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STABILITY OF MULTISTAGE STOCHASTIC PROGRAMS∗

H. HEITSCH† , W. RÖMISCH† , AND C. STRUGAREK‡

Abstract. Quantitative stability of linear multistage stochastic programs is studied. It is shown
that the infima of such programs behave (locally) Lipschitz continuous with respect to the sum of an
Lr-distance and of a distance measure for the filtrations of the original and approximate stochastic
(input) processes. Various issues of the result are discussed and an illustrative example is given.
Consequences for the reduction of scenario trees are also discussed.
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1. Introduction. We consider a finite horizon sequential decision process under
uncertainty, in which a decision made at t is based only on information available at t
(1 ≤ t ≤ T ). We assume that the information is given by a discrete time multivariate
stochastic process {ξt}Tt=1 defined on some probability space (Ω,F ,P) and with ξt
taking values in R

d. The information available at t consists of the random vector
ξt := (ξ1, . . . , ξt), and the stochastic decision xt at t varying in R

mt is assumed to
depend only on ξt. The latter property is called nonanticipativity and is equivalent
to the measurability of xt with respect to the σ-field Ft ⊆ F , which is generated by
ξt. Hence, we have Ft ⊆ Ft+1 for t = 1, . . . , T − 1 and we assume that F1 = {∅,Ω},
i.e., ξ1 and x1 are deterministic and, with no loss of generality, that FT = F .
More precisely, we consider the following linear multistage stochastic program:

min

⎧⎨
⎩E

[
T∑

t=1

〈bt(ξt), xt〉
] ∣∣∣∣∣∣

xt ∈ Xt,
xt is Ft-measurable, t = 1, . . . , T,
At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T

⎫⎬
⎭ ,(1.1)

where the subsets Xt of R
mt are nonempty, closed, and polyhedral; the cost coefficients

bt(ξt) belong to R
mt ; the right-hand sides ht(ξt) are in R

nt ; At,0 are fixed (nt,mt)-
matrices; and At,1(ξt) are (nt,mt−1)-matrices, respectively. We assume that bt(·),
ht(·), and At,1(·) depend affinely linearly on ξt covering the situation that some of the
components of bt and ht, and of the elements of At,1 are random.

The challenge of multistage models consists in the presence of two groups of en-
tirely different constraints, namely of measurability and of pointwise constraints for
the decisions xt. This fact does not lead to consequences in the two-stage situation
(T = 2). In general, however, it is the origin of both the theoretical and computa-
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tional challenges of multistage models. In the present paper, it produces the essential
difference of quantitative stability estimates compared to the two-stage case.

When solving multistage models computationally, the first step consists of ap-
proximating the stochastic process ξ = {ξt}Tt=1 by a process having finitely many
scenarios that exhibit tree structure and have its root at the fixed element ξ1 of R

d

(see the survey [4] for further information). In this way, both the random vectors
ξt and the σ-fields Ft are approximated at each t. This process finally leads to lin-
ear programming models that are very large scale in most cases and may be solved
by decomposition methods that exploit specific structures of the model (see [31] for
additional background). In order to reduce the model dimension, it might be desir-
able to reduce the originally designed tree. The approaches to scenario reduction in
[5, 11] and to scenario tree generation in [21, 14, 10] make use of probability metrics,
i.e., of metric distances on spaces of probability measures, where the metrics are se-
lected such that the optimal values of original and approximate stochastic program
are close if the distance of the original probability distribution P = L(ξ) of ξ and its
approximation Q is small.

Such quantitative stability results are well developed for two-stage models (cf.
the survey [28]). It turned out that distances of probability measures are relevant
which are given by certain Monge–Kantorovich mass transportation problems. Such
problems are of the form

inf
{∫

Ξ×Ξ

c(ξ, ξ̃)η(dξ, dξ̃) : η ∈ P(Ξ × Ξ), π1η = P, π2η = Q
}
,(1.2)

where Ξ is a closed subset of some Euclidean space, π1 and π2 denote the projections
onto the first and second components, respectively, c is a nonnegative, symmetric, and
continuous cost function and P and Q belong to a set Pc(Ξ) of probability measures
on Ξ, where all integrals are finite. Two types of cost functions have been used in
stability analysis of stochastic programs [5, 29], namely,

c(ξ, ξ̃) := ‖ξ − ξ̃‖r (ξ, ξ̃ ∈ Ξ)(1.3)

and

c(ξ, ξ̃) := max{1, ‖ξ − ξ0‖r−1, ‖ξ̃ − ξ0‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ)(1.4)

for some r ≥ 1 and ξ0 ∈ Ξ. In both cases, the set Pc(Ξ) may be chosen as the set
Pr(Ξ) of all probability measures on Ξ having absolute moments of order r. The cost
(1.3) leads to Lr-minimal metrics �r [25], which are defined by

�r(P,Q) := inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖rη(dξ, dξ̃) |η ∈ P(Ξ × Ξ), π1η = P, π2η = Q

} 1
r

(1.5)

and sometimes also called Wasserstein metrics of order r [9]. The mass transportation
problem (1.2) with cost (1.4) defines the Monge–Kantorovich functionals μ̂r [22, 24].
A variant of the functional μ̂r appears if, in its definition by (1.2), the conditions
η ∈ P(Ξ × Ξ), π1η = P, π2η = Q are replaced by η being a finite measure on Ξ × Ξ

such that π1η − π2η = P − Q. The corresponding functionals
◦
μr are smaller than

μ̂r and turn out to be metrics on Pr(Ξ). They are called Fortet–Mourier metrics of
order r [8, 22]. The convergence of sequences of probability measures, with respect to

both metrics �r and
◦
μr, is equivalent to their weak convergence and the convergence
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of their rth order absolute moments. For r = 1 we have the identity
◦
μ1= μ̂1 = �1 and

the corresponding metric is also called Kantorovich distance. Two-stage models are
known to behave stable with respect to Fortet–Mourier metrics [23].

Much less is known, however, of the multistage case. The present paper may be
regarded as an extension of the quantitative analysis in [7], which considers a less
general probabilistic setup and assumes implicitly that the filtrations of the original
and approximate stochastic processes coincide. The paper [19] and the recent work
[20] provide (qualitative) convergence results of approximations and [16, 32] deal with
empirical estimates in multistage models. In the recent paper [34] the role of proba-
bility metrics for studying stability of multistage models is questioned critically. An
example is given showing that closeness of original and approximate probability dis-
tributions in terms of some probability metric is not sufficient for the infima to be
close in general. The recent thesis [1] focuses precisely on the question of information
in stochastic programs. The conclusions of this work do not address stability, but
only discretization of multistage stochastic programs. They illuminate the role which
should be played by σ-field distances in order to obtain a consistent discretization of
such programs.

The main result of the present paper (Theorem 2.1) provides stability of infima of
the multistage model (1.1) with respect to a sum of the Lr-norm and of a distance of
the information structures, i.e., the filtrations of σ-fields, of the original and approxi-
mate stochastic (input) processes. Hence, it enlightens the corresponding arguments
in [34]. Several comments are given on the stability result, its assumptions, the fil-
tration distance, and on the choice of the underlying probability space if the original
and approximate (input) probability distributions are given in practical models. Fur-
thermore, we provide an illustrative example which shows that the filtration distance
is indispensable for stability (Example 2.6). Finally, some consequences for designing
scenario reduction schemes in multistage models are discussed.

2. Stability of multistage models. Under weak hypotheses, the program (1.1)
can be equivalently reformulated as a minimization problem for the deterministic first
stage decision x1 (see [31, Chapter 1] or [6, 26] for example). It is of the form

min
{

E[f(x1, ξ)] =

∫
Ξ

f(x1, ξ)P (dξ) : x1 ∈ X1

}
,(2.1)

where Ξ is a closed subset of R
Td containing the support of the probability distribution

P of ξ, and f is an integrand on R
m1×Ξ given by the dynamic programming recursion

f(x1, ξ) := Φ1(x1, ξ
1) = 〈b1(ξ1), x1〉 + Φ2(x1, ξ

2),(2.2)

Φt(x1, . . . , xt−1, ξ
t) := inf

{
〈bt(ξt), xt〉 + E

[
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

]
: xt ∈ Xt,

xt is Ft-measurable, At,0xt + At,1(ξt)xt−1 = ht(ξt)
}

(t = 2, . . . , T ),

ΦT+1(x1, . . . , xT , ξ
T+1) := 0.

Using the representation (2.2) of the integrand f for T = 2 quantitative stability
results are proved in [23, 28] with respect to Fortet–Mourier metrics of probability
distributions and earlier in [29] with respect to Lr-minimal metrics. For T > 2, how-
ever, the integrand f depends on conditional expectations with respect to the σ-fields
Ft and, hence, on the underlying probability measure P in a nonlinear way. Conse-
quently, the methodology for studying quantitative stability properties of stochastic
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programs of the form (2.1) developed in [23, 28] does not apply to multistage models
in general.

An alternative for studying stability of multistage models consists in considering
them as optimization problems in functional spaces (see also [18, 26]), where the

Banach spaces Lr′(Ω,F ,P; Rm) with m =
∑T

t=1 mt and endowed with the norm

‖x‖r′ :=

(
T∑

t=1

E[‖xt‖r
′
]

) 1
r′

for r′ ≥ 1 and ‖x‖∞ := max
t=1,...,T

ess sup ‖xt‖

are appropriate. Here, the stochastic input process ξ belongs to Lr(Ω,F ,P; Rs) for
some r ≥ 1 and s := Td, and r′ is defined by

r′ :=

⎧⎪⎪⎨
⎪⎪⎩

r
r−1 if only costs are random,

r if only right-hand sides are random,
r = 2 if only costs and right-hand sides are random,
∞ if all technology matrices are random and r = T.

The number r corresponds to the order of (absolute) moments of ξ that are required
to exist. The definition of the numbers r′ implies that the objective function is well
defined and finite. In the third case it may alternatively be required that the costs
bt(ξt) have finite moments of order r̂ ≥ 1. Then we choose r′ := r̂

r̂−1 and require that
ht(ξt) belongs to Lr′ .

Let us introduce some notations. Let F denote the objective function defined on
Lr(Ω,F ,P; Rs) × Lr′(Ω,F ,P; Rm) → R by F (ξ, x) := E[

∑T
t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt|At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the tth feasibility set for every t = 2, . . . , T , and

X (ξ) := {x ∈ ×T
t=1Lr′(Ω,Ft,P; Rmt)|x1 ∈ X1, xt ∈ Xt(xt−1; ξt), t = 2, . . . , T}

denote the set of feasible elements of the stochastic program (1.1) with input ξ. Then
the stochastic program (1.1) may be rewritten in the form

min{F (ξ, x) : x ∈ X (ξ)}.(2.3)

Let v(ξ) denote the optimal value of (2.3) and let, for any α ≥ 0,

lα(F (ξ, ·)) := {x ∈ X (ξ) : F (ξ, x) ≤ v(ξ) + α}

denote its α-level set. The following conditions are imposed on (2.3).
(A1) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F ,P; Rs) with ‖ξ̃−ξ‖r ≤ δ,

any t = 2, . . . , T and any x1 ∈ X1, xτ ∈ Lr′(Ω,Ft,P; Rmτ ) with xτ ∈ Xτ (xτ−1; ξ̃τ ),
τ = 2, . . . , t − 1, the tth feasibility set Xt(xt−1; ξ̃t) is nonempty (relatively complete
recourse locally around ξ).

(A2) The optimal values v(ξ̃) of (2.3) with input ξ̃ are finite for all ξ̃ in a neigh-
borhood of ξ and the objective function F is level-bounded locally uniformly at ξ, i.e.,
for some α > 0 there exists a δ > 0 and a bounded subset B of Lr′(Ω,F ,P; Rm)
such that lα(F (ξ̃, ·)) is nonempty and contained in B for all ξ̃ ∈ Lr(Ω,F ,P; Rs) with
‖ξ̃ − ξ‖r ≤ δ.

(A3) ξ ∈ Lr(Ω,F ,P; Rs) for some r ≥ 1.
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To state our main result we introduce the distance Df(ξ, ξ̃) of the filtrations of ξ
and its approximation (or perturbation) ξ̃, respectively. It is defined by

Df(ξ, ξ̃) := sup
ε∈(0,α]

Df,ε(ξ, ξ̃)(2.4)

and Df,ε(ξ, ξ̃) denotes the ε-filtration distance given by

Df,ε(ξ, ξ̃) := inf

T−1∑
t=2

max{‖xt − E[xt|F̃t]‖r′ , ‖x̃t − E[x̃t|Ft]‖r′},(2.5)

where the infimum is taken with respect to all x ∈ lε(F (ξ, ·)) and x̃ ∈ lε(F (ξ̃, ·)),
respectively, i.e., with respect to all feasible decisions belonging to the ε-level sets of
the original and perturbed programs. Furthermore, Ft and F̃t, t = 1, . . . , T , denote
the filtrations of ξ and ξ̃, respectively.

Now, we are ready to state our main stability result for multistage stochastic
programs.

Theorem 2.1. Let (A1), (A2), and (A3) be satisfied and X1 be bounded. Then
there exists positive constants L, α, and δ such that the estimate

|v(ξ) − v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃))(2.6)

holds for all random elements ξ̃ ∈ Lr(Ω,F ,P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.
Proof. Let Mt denote the set-valued mappings u �→ {x ∈ R

mt |At,0x = u, x ∈
Xt} from R

nt to R
mt for t = 2, . . . , T . The mappings have polyhedral graph and,

hence, are Lipschitz continuous with respect to the Hausdorff distance on their domain
domMt ⊆ R

nt [27, Example 9.35]. Hence, there exist positive constants lt such that
we have

sup
x∈Mt(ū)

d(x,Mt(ũ)) ≤ lt‖ū− ũ‖(2.7)

for all ū, ũ ∈ domMt, where d(x,C) denotes the distance of x to a nonempty set C
in R

mt .
Now, let α > 0 and δ > 0 be selected as in (A1) and (A2). Let ε ∈ (0, α],

ξ̃ ∈ Lr(Ω,F ,P; Rs) be such that ‖ξ̃ − ξ‖r < δ and v(ξ̃) ∈ R, and let x̄ ∈ lε(F (ξ, ·)).
By F̃t we denote the σ-field generated by ξ̃t := (ξ̃1, . . . , ξ̃t) for t = 1, . . . , T . Now,
we show recursively the existence of constants L̂t > 0 and of elements x̃t belonging
to the appropriate spaces Lr′ (Ω, F̃t,P; Rmt) for each t = 1, . . . , T such that x̃t ∈ Xt,

t = 1, . . . , T , At,0x̃t + At,1(ξ̃t)x̃t−1 = ht(ξ̃t), t = 2, . . . , T , and that

‖E[x̄t|F̃t] − x̃t‖

can be estimated recursively with respect to t. Let t = 1, we then set x̃1 := x̄1 and
L̂1 := 1. For t > 1, we assume that L̂t−1 and x̃t−1 have already been constructed,
set ūt := ht(ξt) −At,1(ξt)x̄t−1, ũt := ht(ξ̃t) −At,1(ξ̃t)x̃t−1 and consider the following
set-valued mappings from Ω to R

mt given by

ω → Mt(ũt(ω)) and ω → arg min
x∈Mt(ũt(ω))

‖E[x̄t|F̃t](ω) − x‖.

Both are measurable with respect to the σ-field F̃t due to the measurability of x̃t−1

with respect to F̃t−1 and well-known measurability results for set-valued mappings
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(e.g., [27, Theorem 14.36]). In addition, the set-valued mapping ω → Mt(ũt(ω)) is
nonempty-valued due to (A1). Hence, by appealing to [27, Theorem 14.37] there
exists a F̃t-measurable selection x̃t of the second mapping. Since E[x̄t|F̃t] belongs to
Mt(E[ūt|F̃t]), (2.7) provides the estimate

‖E[x̄t|F̃t] − x̃t‖ ≤ lt‖E[ūt|F̃t] − ũt‖
≤ lt(‖E[ht(ξt)|F̃t] − ht(ξ̃t)‖ + ‖E[At,1(ξt)x̄t−1|F̃t] −At,1(ξ̃t)x̃t−1‖)
≤ lt(Kt‖E[ξt|F̃t] − ξ̃t‖ + ‖E[At,1(ξt)x̄t−1 −At,1(ξ̃t)x̄t−1|F̃t]‖

+‖At,1(ξ̃t)‖‖E[x̄t−1|F̃t] − x̃t−1‖)
≤ ltK̄t(‖E[ξt − ξ̃t|F̃t]‖ + E[‖ξt − ξ̃t‖‖x̄t−1‖|F̃t]

+ max{1, ‖ξ̃t‖}(‖E[x̄t−1 − E[x̄t−1|F̃t−1]|F̃t]‖
+‖E[x̄t−1|F̃t−1] − x̃t−1‖)),

where Kt and K̄t are certain positive constants, the affine linearity of ht(·) and At,1(·)
and Jensen’s inequality is used for the second summand. Clearly, we have ‖ξ̃τ‖ ≤
C‖ξ̃t‖ with some constant C for all τ = 2, . . . , t, t = 2, . . . , T , and the corresponding
norms in R

d and R
td. Using Jensen’s inequality also in the first and third summand

of the latter estimate we obtain recursively

‖E[x̄t|F̃t] − x̃t‖ ≤ L̂t

( t∑
τ=2

max{1, ‖ξ̃t‖t−τ}E[(1 + ‖x̄τ−1‖)‖ξτ − ξ̃τ‖ |F̃τ ](2.8)

+

t−1∑
τ=2

max{1, ‖ξ̃t‖t−τ}E[‖x̄τ − E[x̄τ |F̃τ ]‖ |F̃τ+1]
)

with some positive constant L̂t for t = 2, . . . , T . Note that the sum on the right-hand
side of (2.8) disappears if only costs are random. The max-terms in (2.8) and the
norms ‖xτ−1‖ in (2.8) vanish if the technology matrices are not random. Inserting x̄
and x̃ into the objective function we obtain

v(ξ̃) − v(ξ) ≤ F (ξ̃, x̃) − F (ξ, x̄) + ε.(2.9)

In case of only right-hand sides being random we continue (2.9) using (2.8) and obtain

v(ξ̃) − v(ξ) ≤
T∑

t=2

E[〈bt,E[x̃t − x̄t|F̃t]〉] + ε ≤
T∑

t=2

‖bt‖E[‖x̃t − E[x̄t|F̃t]‖] + ε

≤ L̂

T∑
t=2

E

[ t∑
τ=2

E[‖ξτ − ξ̃τ‖|F̃τ ] +

t−1∑
τ=2

E[‖x̄τ − E[x̄τ |F̃τ ]‖|F̃τ+1]
]

+ ε

≤ L̂TE

[ T∑
t=2

‖ξt − ξ̃t‖ +

T−1∑
τ=2

‖x̄τ − E[x̄τ |F̃τ ]‖
]

+ ε

≤ L̂T
(
‖ξ − ξ̃‖r +

T−1∑
τ=2

‖x̄τ − E[x̄τ |F̃τ ]‖r
)

+ ε,

where L̂ := maxt=1,...,T L̂t‖bt‖. If costs are random, we obtain the estimate

v(ξ̃) − v(ξ) ≤ F (ξ̃, x̃) − F (ξ̃, x̄) + F (ξ̃, x̄) − F (ξ, x̄) + ε
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≤ E

[ T∑
t=2

〈bt(ξ̃t),E[x̃t − x̄t|F̃t]〉
]

+ E

[ T∑
t=1

〈bt(ξ̃t) − bt(ξt), x̄t〉
]

+ ε

≤ K̂E

[ T∑
t=2

max{1, ‖ξ̃t‖}‖x̃t − E[x̄t|F̃t]‖ +

T∑
t=1

‖ξ̃t − ξt‖‖x̄t‖
]

+ ε(2.10)

with some positive constant K̂. In case of only costs being random, i.e., r′ = r
r−1 , we

continue with

v(ξ̃) − v(ξ) ≤ K̂E

[ T∑
t=2

max{1, ‖ξ̃t‖}‖x̃t − E[x̄t|F̃t]‖
]

+ K̂‖ξ̃ − ξ‖r‖x̄‖r′ + ε

≤ K̂E

[ T∑
t=2

max{1, ‖ξ̃t‖}‖x̃t − E[x̄t|F̃t]‖
]

+ K‖ξ̃ − ξ‖r + ε,

where Hölder’s inequality and the boundedness of ‖x̄‖r′ according to (A2) were used
leading to some constant K > 0. Using the estimate (2.8), we conclude that

v(ξ̃) − v(ξ) ≤ L
(
‖ξ̃ − ξ‖r +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖r′
)

+ ε,

where Hölder’s inequality and the fact that ξ̃ varies in a bounded set in Lr were used
leading to some constant L > 0 (depending on ξ).

Next, we consider the case r = r′ = 2. Starting from (2.10) we use the Cauchy–
Schwarz inequality and obtain

v(ξ̃) − v(ξ) ≤ K̂
[( T∑

t=2

E[max{1, ‖ξ̃t‖2}]
) 1

2
( T∑

t=2

E[‖x̃t − E[x̄t|F̃t]‖2]
) 1

2

+‖ξ̃ − ξ‖2‖x̄‖2

]
+ ε

≤
(
‖ξ̃ − ξ‖2 +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖2

)
+ ε

with some constant L > 0 (depending on ξ) due to (2.8), (A2), and the fact that ξ̃
varies in some bounded set in L2.

Finally, we consider the situation that costs, right-hand sides, and technology
matrices are random, i.e., r = T and r′ = ∞. In this case, the estimate (2.8) attains
the form

‖E[x̄t|F̃t] − x̃t‖ ≤ L̂t

( t∑
τ=2

max{1, ‖ξ̃t‖t−τ}E[‖ξτ − ξ̃τ‖ |F̃τ ]

+

t−1∑
τ=2

max{1, ‖ξ̃t‖t−τ}‖x̄τ − E[x̄τ |F̃τ ]‖∞
)
.

Now, we start again from (2.10) and use the latter estimate and obtain

v(ξ̃) − v(ξ) ≤ L̂E

[ T∑
t=2

( t∑
τ=2

max{1, ‖ξ̃t‖t+1−τ}E[‖ξτ − ξ̃τ‖ |F̃τ ]
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+

t−1∑
τ=2

max{1, ‖ξ̃t‖t+1−τ}‖x̄τ − E[x̄τ |F̃τ ]‖∞
)

+

T∑
t=1

‖ξ̃t − ξt‖
]

+ ε

≤ L̃E

[ T∑
t=2

max{1, ‖ξ̃t‖t−1}E[‖ξt − ξ̃t‖ |F̃t]
]

(2.11)

+

T−1∑
t=2

E[max{1, ‖ξ̃t‖t−1}]‖x̄t − E[x̄t|F̃t]‖∞ + ‖ξ̃ − ξ‖1 + ε

≤ L̄E[max{1, ‖ξ̃‖T }]
(
‖ξ − ξ̃‖T +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖∞
)

+ ε,

where L̂, L̃, L̄ are certain positive constants and Hölder’s inequality was used. Since
ξ̃ varies in a bounded subset of LT , there exists a constant L > 0 (depending on ξ)
such that

v(ξ̃) − v(ξ) ≤ L
(
‖ξ − ξ̃‖r +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖r′
)

+ ε,(2.12)

where r = T and r′ = ∞. Hence, an estimate of the form (2.12) is obtained in all
cases. Changing the role of ξ and ξ̃ leads to an estimate of the form

v(ξ) − v(ξ̃) ≤ L
(
‖ξ − ξ̃‖r +

T−1∑
t=2

‖x̃t − E[x̃t|Ft]‖r′
)

+ ε.(2.13)

We note that the second summands in the estimates (2.12) and (2.13) are bounded
by

T−1∑
t=2

max{‖x̄t − E[x̄t|F̃t]‖r′ , ‖x̃t − E[x̃t|Ft]‖r′}.(2.14)

Since the estimates (2.12) and (2.13) are valid for all x̄ ∈ lε(F (ξ, ·)) and x̃ ∈ lε(F (ξ̃, ·)),
we arrive at the estimate

|v(ξ) − v(ξ̃)| ≤ L
(
‖ξ − ξ̃‖r + Df,ε(ξ, ξ̃)

)
+ ε ≤ L

(
‖ξ − ξ̃‖r + sup

ε∈(0,α]

Df,ε(ξ, ξ̃)
)

+ ε.

Finally, it remains to take the infimum of the right-hand side with respect to ε > 0
and the proof is complete.

Remark 2.2. A sufficient condition for (A1) to hold is the complete fixed recourse
condition on all matrices At,0, i.e., the sets Xt are polyhedral cones and At,0Xt = R

nt

holds for t = 2, . . . , T . Assumption (A2) on the locally uniform level-boundedness
of the objective function F is quite standard in perturbation results for optimization
problems (see, e.g., [27, Theorem 1.17]). The finiteness condition for the optimal val-
ues is needed because it is not implied by the level-boundedness of F for all relevant
pairs (r, r′). In the case that Ω is finite or 1 < r′ < ∞, the existence of solutions
of (2.3) (and, thus, the finiteness of v(ξ)) is a simple consequence of the compact-
ness or the weak sequential compactness of lα(F (ξ, ·)) in the reflexive Banach space
Lr′(Ω,F ,P; Rm) and of the linearity of the objective. Then the filtration distance is
of the form

Df(ξ, ξ̃) = inf
{ T−1∑

t=2

Dt(ξ, ξ̃) : x ∈ l0(F (ξ, ·)), x̃ ∈ l0(F (ξ̃, ·))
}
,(2.15)
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where Dt(ξ, ξ̃) is defined by

Dt(ξ, ξ̃) := max{‖xt − E[xt|F̃t]‖r′ , ‖x̃t − E[x̃t|Ft]‖r′}(2.16)

= max{‖xt − E[xt|ξ̃1, . . . , ξ̃t]‖r′ , ‖x̃t − E[x̃t|ξ1, . . . , ξt]‖r′}.

Remark 2.3. In practical situations, the available knowledge on the stochastic in-
put consists in (partial or complete) information on its probability distribution. Which
probability space should be selected? A natural answer certainly is: Take a probability
space where the Lr-distance ‖ξ−ξ̃‖r and the Lr′ -distances ‖xt−E[xt|ξ̃1, . . . , ξ̃t]‖r′ and
‖x̃t −E[x̃t|ξ1, . . . , ξt]‖r′ , t = 2, . . . , T − 1, are minimal. Let us explain this minimality
condition in case of the Lr-distance ‖ξ− ξ̃‖r. Let P and Q in Pr(Ξ) be the probability
distributions of ξ and ξ̃. Then there exists an optimal solution η∗ ∈ P(Ξ × Ξ) of the
mass transportation problem (1.5) [22, Theorem 8.1.1], i.e.,

�rr(P,Q) =

∫
Ξ×Ξ

‖ξ − ξ̃‖rη∗(dξ, dξ̃),

where π1η
∗ = P and π2η

∗ = Q. Furthermore, there exists a probability space
(Ω′,F ′,P′) and an optimal coupling, i.e., a pair (ξ′(·), ξ̃′(·)) of Ξ-valued random el-
ements defined on it, such that the probability distribution of (ξ′(·), ξ̃′(·)) is just η∗

[22, Theorem 2.5.1]. In particular, we have that the distance in Lr(Ω
′,F ′,P′; Rs) is

just the Lr-minimal distance of the probability distributions, i.e.,

�r(P,Q) = ‖ξ′(·) − ξ̃′(·)‖r.

In the same way, the relevant minimal Lr′ -distances ‖xt − E[xt|ξ̃1, . . . , ξ̃t]‖r′ and
‖x̃t−E[x̃t|ξ1, . . . , ξt]‖r′ correspond to the �r′ -distance of the probability distributions
of x(t) and E[xt|ξ̃1, . . . , ξ̃t], and of x̃(t) and E[x̃t|ξ1, . . . , ξt], respectively.

Remark 2.4 (stability of first-stage solutions). Using the same technique as for
proving [28, Theorem 9], the continuity property of infima in Theorem 2.1 can be
supplemented by a quantitative stability property of the solution set S(ξ) of (2.1),
i.e., of the set of first stage solutions. Namely, there exists a constant L̂ > 0 such that

sup
x∈S(ξ̃)

d(x, S(ξ)) ≤ Ψ−1
ξ (L̂(‖ξ − ξ̃‖r + Df(ξ, ξ̃))),(2.17)

where Ψξ(τ) := inf
{

E[f(x1, ξ)] − v(ξ) : d(x1, S(ξ)) ≥ τ, x1 ∈ X1

}
with Ψ−1

ξ (α) :=

sup{τ ∈ R+ : Ψξ(τ) ≤ α} (α ∈ R+) is the growth function of the original problem
(2.1) near its solution set S(ξ). The boundedness condition for X1 in Theorem 2.1
can be relaxed to the assumption that the set S(ξ) is bounded. In the latter case a
version of (2.6) is derived that contains localized optimal values. Then the estimate
(2.6) is valid whenever its right-hand side is sufficiently small.

Remark 2.5 (convergence of filtrations). This remark aims at precising the link
between the filtration distance (2.4) and previous work on convergence of information.
A distance between σ-fields was introduced in [2]. It metrizes a topology called uni-
form topology on the set of σ-fields. Due to the work of [30] and [17], this distance
reads, for all B,B′ sub-σ-fields of F

dB(B,B′) := sup
f∈Φ

‖E[f |B] − E[f |B′]‖1,(2.18)

with Φ the set of all F-measurable functions f such that for all ω ∈ Ω, ‖f(ω)‖ ≤ 1.
Thanks to [15], a filtration can be said to converge to another one if and only if
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each σ-field at each time step converges according to the distance dB . Hence, a
distance between filtrations can be introduced, based on the sum of the distances
between σ-fields. The second summand in our stability result can be seen as such a
distance between the filtrations generated by the two stochastic processes ξ and ξ̃.
This summand is not exactly the same as the sum of distances dB , but it has the same
sense: If the feasible set of the stochastic program is bounded, the filtration distance
(2.4) is bounded by a sum of distances dB . Other distances between filtrations and σ-
fields have been introduced (see, e.g., [3]) to fit with stochastic optimization problems.
The thesis [1] provides a good survey and a few new results on the application of such
information distances.

The following example shows that filtration distances are indispensable for the
stability of multistage models.

Example 2.6. We consider a multistage stochastic program that models the
optimal purchase over time under cost uncertainty. Its decisions xt correspond to
the amounts to be purchased at each time period. The uncertain prices are ξt,
t = 1, . . . , T , and the objective consists in minimizing the expected costs such that a
prescribed amount a > 0 is achieved at the end of a given time horizon. The problem
is of the form

min

⎧⎪⎪⎨
⎪⎪⎩E

[
T∑

t=1

ξtxt

] ∣∣∣∣∣∣∣∣
(xt, st) ∈ Xt = R

2
+,

(xt, st) is Ft-measurable,
st − st−1 = xt, t = 2, . . . , T,
s1 = 0, sT = a

⎫⎪⎪⎬
⎪⎪⎭ ,

where the state variable st corresponds to the amount at time t and Ft := σ{ξ1, . . . , ξt}.
Let T := 3 and Pε denote the probability distribution of the stochastic price process.
Pε is given by the two scenarios ξ1

ε = (3, 2 + ε, 3) (ε ∈ [0, 1)) and ξ2
ε = (3, 2, 1) each

endowed with probability 1
2 . Let Q := P0 denote the approximation of Pε given by

the two scenarios ξ̃1 = (3, 2, 3) and ξ̃2 = (3, 2, 1) with the same probabilities 1
2 . We

assume that the scenario trees of the processes ξε and ξ̃ are of the form displayed in
Figure 2.1, i.e., the filtrations of σ-fields generated by ξε and ξ̃ do not coincide.

3

12

2+ε 3

1

233

Fig. 2.1. Scenario trees for Pε (left) and Q.

We obtain

v(ξε) =
3 + ε

2
a and v(ξ̃) = 2a , but �1(Pε, Q) = ‖ξε − ξ̃‖1 =

ε

2
.

Hence, the multistage stochastic purchasing model is not stable with respect to the
L1-distance ‖ · ‖1. However, the estimate for |v(ξ)−v(ξ̃)| in Theorem 2.1 is valid with
L = 1 since Df(ξ, ξ̃) = a

2 holds for the filtration distance (with r′ = ∞).
Finally, let us consider the case of discrete probability measures P and Q. Let

P have scenarios ξi with probabilities pi > 0, i = 1, . . . , N , and Q scenarios ξ̃j and
probabilities qj > 0, j = 1, . . . ,M . Clearly,

∑N
i=1 pi = 1 and

∑M
j=1 qj = 1. Then

�rr(P,Q) is the optimal value of a finite-dimensional linear transportation problem
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(e.g., [24]) and there exist optimal weights ηij ≥ 0 of the scenario pair (ξi, ξ̃j), i =

1, . . . , N , j = 1, . . . ,M . Hence, there exists a pair (ξ, ξ̃) of random vectors on the
probability space (Ω,F ,P), where Ω = {ωij : i = 1, . . . , N, j = 1, . . . ,M} and P(ωij) =
ηij , i = 1, . . . , N, j = 1, . . . ,M . We define ξ(ωij) = ξi for every j = 1, . . . ,M and

ξ̃(ωij) = ξ̃j for every i = 1, . . . , N .
Now, our aim is to study the second term in the stability estimate in Theorem

2.1, namely, the distance of filtrations. Let Ft and F̃t denote the σ-fields generated
by (ξ1, . . . , ξt) and (ξ̃1, . . . , ξ̃t), respectively. Let It and Ĩt denote the index set of
realizations of ξt and ξ̃t, respectively. Furthermore, let Et and Ẽt denote families of
nonempty elements of Ft and F̃t, respectively, that form partitions of Ω and generate
the corresponding σ-fields. We set Ets := {ω ∈ Ω : (ξ1(ω), . . . , ξt(ω)) = (ξs1, . . . , ξ

s
t )},

s ∈ It, and Ẽts := {ω ∈ Ω : (ξ̃1(ω), . . . , ξ̃t(ω)) = (ξ̃s1, . . . , ξ̃
s
t )}, s ∈ Ĩt.

We set r = r′ = 1 and require conditions (A1) and (A2) to hold. Since (2.3) is
finite-dimensional in this case, optimal solutions x and x̃ exist and we obtain according
to Remark 2.2 that

Dt(ξ, ξ̃) = max
{∑

i,j

ηij‖xt(ωij) − E[xt|F̃t](ωij)‖,

∑
i,j

ηij‖x̃t(ωij) − E[x̃t|Ft](ωij)‖
}

= max
{∑

s∈Ĩt

∑
ωij∈Ẽts

ηij

∥∥∥xt(ωij) −

∑
ωkl∈Ẽts

ηklxt(ωkl)∑
ωkl∈Ẽts

ηkl

∥∥∥,(2.19)

∑
s∈It

∑
ωij∈Ets

ηij

∥∥∥x̃t(ωij) −

∑
ωkl∈Ets

ηklx̃t(ωkl)∑
ωkl∈Ets

ηkl

∥∥∥}.
The latter representation of Dt has potential to be further estimated in specific cases.
In particular, it simplifies considerably for the situation of scenario reduction.

Example 2.7 (scenario reduction). Let us consider the case of deleting scenario
l ∈ {1, . . . , N} of ξ according to the methodology in [5, 11] for the distance �1 and
r = r′ = 1. Then ξ̃ has the scenarios ξ1, . . . , ξl−1, ξl+1, . . . , ξN and the probabilities of
ξj are qj = pj for every j 
∈ {j(l), l} and qj(l) = pj(l)+pl, where j(l) ∈ arg minj �=l ‖ξj−
ξl‖ (see [5, Theorem 2]). This corresponds to ξ̃(ωij) = ξj for every i = 1, . . . , N ,
j = 1, . . . , N , j 
= l. We also infer from [5, Theorem 2] that the optimal weights of
the transportation problem defining �1(P,Q) are

ηij =

⎧⎨
⎩

pl, i = l, j = j(l),
pj , i = j 
= l,
0 otherwise.

We set ω̂j := ωjj for every j = 1, . . . , N , j 
= l, ω̂l = ωlj(l) and introduce the notation

Etsj and Ẽtsj for the sets in Et and Ẽt, respectively, that contain ω̂j . From (2.19) we
conclude the following representations of Dt:

Dt(ξ, ξ̃) = max

⎧⎪⎨
⎪⎩
∑
s∈Ĩt

∑
ω̂j∈Ẽts

pj

∥∥∥xt(ω̂j) −

∑
ω̂k∈Ẽts

pkxt(ω̂k)∑
ω̂k∈Ẽts

pk

∥∥∥,
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∑
s∈It

∑
ω̂j∈Ets

pj

∥∥∥x̃t(ω̂j) −

∑
ωk∈Ets

pkx̃t(ω̂k)∑
ω̂k∈Ets

pk

∥∥∥
⎫⎪⎬
⎪⎭

= max

{∑
s∈Ĩt

1∑
ω̂k∈Ẽts

pk

∑
ω̂j∈Ẽts

∥∥∥ ∑
ω̂k∈Ẽts

pkpj [xt(ω̂j) − xt(ω̂k)]
∥∥∥,

∑
s∈It

1∑
ω̂k∈Ets

pk

∑
ω̂j∈Ets

∥∥∥ ∑
ω̂k∈Ets

pkpj [x̃t(ω̂j) − x̃t(ω̂k)]
∥∥∥
}

= max

{∑
s∈Ĩt

1∑
ω̂k∈Ẽts

pk

∑
ω̂j∈Ẽts

∥∥∥ ∑
ω̂k∈Ẽts\Etsj

pkpj [xt(ω̂j) − xt(ω̂k)]
∥∥∥,

∑
s∈It

1∑
ω̂k∈Ets

pk

∑
ω̂j∈Ets

∥∥∥ ∑
ω̂k∈Ets\Ẽtsj

pkpj [x̃t(ω̂j) − x̃t(ω̂k)]
∥∥∥
}
,

where the final equality is a consequence of the corresponding measurability properties
of xt, which imply xt(ω̂j) = xt(ω̂k) if ω̂k ∈ Ets∩Ẽtsj and ω̂k ∈ Ẽts∩Etsj , respectively.

Since Etsj = Ẽtsj for j 
∈ {l, j(l)} and Ẽtsl = Etj(l) ∪ {ω̂l}, we may continue with

Dt(ξ, ξ̃) = max

{
1∑

ω̂k∈Ẽtsl

pk

∑
ω̂j∈Ẽtsl

∥∥∥ ∑
ω̂k∈Ẽtsl

\Etsj

pkpj [xt(ω̂j) − xt(ω̂k)]
∥∥∥,

1∑
ω̂k∈Etsl

pk

∑
ω̂j∈Etsl

∥∥∥ ∑
ω̂k∈Etsl

\Ẽtsj

pkpj [x̃t(ω̂j) − x̃t(ω̂k)]
∥∥∥
}

= max

{
1∑

ω̂k∈Ẽtsl

pk

{ ∑
ω̂k∈Etsj(l)

∥∥∥plpk[xt(ω̂k) − xt(ω̂l)]
∥∥∥

+
∥∥∥ ∑

ω̂k∈Etsj(l)

pkpl[x̃t(ω̂l) − x̃t(ω̂k)]
∥∥∥
}
,

1∑
ω̂k∈Etsl

pk

{ ∑
ω̂k∈Etsl

\{ω̂l}

∥∥∥plpk[xt(ω̂k) − xt(ω̂l)]
∥∥∥

+
∥∥∥ ∑

ω̂k∈Etsl
\{ω̂l}

pkpl[x̃t(ω̂l) − x̃t(ω̂k)]
∥∥∥
}}

≤ max

{ ∑
ω̂k∈Etsj(l)

2plpk‖xt(ω̂k) − xt(ω̂l)‖

pl +
∑

ω̂k∈Etsj(l)

pk
,

∑
ω̂k∈Etsl

\{ω̂l}
2plpk‖x̃t(ω̂k) − x̃t(ω̂l)‖

pl +
∑

ω̂k∈Etsl
\{ω̂l}

pk

}

≤ 2pl max
{
‖xt(ω̂j(l)) − xt(ω̂l)‖, min

ω̂k∈Etsl
\{ω̂l}

‖x̃t(ω̂k) − x̃t(ω̂l)‖
}
,(2.20)

where the convention is used that minω̂k∈Etsl
\{ω̂l} = 0 if Etsl \ {ω̂l} = ∅. The final
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estimate makes use of the fact that all xt(ω̂k) with ω̂k ∈ Etsj(l) and ω̂k ∈ Etsl \ {ω̂l},
respectively, coincide.

In the following two cases, the above estimate simplifies to

Dt(ξ, ξ̃) ≤
{

0 if ω̂l ∈ Etsj(l) ,
2pl‖xt(ω̂j(l)) − xt(ω̂l)‖ if Etsl = {ω̂l}.

As the sets l0(F (ξ, ·)) and l0(F (ξ̃, ·)) of solutions of the original and perturbed mul-
tistage models are bounded in Lr′ due to (A2), there exists a constant K > 0 such
that

Df(ξ, ξ̃) ≤ Kpl.

Hence, if the probability pl of the deleted scenario is small, the filtration distance is
also small. Then there is no need to modify the deletion procedure based on best
approximations with respect to the metric �1. This is mostly the case if the tree is
bushy, i.e., contains many scenarios.

A more reliable estimate for the filtration distance may be obtained by solving
the stochastic program for an approximation ξ̂ of ξ (on {ω̂1, . . . , ω̂N}), which contains
much less scenarios than ξ. Then an estimate for the filtration distance may be
obtained by computing

2pl

T−1∑
t=2

max
{
‖x̂t(ω̂j(l)) − x̂t(ω̂l)‖, min

ω̂k∈Etsl
\{ω̂l}

‖x̂t(ω̂k) − x̂t(ω̂l)‖
}
,

where x̂ ∈ l0(F (ξ̂, ·)) is the corresponding solution. Altogether, some scenario deletion
suggested by the strategy in [5, 11] can either be carried out if the bound (2.20) on
the filtration distance remains small or is rejected.

3. Conclusions. While quantitative stability results for two-stage stochastic
programs have to take into account only a suitable distance of probability distri-
butions, this is no longer the case for multistage models, where the filtration distance
enters stability estimates. This fact demonstrates the importance of the conditional
structure of multistage stochastic programs. This is in line with the observations and
results of [32]. In a sense, it also seems to illustrate the complexity results obtained
in the recent paper [33]. It is shown there that multistage stochastic programs have
higher complexity than two-stage models. Techniques for generating and reducing
scenario trees in multistage stochastic programs, which are based on stability argu-
ments, have to respect both probability and filtration distances as both contribute
to changes of optimal values. Example 2.7 provides upper bounds for the filtration
distance if some scenario is deleted. Bounding the filtration distance is also possible
for the forward and backward scenario tree generation algorithms developed in [10]
and [12]. Such bounds are derived and discussed in the companion paper [13].
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