating
the normal distribution in case of aged pipes, i.e., setting b = 0.021. The lower bound remains as
before in this scenario as we do not expect the friction coefficient to drop in the aging process. Fig. 2
provides rescaled probability density function for both cases and demonstrates the increased domains
of the probability density function, and thus, possible choices of λ.

The following result enables the usage of Theorem 2.
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Figure 2: PDF for the truncated normal distribution .

Proposition 1. The factor Z as defined in (22) is strictly positive.

Proof. As outlined above, the prior is assumed to be a truncated normal distribution on each of the
pipes. Moreover, they are independently distributed providing

πPR(λ) =

|E|∏
i=1

πTN(λi). (24)

Here, πTN denotes the pdf of the probability distribution introduced in (23), λi denotes the i-th compo-
nent of the vector of friction coefficients and |E| the total number of pipes. In other words, the support
of πPR and consequently πPO is compact. According to the results from Sect. 2.2, the observation op-
erator G(λ) depends Lipschitz continuously on λ, and in addition, the probability density function πDL
is a continuous function rendering the concatenation

λ 7→ πDL(y − G(λ)) (25)

continuous. The celebrated Weierstrass’ Theorem now guarantees the existence of a minimum for
πDL(y−G(λ)) on the compact support of πPR, denoted by π. Moreover, since the support is bounded,
this minimum has to be strictly positive. Consequently, we estimate

Z ≥ π

∫
Rn

πPR(λ)dλ > 0, (26)

where the latter inequality holds by properties of the truncated normal distribution.

The Markov chain Monte Carlo method is designed to generate a Markov chain with associated station-
ary distribution that equals P (λ|y). The main advantage lies in avoiding the computation of Z given

DOI 10.20347/WIAS.PREPRINT.2513 Berlin 2018



H. Heitsch, N. Strogies 12

in (22). This quantity is expensive to compute as it usually requires the application of Monte Carlo
methods as well. Thus, we apply a method merely working with ratios of different posterior distribution,
ensuring this factor to be canceled out. The respective algorithm is called Metropolis Hastings algorithm
and defined next.

Data: Proposal density π(λ′|λ), measured data y.
Initialization, i.e., choose λ(0) ∈ RNP , set i = 0.
Compute π̄PO(λ(0)) := πDL(y − G(λ(0)))πPR(λ(0)).
for i ≥ 0 do

Draw proposed friction coefficient λ′ from proposal density π(·|λ(i)).
Compute

α = min

{
1,

π̄PO(λ′)π(λ′|λ(i))

π̄PO(λ(i))π(λ(i)|λ′)

}
. (27)

Set λ(i+1) = λ′ with probability α and λ(i+1) = λ(i) with probability 1− α.
end

Algorithm 1: Metropolis Hastings Algorithm

4 Numerical Realization

Within this section, two major points are pursued. On the one hand, the numerical realization of solving
the coupled systems of time dependent partial differential equations is described. On the other hand,
a set of examples for the method is provided and put into context with different approaches for gaining
statistics and choices for the measurement positions.

Concerning the discretization of the state systems, we employ a numerical scheme that is based on
piecewise constant averages of the state functions and also utilized in [13, 18]. These cell averages are
computed on a uniform grid dividing pipes into N cells of width ∆x, which are referred to as internal
cells. The boundary and coupling conditions at entry and exit nodes and junctions are realized by ghost
cells, i.e., each pipe has a ghost cell on both ends as depicted in Fig. 3.

left ghost cell

0

right ghost cell

N + 11 2 N − 1 N

internal cells

Figure 3: Spatial discretization of a pipe whit ghost cells

The scheme is inspired by the particle method from [8] that is consistent with entropy solutions of scalar
conservation laws and that was already used for semilinear systems of conservation laws in [14, 15].
Note that the special structure of Eigenvalues for the differential operator under consideration renders
the method more structures than initially intended, as it can be interpreted on a uniform grid. At time
step n an explicit Euler method is used to approximate the solutions to (18) for each component of the
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Consequence of uncertain friction in gas networks 13

transformed variables, i.e., for the first characteristic,

T1(yn+1
i−1 ) = T1(yni ) + ∆t

caa
λi

qni |qni |
ρni

,

and for T2, respectively. For equidistantly distributed particles with distance ∆x, a time step ∆t =
a−1∆x and integral averages yni and λi, the original state variables can be reconstructed by LT (y),
yielding the discretization scheme

ρn+1
i = 1

2
(ρni+1 + ρni−1)− cCFL

2
(qni+1 − qni−1)− ∆t

2a

(
λi−1

qni−1|qni−1|
ρni−1

− λi+1
qni+1|qni+1|
ρni+1

)
,

qn+1
i = 1

2
(qni+1 + qni−1)− a2cCFL

2
(ρni+1 − ρni−1)− ∆t

2

(
λi−1

qni−1|qni−1|
ρni−1

+ λi+1
qni+1|qni+1|
ρni+1

)
,

(28)

i = 1, ..., N , corresponding to the Lax-Friedrichs scheme, where cCFL refers to the Courant number.

The similarity of the particle method to a classical TVD discretization scheme, mirroring the nature of
broad solutions by integrating along characteristic lines, suggests a procedure for obtaining the values
of the state at the ghost cells by employing the concept of broad solutions in the following way. At
entry or exit nodes of the network, the updated value for the state is obtained by evaluating the ingoing
transformed variable and solving the linear systems defined by the matrices CL or CR, respectively, i.e,
to solve

C−1
L

(
T1(yn+1

0 )
d0(tn+1)

)
and C−1

R

(
T2(yn+1

N+1)
dN+1(tn+1)

)
for boundary data d0, dN+1 on the left and right ghost cell, respectively. Explicitly, this provides

ρn+1
0/N+1 = ρn1/N ∓ 1

a
qn1/N ± 1

a
d0/N+1(tn+1)± ∆t

a
λ1/N

qn
1/N
|qn

1/N
|

ρn
1/N

,

qn+1
0/N+1 = d0/N+1(tn+1).

(29)

At junctions, all ingoing transformed variables and the coupling conditions form linear systems that have
to be solved for the values of the state variables on the corresponding ghost cells. In case of a junction
with three pipes, the system is given as (19).

Summarizing, we have established an algebraic expression that provides the updated state at all ghost
cells g of the network, based on the current iterate and the boundary conditions at the next time step
d(tn+1), i.e., (ρn+1

g , qn+1
g ) = fg(ρ

n, qn, λ, d(tn+1)).

In general, the linear systems that have to be solved to determine the values of the states at the ghost
cells are very small and constant over time. As a consequence, the most effective way to compute the
associated solutions is given by precomputing the inverse matrices once and using them to compute
the values on the ghost cells directly.

Since we consider steady states in the initial conditions of the systems, we employ the closed form
solutions of them, depending merely on the current value of the friction coefficient. The associated cell
averages can be computed exactly from this closed forms.

In the following numerical experiments we utilized a mesh width of ∆x = 10 and fixed the speed of
sound to a = 300. Moreover, we considered a time horizon of T = 200 when solving the underlying
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system of partial differential equations and utilized a varying volume flow at the entry node of the
corresponding networks given by

q(t, xIn) = 300 + 20 ∗ sin((2π/50)t),

while the volume flow at the exit nodes is set constant, equaling the initial value of the volume flow in
the adjacent pipe.

4.1 Discussion of numerical examples

In this section we are going to discuss two different network examples in order to illustrate the results of
Algorithm 1 in particular situations. The first example is taken from Sect. 2.2, while the second example
considers a slightly larger network.

Example 1

This example compares results from the Markov chain Monte Carlo approach presented in the work at
hand and the statistical approaches for the example considered in [18]. The experimental setup consists
of a plain network depicted in Fig. 1 with three pipelines, connected via a single junction. Artificial data
have been generated by solving the underlying problem for the friction coefficient

λN = (0.018172, 0.018195, 0.018145)>

on a fine discretization with associated initial data, providing a reference solution (ρ̄, q̄). Here, the pipes
are numbered counter-clock wise, beginning with the pipe at the entry node. In [18], an inverse problem
for identifying the friction coefficient from noisy measurements was studied. To obtain statistical informa-
tion on the results, the noise in the measurements was generated several times and the corresponding
identification problems

minimize1
2

( 20∑
i=0

(ρ(10 · i, xE1)− ρdE1
(10 · i))2 + (ρ(10 · i, xE2)− ρdE2

(10 · i))2
)

+ α
2
‖λ− λM‖2

l2

subject to(ρ(i), q(i)) = S(λ(i)) on (0, T )× (x
(i)
L , x

(i)
R ),

(ρ(i)(0, x), q(i)(0, x)) solves (ISO-ALG) with given q(i)
0 for λ(i),

ρ(t, x
(1)
R ) = ρ(t, x

(2)
L ) = ρ

(3)
L , q(1)(t, x

(1)
R ) = q(2)(t, x

(2)
L ) + q(3)(t, x

(3)
L ),

q(1)(t, x
(1)
L ) = qdIn(t), q(2)(t, x

(2)
R ) = qdExit1(t), q

(3)(t, x
(3)
R ) = qdExit2(t),

ρ(1)(t, x
(1)
L ) = 52.3,

10−9 ≤ λ(i) ≤ λ,

withρdE1
(10 · i) = ρ̄(10 · i, xE1) + ηi, ρ

d
E2

(10 · i) = ρ̄(10 · i, xE2) + µi
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Consequence of uncertain friction in gas networks 15

were solved for variables η, µ ∈ R20 that are component wise i.i.d. with respect to N (0, 10−3). This
corresponds to repeating the same experiment several times and resulted in

EInverse[λ] = (0.018105, 0.018288, 0.018284)>

with

CInverse = cov(λi, λj) =

 0.030719 −0.042635 −0.063932
−0.042635 0.059173 0.088732
−0.063932 0.088732 0.133057

 · 10−5

for expected value and covariance matrix, respectively.

For the Bayesian approach, we utilized the same physical set up, i.e., we considered the Y-shaped
network presented in Fig. 1 with the same initial values, in particular, q = (300, 120, 180)> and
ρ(xEntry) = 52.3.
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Figure 4: Histograms of the resulting trajectories of Algorithm 1 for scenarios 1 and 2.

To demonstrate the influence of certain parameters that determine the Bayesian approach for solving
the inverse problem, we investigate different scenarios in the latter case. First, we considered data that
are, similar to the identification problem, based on λN , i.e., we are considering ’new’ pipes in that their
friction coefficient is take from the interval [0.01813, 0.018206]. Here, we compare the influence of
the chosen prior distribution and present results for both possibilities sketched in Fig. 2 referred to as
scenario 1 and 2, respectively. In the considered scenarios, the expected values are given by

EBayes1 [λ] = (0.018171, 0.018196, 0.018149)>,

EBayes2 [λ] = (0.018160, 0.018221, 0.018212)>,
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H. Heitsch, N. Strogies 16

where the associated covariance matrices is of order 10−10 and 10−8, respectively. We refrain from
presenting the full covariance matrices since in both examples the order of them is to small to influence
the outcome in the numerical experiments of Sect. 5.2.

Fig. 4 provides histograms of the components of the Markov chain generated by Algorithm 1, and thus,
it gives an idea of the associated probability density functions. Moreover, we provide the Markov chain
for scenario 1 in Fig. 5.

0 1 2 3 4 5 6 7 8 9 10

×10
4

0.01813

0.01814

0.01815

0.01816

0.01817

0.01818

0.01819

0.0182

0.01821

λ
1

λ
2

λ
3

Figure 5: Trajectory generated in scenario 1.

Recall that the Bayesian approach is designed to gain information on the posterior probability density
function, while the statistics based on the inverse problem from [18] can at most be considered as fair
approximation. Thus, the difference in the results of both approaches is not suspicious as the latter
method, e.g. does not incorporate prior knowledge on the distribution of λ to the process. As it can
be seen in the orders of the covariance matrices associated with scenario 1 and 2, the stochastic
effect of the friction coefficient in freshly produced pipes is very small and has almost no influence on
the problem of validating technical feasibility of stationary solutions for the underlying system under
random demand.

However, to demonstrate, even when utilizing the Bayesian approach, that operating a network of
pipelines introduces stochastic effects into problems as the validation problem, we in addition consider
scenario 3 with the prior function for aged pipes and data that are generated with friction coefficients

λO = (0.02, 0.019, 0.0195)>,

i.e., we consider aged pipes where λ became larger. In that situation, the results computed by Algo-
rithm 1 turn out as

EBayes3 [λ] = (0.020244, 0.018660, 0.018977)>

and

CBayes3 = cov(λi, λj) =

 0.030359 −0.041560 −0.061995
−0.041560 0.058673 0.084921
−0.061995 0.084921 0.130697

 · 10−6
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for expected value and covariance matrix, respectively. In contrast to the previous scenarios, the order
of the covariance matrix became larger, and thus, it also introduces effects to the probability level of
feasibility sets (see Sect. 5.2). The histograms of the components of the Markov chain are depicted in
Fig. 6. Here, we observe larger supports in all of them, compared with the previous histograms shown
in Fig. 4.
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Figure 6: Histograms of the resulting trajectories of Algorithm 1 for scenario 3.

In all considered cases, we observed a characteristic sign-structure in the covariance matrix that is
implied by the network topology. The coupling and boundary conditions enforce low values of λ in the
pipes that are connected with the exit nodes, if the friction coefficient in the pipe connected to the entry
node is large and vice versa, to compensate for density drops in the first pipe that are to large or to low,
compared to the true solution.

Example 2

The second example aims on a larger network that is obtained by extending the network structure from
Exampele 1 by further pipes as displayed in Fig. 7.

In

Exit 1 Exit 2 Exit 3 Exit 4 Exit 5 Exit 6 Exit 7

1

2
3

5 6
7 8 109

4

Figure 7: Sketch of the network from Example 2.

The network consist of 10 pipes of length 7500 with three interior, one entry and seven exit nodes. The
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Figure 8: Histograms of the resulting trajectories from Algorithm 1 for Example 2

initial state is based on the pipewise constant volume flow

q = (300, 120, 180, 30, 40, 50, 30, 40, 50, 60)>

and ρ(xEntry) = 52.3. Again, measurements of the density are taken at the exit nodes at merely 10
points in time and compared to a perturbed reference solution generated on a fine mesh for the friction
coefficients

λO = (1.8172, 1.8195, 1.8145, 1.82, 1.816, 1.818, 1.817, 1.8152, 1.8175, 1.8141)> · 10−2.

Compared to the setting of the previous example, we restrict ourselves only on scenario 2, i.e., obtaining
information on newly produced pipes, but, with the prior density that also covers aged pipes. The results
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of Algorithm 1 are given by the expected values

E[λ] = (1.8547, 1.8539, 1.8546, 1.8546, 1.8562, 1.8559, 1.8564, 1.8553, 1.8550, 1.8520)> · 10−2

and a covariance matrix of
cov(λi, λj) = 10−7·

0.934 −0.014 0.001 −0.039 −0.005 0.005 0.015 −0.001 0.027 −0.012
−0.014 0.976 0.018 0.044 0.013 0.068 0.067 0.024 −0.028 −0.009
0.001 0.018 0.948 −0.036 −0.046 −0.009 −0.030 0.000 0.042 −0.003
−0.039 0.044 −0.036 0.910 0.015 −0.002 −0.001 0.038 0.001 −0.030
−0.005 0.013 −0.046 0.015 1.026 −0.013 0.034 −0.040 0.018 −0.023
0.005 0.068 −0.009 −0.002 −0.013 1.008 −0.022 −0.041 −0.024 0.034
0.015 0.067 −0.030 −0.001 0.034 −0.022 1.007 −0.043 −0.022 −0.021
−0.001 0.024 0.000 0.038 −0.040 −0.041 −0.043 1.043 0.000 −0.017
0.027 −0.028 0.042 0.001 0.018 −0.024 −0.022 0.000 0.974 0.036
−0.012 −0.009 −0.003 −0.030 −0.023 0.034 −0.021 −0.017 0.036 0.830


after 75000 iterations. We observe, that due to the obviously increased network complexity, the struc-
ture of the network can no longer be derived from the sign structure of the covariance matrix. Moreover,
the order of the covariance matrix is quite larger as before, even in scenario 2, and the expected value
differs slightly from λO. In Fig. 8 we provide the histograms for the considered scenario.

5 Determining probabilities of feasibility sets

Next, the random nature of the exit load vector as well as the uncertainty of friction along the pipes
is taken into account. For simplification, as before we want to restrict to a tree shaped gas transport
network involving a single entry node (labeled with 0) and a number of n exit nodes. Further we assume
that the network is in steady state (see Sect. 2.1). The aim of this section is the computation of the
probability of the event that a random load (or demand) vector is technical feasible under uncertain
friction in the sense of (16). Since the demand vector (b0, b) must be balanced, in the following we
assume that b0 = −1>b, that is, the total exit demand can always be satisfied by the corresponding
supply at the single entry node. By doing so, the following set of feasible pairs of exit load vectors and
friction coefficients becomes relevant

M̃feas :=
{

(b, λ) ∈ Rn×m | gk,l(b, λ) ≥ 0; k, l = 0, . . . , n; k 6= l
}
, (30)

where technical feasibility can be formulated by a set of constraint mappings gk,l(·, ·) arriving in a
natural way from (16). In particular, we have that

gk,l(b, λ) := (pmaxk )2 + hk(b, λ)− (pminl )2 − hl(b, λ), (31)

where hk(·, ·) taken from (15), k, l = 0, . . . , n and k 6= l. More precisely, if (b, λ) is identified with
some random vector

(
b(ω), λ(ω)

)
on a probability space (Ω,A,P), then

P
{
ω
∣∣∣ (b(ω), λ(ω)

)
∈ M̃feas

}
(32)
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marks the probability of exit demand vectors to be feasible in the context of uncertain friction. The
main variation of exit load data is temperature driven. However, even at fixed temperature, considerable
random variation remains. That is why exit loads can be understood as a stochastic process depending
on temperature and may be characterized by a finite family of multivariate distributions, each of them
referring to some (rather narrow) range of temperature and reflecting the joint distribution of loads at
the given set of exit points, see [19, Chapter 13]. As recorded in the same reference [19, Table 13.3],
these distributions are most likely to be Gaussian (possibly truncated) or lognormal. Our assumption to
consider a multivariate Gaussian distribution for b can therefore be seen as a prototype setting which
maybe adapted without much effort to more realistic settings (multivariate log-normal distributions etc.).
As well as the load vector the uncertainty of friction coefficients approximately follows a multivariate
Gaussian distribution whose parameter can be estimated as seen before. Thus, we assume that

b ∼ N (µ1,Σ1) and λ ∼ N (µ2,Σ2), (33)

where µ1, µ2 and Σ1, Σ2 denote mean values and covariance matrices of the demand and friction
random vectors, respectively. Clearly, by formula (30) we could use the final inequality system in order
to test feasibility of simulated outcomes of the pairs (b, λ) according to the given Gaussian distribu-
tions. The average number of feasible simulations would yield the Monte Carlo estimate for the desired
probability in (32). Such Monte Carlo approach has two drawbacks: first it may come up with a com-
paratively large variance for the obtained probability estimation and, second, it does not provide us with
information about the sensitivity of this probability with respect to changes of external parameters, that
could subject of optimization. This sensitivity (derivative) information is crucial, however, in order to set
up any efficient algorithm of nonlinear optimization in order to solve optimization problems in the context
of gas transmission, for example the maximization of booking capacities [16].

5.1 Spheric-radial decomposition

Instead of crude Monte Carlo sampling we rather propose here the so-called spheric-radial decomposi-
tion of Gaussian random vectors (see, e.g. [3, 9]). This alternative not only may significantly reduce the
variance of probability estimations but, moreover, it offers the possibility of efficiently approximating gra-
dients of (32) with respect to external network parameters. This last feature is of supreme importance
for optimization problems under probabilistic constraints [23].

Theorem 3. Let (b, λ) be a Gaussian random vector distributed according to (33). Then for the proba-
bility of random load and random friction being technical feasible it holds that

P
(

(b, λ) ∈ M̃feas

)
=

∫
(v1,v2)∈Sn+m−1

µχ

{
r ≥ 0

∣∣∣ (rL1v1 + µ1, rL2v2 + µ2) ∈ M̃feas

}
dµη,

where matrices Li are such that Σi = LiL
>
i (e.g., Cholesky decomposition), i = 1, 2, and, µχ is the

law of chi-distribution with n + m degrees of freedom and µη is the law of uniform distribution at the
Euclidean unit sphere Sn+m−1.
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In order to evaluate the integrand in the spheric integral above, for any fixed direction (v1, v2) ∈
Sn+m−1, one has to be able to compute the χ-probability of the one-dimensional set

{r ≥ 0 | (rL1v1 + µ1, rL2v2 + µ2) ∈ M̃feas}.

Thus, using (30) computing the probability of feasibility amounts to characterizing the set

{r ≥ 0 | g(rL1v1 + µ1, rL2v2 + µ2) ≥ 0} (v ∈ Sn+m−1), (34)

where we define

g(b, λ) := min
k,l=0,...,m

k 6=l

{
(pmax
k )2 + hk(b, λ)− (pmin

l )2 − hl(b, λ)
}
. (35)

Applying the idea of spheric-radial decomposition presented in Theorem 3, we propose the following
algorithm for computing the probability P

(
(b, λ) ∈ M̃feas

)
.

Data: Let be (b, λ) random vector according to (33).
Set S = 0 and sample N points {v1, . . . , vN} uniformly distributed on the sphere Sn+m−1.
for i = 1, . . . , N do

Find the zero’s of the one dimensional function
θ(r) := g(rL1v

i
1 + µ1, rL2v

i
2 + µ2)

with g defined in (35) and represent the set
M i := {r ≥ 0 | θ(r) ≥ 0}
corresponding to (34) as a disjoint union of intervals
M i = ∪sj=1[αj, βj],
where αj, βj are the zero’s obtained before and ordered appropriately.
Compute the χ-probability of M i according to
µχ(M i) =

∑
j Fχ(βj)− Fχ(αj),

where Fχ refers to the cumulative distribution function of the one-dimensional
χ-distribution with n+m degrees of freedom.
Put S := S + µχ(M i).

end

Set P
(
(b, λ) ∈ M̃feas

)
:= S/N .

Algorithm 2: Spheric-radial decomposition

A few words on this algorithm are in order at this place. The algorithm clearly provides an approximation
to the spheric integral in Theorem 3 by means of a finite sum based on sampling of the sphere, and
then, averaging the values of the integrand over all samples. Of course, this approximation will improve
with the sampling size which may be large depending on the dimension n+m of the problem (i.e., exit
nodes and edges in the network) and on the desired precision for the probability.

We recall that the uniform distribution on the sphere Sn+m−1 can be represented as the distribution of
η/‖η‖ (Euclidean norm), where η has a standard Gaussian distribution in Rn+m, i.e., η ∼ N (0, I).
Then, the simplest idea to sample points vi on the sphere would be to independently sample m + n
values wj of a one-dimensional standard normal distribution by using standard random generators and
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then putting vi := w/‖w‖ for w := (w1, . . . , wn+m). When replacing such Monte Carlo sampling of
the normal distribution (based on random number generators) by Quasi-Monte Carlo sampling (based
on deterministic low discrepancy sequences), one observes a dramatic improvement in the precision of
the result. For the problem of nomination validation in gas networks (with fixed friction coefficients), this
was revealed in [11].

5.2 Preliminary numerical results

A considerably numerical study with respect to computations of probabilities of technical feasibility in
stationary networks under stochastic exit demand can be found in [11]. However, the impact of un-
certainty of friction along the pipes to the probability level of feasible exit load situation has not been
investigated so far. Therefore, the aim of the numerical study in this paper is to incorporate the effect of
random friction into the consideration in [11]. For our numerical tests we proceed with the two example
networks already discussed in Sect. 4.1. Even if we consider tree shaped networks only, the results can
easily transferred to more complex situation involving cycles within the network topology.

Example 1

For the purpose of illustration we start with the small network serving as example for computing the
probability of feasibility as in (32). The network consists of one entry node, one passive (interior) node
and two exit nodes, where we consider a stochastic gas demand. The shape of the network is given
by Fig. 1. Observe, that the passive node can be formally modeled as an exit node, but, with zero con-
sumption. As there exist 3 arcs joining the nodes, we have three frictional driven roughness coefficients
Λe = 2a2leλe, where e = 1, 2, 3 (cf. (6)).

We like to mention here that this example network already was considered in [10], where a numerical
study of the influence of uncertain friction (roughness) is provided. But, compared to the propose of this
paper, no distribution information for friction is used. Instead, a complete robust approach for describing
uncertainty with respect to friction along the pipes is applied.

Mean µ1 Covariance Σ1

(120.0, 180.0)

(
1 600.0 800.0
800.0 4 000.0

)
Node Pressure pmin Pressure pmax

Entry 40.0 52.0
Interior 40.0 52.0
Exit 1 40.0 52.0
Exit 2 40.0 52.0

Table 1: Distribution for the exit demand and network parameters of Example 1.

In this paper we are going to base the computations directly on the distribution information of friction
estimated by the Markov chain Monte Carlo method in Sect. 4.1. Because the variance with respect
to the friction coefficients in case of new pipes turn out to be too small, we provide the computations
for Example 1 only for the results of Algorithm 1 when considering aged pipes. In particular, for the
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multivariate Gaussian friction coefficient λ ∼ (µ2,Σ2) the mean value is set to µ2 = EBayes3 [λ] with
corresponding covariance matrix Σ2 = CBayes3 (see Sect. 4.1, Example 1). The length of the pipes is
set to l = (10 000, 20 000, 30 000).

In addition, the parameter for the bivariate Gaussian distributed exit demand vector b ∼ N (µ1,Σ1)
as well as the fixed network parameters are displayed in Table 1. The pressure limits are given in bar,
whereas the exit demand is given in volume flow (as before). Note that exit demand is frequently given in
thermal power P instead of mass or volume flow q by network owners . However, the relation between
thermal power and mass flow is given by the equation P = qHc, where Hc refers to the calorific value
of the gas.

In order to study how the stochastic behavior of friction affects technical feasibility, we performed a test
series to compute the probability of feasibility under stochastic exit demand. In particular, we compare
different random friction situation by randomly chosen samples simulated from the distribution. In ad-
dition, we compare the results with the computations that we obtain when using a) the friction mean
value µ2 b) the friction mean value plus standard deviation µ2 + σ2 and c) the friction mean value
minus standard deviation µ2 − σ2, in order to incorporate the friction part according to (35). Finally, we
determine the probability of technical feasibility in a full stochastic environment, i.e., where we assume
that both friction and exit load follow the stated multivariate Gaussian distributions. Table 2 summarizes

Samples Random scenarios Reference scenarios Full stochastic
λ[1] λ[2] λ[3] µ2 µ2 + σ2 µ2 − σ2 N (µ2,Σ2)

1 000 70.417 68.917 69.227 69.699 68.787 70.620 69.694
5 000 70.320 68.816 69.126 69.600 68.685 70.524 69.521

10 000 70.319 68.818 69.127 69.601 68.688 70.522 69.549
50 000 70.301 68.792 69.103 69.579 68.662 70.504 69.580

100 000 70.297 68.789 69.100 69.575 68.659 70.500 69.580

Table 2: Numerical results, related to Example 1, in order to study the impact of uncertain friction to
the technical feasibility. The table compares the probabilities of the obtained feasibility sets in different
situations with respect to friction, computed via spheric-radial decomposition.

the numerical results. All computations were performed by Algorithm 2. The number of samples on
the unique sphere varies between 1 000 and 100 000 samples. Clearly, the accuracy increases with
a higher number of samples on the sphere used for the approximation. However, we obtain a notable
effect of using different random outcomes for the friction coefficients (column 2 to 4). We obtain a vari-
ation by the computed probability levels of about 2 percent compared to the average value of nearly
70 percent (column 5). On the other hand, in that example problem we realize that a fully stochastic
approach for both friction and load distribution (last column) does not return a significant difference in
contrast to proceeding with stochastic exit demand and the mean value for friction. Considering the
small network, we conclude that a accurate approximation of the mean value for the friction part seems
to be sufficient for a quite fair approximation of the probability level of feasibility sets with respect to
random exit demand.
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Example 2

Now we discuss Example 2 from Sect. 4.1. The underlying network can be viewed as enlargement
of the network in Example 1 by adding additional pipes end nodes to the net as illustrated in Fig. 7.
We base our computations directly on the estimated data from Sect. 4.1 (Example 2) for the friction
coefficients. In a different way from Example 1 the following numerical results are related to non-aged
pipes. However, for the computations we proceed in almost the same manner as before. The length of
pipes we slightly enlarge to le = 10 000 for all involved pipes e = 1, . . . , 10. The Gaussian distribution
for the friction comes up with the Markov chain Monte Carlo estimation by mean µ2 = E[λ] and by
covariance Σ2 = cov(λi, λj) (see Sect. 4.1, Example 2). All additional parameters, in particular, the
assumed Gaussian distribution for the exit demand are displayed by Table 3.

Mean µ1 Covariance Σ1

30.0
40.0
50.0
30.0
40.0
50.0
60.0





64.0 8.0 32.0 −16.0 8.0 −16.0 16.0
8.0 82.0 31.0 7.0 19.0 −29.0 −7.0
32.0 31.0 146.0 −16.0 −23.0 5.0 16.0
−16.0 7.0 −16.0 42.0 15.0 −7.0 0.0

8.0 19.0 −23.0 15.0 99.0 20.0 17.0
−16.0 −29.0 5.0 −7.0 20.0 98.0 0.0
16.0 −7.0 16.0 0.0 17.0 0.0 112.0


Node Pressure pmin Pressure pmax

Entry 45.0 52.0
Interior 1–3 45.0 52.0
Exit 1–7 45.0 52.0

Table 3: Distribution for the exit demand and network parameters of Example 2.

As in Example 1, the considered test series aim to approximate the probability of feasibility under
stochastic exit demand in different situation with respect to friction. Again, the computations include
three randomly selected friction samples simulated from the distribution, results that are obtained when
using the friction mean value µ2, the friction mean value plus standard deviation µ2+σ2, and the friction
mean value minus standard deviation µ2 − σ2. As well as considering these fixed friction vectors we
determine the probability of technical feasibility in a fully stochastic environment once more, i.e., where
we assume that both friction and exit load follow the given multivariate Gaussian distributions.

Table 4 shows the very similar results of all computations, but, for Example 2 now. As before, applying
randomly selected friction coefficients obviously guides to a falsified estimation of the probability of
feasibility. Only a proper estimation of the average friction can serve as a good base for accurate
computation. Nevertheless, in the environment of the enlarged network topology also the calculation
wit the mean value differs slightly from the fully stochastic result. Using the mean value seems to
overestimate the probability level compared with the stochastic approach. The latter observation gives
a hint to what happens when taking more involved networks with a much higher number of pipes and
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Samples Random scenarios Reference scenarios Full stochastic
λ[1] λ[2] λ[3] µ2 µ2 + σ2 µ2 − σ2 N (µ2,Σ2)

1 000 93.140 95.015 91.574 93.376 91.950 94.629 93.429
5 000 93.309 95.121 91.780 93.534 92.146 94.748 93.513

10 000 93.211 95.053 91.667 93.439 92.036 94.673 93.449
50 000 93.268 95.061 91.768 93.489 92.126 94.690 93.430

100 000 93.252 95.049 91.749 93.473 92.107 94.677 93.417

Table 4: Numerical results, related to Example 2, in order to study the impact of uncertain friction to
the technical feasibility. The table compares the probabilities of the obtained feasibility sets in different
situations with respect to friction, computed via spheric-radial decomposition.

nodes into the consideration. In such a case we expect that the usage of expected friction only causes
a to optimistic overestimation of the probability level for the feasibility of random exit demand.
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