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Solving joint chance constrained problems using regularization
and Benders’ decomposition

Lukas Adam, Martin Branda, Holger Heitsch, René Henrion

Abstract

In this paper we investigate stochastic programms with joint chance constraints. We consider dis-
crete scenario set and reformulate the problem by adding auxiliary variables. Since the resulting
problem has a difficult feasible set, we regularize it. To decrease the dependence on the scenario
number, we propose a numerical method by iteratively solving a master problem while adding
Benders cuts. We find the solution of the slave problem (generating the Benders cuts) in a closed
form and propose a heuristic method to decrease the number of cuts. We perform a numerical
study by increasing the number of scenarios and compare our solution with a solution obtained
by solving the same problem with continuous distribution.

1 Introduction

In many real world applications the data are inherently random. This randomness many stem from
many different sources: Let us mention imprecise parameter measurements, the necessity to consider
future weather conditions or random people behavior, see the discussion in [48]. In such cases, deter-
ministic problem formulation may perform subpar and it may be advantageous to consider stochastic
(random) formulation where some parameters are not considered fixed but random. There are two
basic approaches.

In the robust optimization [9], only all possible realizations of the random parameters are given and a
solution performing best for the worst-case scenario is sought for. Even though this may be the correct
concept, for example ambulance has to reach its patient within certain time limit, no matter where the
patient is and what the traffic conditions are, this approach is usually too restrictive.

On the other hand, for the stochastic optimization [11] the distribution of the random parameters is also
assumed to be known. Then there are many approaches how to handle this problem: For example to
optimize the objective for a nominal scenario or in expectation if the uncertainties are in the objective.
In this paper, we will consider Chance-constrained problems (CCP). For this class of problems, the
randomness appears only in the constraints and instead of requiring the constraints to be satisfied
for all scenarios, it allows small violation of the constraints. Namely, we require that for some small
€ > 0 it is sufficient that the constraints are satisfied with probability 1 — €, see (1). This provides a
compromise between good system performance and satisfying the random constraints.

First, we give an overview of the main results concerning CCP. A general approach called sample
(empirical) approximation is based on substituting the underlying continuous distribution by a finite
sample and on reformulation as a (large) mixed-integer programming problem. The crucial question
is the choice of the sample size, which is usually based on the exponential rates of convergence
derived, e.g., by [30, 33]. However, these estimates can be too conservative, cf. [25]. Recently, [8] em-
ployed the importance sample technique to solve a chance constrained telecommunications problem
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L. Adam, M. Branda, H. Heitsch, R. Henrion 2

with Bernoulli input distributions. Exploiting its structure, they derived conditions to ensure a uniform
variance reduction.

For linear constraints and finite discrete distribution, strong results and algorithms based on cutting
planes for mixed-integer reformulations are available, cf. [10, 32, 34]. Recently, [51] derived new strong
valid inequalities based on intersection of multiple mixing sets for the chance constrained problems
with random right-hand side.

When the random parts of constraints are separated from the decision variables, we obtain the case
with random right-hand side. In this case, the basic approach to individual chance constraints is to
use quantiles and to reformulate the chance constraints in a deterministic way. This approach can be
extended to joint chance constraints under discrete distribution using p-level efficient points (pLEPSs)
introduced by [37], which generalize the notation of quantiles to the multivariate case, see also [18, 31]
for recent results. By adopting a dual point of view, [2] developed a solution framework based on a
recent generation of bundle methods.

Nonlinear programming algorithms were suggested for chance constrained problems by [39] and fur-
ther developed by [16, 17]. Recently, [19] proposed a smooth approximation approach employing an
inner and an outer analytic approximation of chance constraints leading to two classes of nonlinear
programming problems. [50] introduced quantile cuts which can be obtained as a projection of the
mixing inequalities valid for the MINLP reformulation onto the original problem space. The paper fur-
ther shows that a recursive application of quantile closure operations recovers the convex hull of the
nonconvex chance constrained set in the limit.

A wide class of approaches is based on approximation of the indicator function by a more tractable
function. Approximation based on conditional value at risk has been deeply investigated by [40, 41, 47].
Similar idea was used by [23] who employed the so-called integrated chance constraints. Bernstein
approximation has been introduced by [36] for constraints affine in random coefficients and further de-
veloped by [6]. Recently, algorithmic approaches based on representation using difference of convex
(DC) functions appeared in the literature, see [45, 47, 49]. A second-order cone programming refor-
mulation was obtained by [14] for problems with linear constraints under normally distributed random
coefficient and under independence and copula dependence of the rows. For these linear-Gaussian
problems, [26] provided an explicit gradient formula and derived an efficient solution procedure.

Convexity is a desirable property which is often violated for CCP. Apart from well known cases based
on log-concavity and its generalizations, cf. [38, 46], it was investigated and recently verified for general
problems with high probability levels by [28, 1]. A special attention has been paid to the stability of
the optimal values and solution with respect to the changes of the probability distribution, see, e.g.,
[12, 27]. Various approximations and worst-case bounds for distributionally robust chance constraints
were derived by [13, 52].

In this paper we extend and combine our earlier work [5] and [22]. In [5] we considered discrete
distribution and proposed a method for solving CCP with individual chance constraints. We introduced
binary variables for each scenario, relaxed these variables and derived necessary optimality conditions
and equivalence between the original and the relaxed problems. Finally, for numerical solution we
proposed a regularization technique and successfully applied it to a portfolio optimization problem.

For application of stochastic optimization to gas networks under uncertainty we refer to, e.g., M.
Bertocchi [7, 35]. In this paper we built on the results of [22]. We considered a gas network with
random demands at all nodes. We showed an equivalent condition for satisfying all demands. For
normally distributed scenarios we proposed a method for computing values and gradients of chance
constraints based on the spheric-radial decomposition of normal random vectors. Finally, we optimized
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Solving joint chance constrained problems using regularization and Benders’ decomposition 3

the network design via a simple projection method.

Our contribution in this paper is the following:

B We extend the results of [5] to problems with joint chance constraints.

B Even though the problem is non-convex, we show that under convex data stationary points are
local minima. In Theorem 11 we propose a general results for the same implication which can
be used for hierarchical problems such as MPECs or MPCCs.

B We propose a Benders decomposition algorithm for the regularized problem. The algorithm is
based on two cycles: The outer iterations make the regularization more tighter by increasing
the regularization parameter whereas the inner cycle solves the regularized problem for a given
value of the parameter. We employ feasibility cuts based on an explicit solution of a linear slave
problem.

B We present a heuristic algorithm for a cut reduction. This is based on proving that certain cuts
are naturally “included” in others.

B Since our method requires a discrete distribution, we empirically examine its convergence by

increasing scenario number. Finally, we compare it with the method from [22] which works
directly on a continuous distribution.

B We make the codes available onlineat staff.utia.cas.cz/adam/research.html

The paper is organized as follows: In Section 2 we derive theoretical results extending our work from
[5] and we briefly summarize the results of [22]. Since the proof techniques are rather similar to those
of [5], we moved the proofs to the Appendix. As the regularized problem includes an auxiliary variable
with cardinality equalling to the number of scenarios, in Section 3 we propose a two-stage method
to remove this auxiliary variable. This is based on iteratively solving a master problem while adding
feasibility Benders cuts. For the slave problem we find an explicit solution, thus obtaining a theoretical
independence on the number of scenarios. Unfortunately, this independence is not present in Section
4 where we apply both methods to design a gas network with random demands. However, we still
show a very good performance of our method even for a large number of scenarios.

2 Methodology and Algorithms

The joint chance constrained problem may be formulated as follows:
minimize f(x)
X
subject to P(g1(x,&) <0,...,gxk(x,€) <0) > 1—¢, (1)
hj(x) <0, j=1,...,J.

Here x € R" is the decision variable, 0 < € < 1 is a prescribed probabilistic level, f : R" — R,
g R"xR? = R and hj: R" — R are functions which are continuously differentiable in variable x
and finally & € R? is a random vector with known probability distribution IP.

2.1 Comparison of discrete and continuous approaches

As we have mentioned in the introduction, concerning the probabilistic distribution there are two basic
approaches to solve (1). In the first one, finite number of scenarios is sampled and the chance con-
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straint is replaced by its discrete approximation. In the second one, we keep the original problem and
work with this (usually) infinite dimensional formulation. The scenario approach is more general in the
following way:

B Possible model simplification (in the application in Section 4 it allows to remove some constraints
which became redundant after discretization).

B Lower requirements on the data (in the application in Section 4 it allows to work with cycles).

B Lower requirements on the random distribution. For the continuous approach a special assump-
tion such as normality is often needed.

However, its biggest disadvantage is that it can handle only restricted number of scenarios, thus pre-
cision of the solution will be limited compared with the approach based on underlying continuous
distribution.

2.2 Discrete (scenario) approach

In this part, we discretize the continuous distribution into possible realizations &1, ..., Es. Assuming
that these realization may have different probabilities, we denote these probabilities by p1, ..., ps. We
may then reformulate problem (1) into

minimize f(x)
X

s
subject to Zp,-)((mlflxgk(x, &) <0)>1-—c¢, 2)
i=1

hj(x) <0,j=1,...,J,

where y stands for the characteristic function which equals to 1 if max; gx(x, ;) < 0 and to 0 other-
wise. Introducing artificial binary variable y € {0, l}S to deal with ¥, we obtain the following mixed—
integer nonlinear problem

minimize f(x)
x,y
subject to pTy >1—¢,
yi€{0,1},i=1,...,S, (3)
gk(x,éi)yi S O, k= 1,...,K7i: 1,...,S,
hj(x) SO, j: 1,...,.].
Since this problem is difficult to tackle by mixed-integer (nonlinear) programming techniques in any of
the previous forms, we relax binary variable y; € {0, 1} into y; € [0, 1] to obtain nonlinear programming
problem
minimize f(x)
X,y
subject to pTy >1—¢,
0<yi<l,i=1,...,8, (4)
gk(x,éi)yi <0,k=1,...,K,i=1,...,S,
hj(x) <0, j=1,...,J.

In the subsequent text, we denote (4) as the relaxed problem and (2) as the original problem.
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Solving joint chance constrained problems using regularization and Benders’ decomposition
this decomposition:

The feasible relations for y; and gx(x, &;) are depicted in the top row of Figure 1. The feasible set of

problem (2) can be written as a union of “nice” sets. The following index powersets will locally describe
S (x) := {ic {1,...,§

_ maxy gk(x,éi) <0 = i€i7
"maxg gi(x,&) >0 = i¢l,
7 (x) := minimal elements of .# (x) with respect to set inclusion,

Zpi>l_8

icl
Note that any I € . (x) always contains all scenario indices where the random constraint is strictly
satisfied and never contains scenario indices where the random constraint is not satisfied. For the
scenarios where the random constraint is satisfied exactly, we select an arbitrary scenario subset
such that the prescribed probability level 1 — € is achieved.

between them, as stated in the next result.

Even though these problems are not equivalent, see [5, Example 2.1], there are close similarities
Yi

gr(x, &)
Z L

gk<X, gl)
gk(xagi)

—

¢, from (10) (bottom right).

gk(x7 gl)

Figure 1: Feasible sets of problems (3) (top left), (4) (top right) and (8) (bottom left) and regularization

I € J(X) the point (X,¥) is a local minimum of problem (4), where ¥
indices

is a global minimum of problem (4). A point X is a local minimum of problem (2) if and only if for all

Proposition 1 A point x is a global minimum of problem (2) if and only if there exists y such that (X,y)

x(iel).

Io(x) := {i : maxggi(x,&;) = 0},
Kj(x) == {k: gi(x, &) = 0},
Jo(x) := {j thi(x) = 0}

When actually solving an optimization problem, we usually search for stationary points instead of local

minima. To derive stationary conditions for problems (2) and (4), we define the following sets of active

Too(x,y) :={i:i € lp(x), yi =0},
Iy (x,y):={i:i€lx), 0<y; <1},
Fromovitz constraint qualification in its dual form.

and the following constraint qualification. Note that its second part is close to the standard Mangasarian-

conditions is satisfied:

Assumption 2 Let x be a feasible point of problem (2). Assume that at least one of the following two
W function gi(-,&;) and h; are affine linear.
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L. Adam, M. Branda, H. Heitsch, R. Henrion 6

W the following implication is satisfied for all I € % (X):

Z Z ik Vagi (% 51 )+ Z MjVhj(x (¥)=0

i€l (¥) keKj (%) J€J(%)
ik >0, i € (%) N1, k € Kj(%)
ik =0, i € Ip(%) \ I, k € Kj(%)

uj >0, j€Jo(x)

Ak =0, i € Ip(%), k € Kj(%),

5
pj =0, j€Jo(%). ©)

Finally, we derive the stationarity conditions for both problems.

Theorem 3 Let x be a local minimum of problem (2) and let Assumption 2 be satisfied at x. Then for
every I € 7 (X) there exist multipliers Ay, i € Iy(X), k € KO( X) and u;, j € Jo(X) such that

D+ Y, )Y MVie®&)+ Y, wVh(x) =0, (62)
i€l (%) keK (%) J€JH(X)

Aik >0, i € Iy(X) N1, k € K}\(%), (6b)

Aix =0, i € Ip(x)\ I, k € K}\(%), (6¢)

u; >0, j € Jo(%). (6d)

Let (x,¥) be a local minimum of problem (4) and let Assumption 2 be satisfied at X, where for its second
part we check system (5) only for I = Io4(X,¥). Then there exist multipliers Ay, i € Ip(X), k € K(X)
and u;, j € Jo(X) such that

9+ Y Y V@& + Y V) =0, (7a)
i€ly(X) ke K} (%) j€Jo(%)

A >0, i € Io1(%,5), k € Ky(%), (7b)

Aix =0, i € Ioo(%,7), k € Kb\ (%), (7c)

i >0, jeJo(x) (7d)

We briefly comment on these conditions. First, y enters system (7) only through index sets Iy (X, 7)
and I, (X, ). Second, the difference between (6) and (7) is only in the b) and c) part, where the signs
are prescribed for different indices. This leads to the following result.

Corollary 4 Consider a feasible point x of problem (2) and let Assumption 2 be satisfied at it. Then X
is a stationary point of problem (2) if and only if for all I € . (X) the point (X,y) withy; = x(i € I) is
a stationary point of problem (4).

Interestingly, when the data are convex, stationary points are also local minima even though the prob-
lem is nonconvex. This follows directly from a general result in Theorem 11 in the Appendix.

Theorem 5 Let all data be convex in x. If a feasible point X of (4) satisfies the stationary conditions
(7), then it is a local minimum of problem (4).

Unfortunately, as argued in [5, Remark 2.1], the Mangasarian-Fromovitz constraint qualification is often
not satisfied for problem (4). For these reasons, we propose an additional technique which is based on
a well-known solution approach to mathematical problems with complementarity constraints, see [44].

DOI 10.20347/WIAS.PREPRINT.2471 Berlin 2018



Solving joint chance constrained problems using regularization and Benders’ decomposition 7

This technique enlarges the feasible set and solves the resulting regularized problem while driving the
regularization parameter ¢ to infinity. Thus, we consider regularized problem

minimize f(x)
x,y
subject to pTy >1—g,
0<y;<1,i=1,...,S, (8)
yl S ¢t(gk(x7él))7 k: 17"'7K7 i: 17"'7S7
hj(x) <0, j=1,...,J,
where ¢; : R — R are continuously differentiable decreasing functions which depend on the regular-
ization parameter ¢ > 0 and which satisfy the following properties:

(Pt(o) =1, (9a)
¢ (z) >0 forz € R, (9b)
o, () —0 whenever 7 '=5°7 >0, (9c)

(pt/(zt) t ~ —
PN -0 whenever ¢,(z') \,0and ¢(Z') — 7> 0. (9d)

/(2
As an example of such regularizing function, we may consider
9(2) . re=t (10)
<) — 1 2 . 10
1— (t+c1)2 arctg @z if z<0,

where ¢ > 0 is an arbitrary parameter. Note that form of ¢, on the negative line is not important for
(8) as both y; < 1 and y; < ¢;(gx(x,&;)) are imposed. However, this form will play a crucial role later
when the feasible region is approximated via Benders cuts; we comment more on this in the next
section. The feasible relation for y; and g (x, &;) for (8) and the regularizing function ¢ from (10) are
depicted in the bottom row of Figure 1.

Now we justify the use of the regularized problem and show that it is a good approximation of the orig-
inal problem. Note that we have to impose the second part of Assumption 2 as certain boundedness
of multipliers is needed.

Theorem 6 Consider (X’ V ) to be stationary points of problem (8). Assume that the second part of
Assumption 2 is satisfied at X and that (',3') — (X,¥) ast — oo. Then (X,¥) is a stationary point of
problem (4). Moreover, if all data are convex in x, it is even a local minimum of problem (4).

We summarize the previous results in Algorithm 2.1. Note that due to Theorem 6 the resulting point
is only a stationary point of the relaxed problem (4) and due to Corollary 4 it does not have to be a
stationary point of the original problem (2). However, as the numerical experience in [5] suggests, this
is almost always the case due to the regularizing properties of (8).

2.3 Continuous approach

For the sake of comparison we present an alternative numerical solution approach addressing Gaus-
sian and Gaussian-like distributions of the random vector without discretization. It is based on the
so-called spheric-radial decomposition of Gaussian random vectors (see, e.g., [20]) which has been
successfully applied to chance constrained optimization problems, e.g., [15, 21, 43].
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L. Adam, M. Branda, H. Heitsch, R. Henrion 8

Algorithm 2.1 for solving problem (1)

Input: starting point (x°,y°), regularization parameters 0 < t! < --- < &
1: forl=1,...,Ldo
2. find (x,y") solving (8) with ¢/ and starting point (x/~1,y/~1)

3 if (x',y") is feasible for (4) or termination criterion is satisfied then
4: break

5: end if

6: end for

7: return x = xl

Theorem 7 Let& be and-dimensional Gaussian random vector distributed according to & ~ A (i, X).
Then for any Borel measurable subset A C R? it holds that

P(E cA)= /VGSGZ1 1y {r >0 (rLv+ ) NA # 0} dpy

where L is such thatY = LLT (e.g., Cholesky decomposition), [L, is the Chi-distribution with d degrees
of freedom and Ly, is the uniform distribution over the Euclidean unit sphere Sd-1,

Accordingly, the x-dependent probability in (1) can be represented as

P(g1(x,E) <0,...,gx(x,E) <0) :/

veSd-1

Hy{r 2 0] max gy(x,rLy+p) < O}dpy

Numerically, the chance constraint in (1) is then approximated as a finite sum
N .
Z,ux{rz 0| krrllax gr(x,rv' + ) < O} >1—c¢,
4 =1,..K
i=1 e

where {vl,...,vN} is a sample (e.g. extracted from a Quasi Monte-Carlo sequence) approximating
the uniform distribution on the unit sphere. In order to set up a nonlinear optimization algorithm solving
problem (1) subject to a Gaussian random vector &, one has not only to compute (approximate) the
probabilities above but also their gradients with respect to the decision variable x. As shown in [3, 4],
the gradients can be represented as spheric integrals too (just with different integrands), so that one
and the same sample vl can be employed in order to update values and gradients of the probabilities
above. We embedded this strategy into a simple projected gradient method.

3 Numerical method

The biggest disadvantage of solving (8) is that variables x and y are treated in an equal manner. Since
y corresponds to the scenarios, this nonconvex problem becomes numerically untractable when the
number of scenarios is large. In this section we first propose a method to eliminate y based on Benders
decomposition, then derive some properties for these feasibility cuts and finally propose a method for
their reduction.

DOI 10.20347/WIAS.PREPRINT.2471 Berlin 2018



Solving joint chance constrained problems using regularization and Benders’ decomposition 9

3.1 Cut generation for fixed ¢

In this part we consider a fixed ¢ and derive an outer approximation of the feasible set of (8). To this
aim, consider the master problem

minimize f(x)
X

,b=1,....B—1, (11)
j=1

Here, v;(x) > 0 are cuts which provide an outer approximation of the feasible region of (8) in the
x dimension. If an optimal solution £ of (11) is a feasible point for (8), then (£,y) is also an optimal
solution of (8) for some y. In the opposite case, we generate a Benders cut vg, which cuts away £ from
the feasible region of (11) but does not cut away any feasible point of (8). Thus the approximation is
still the outer one. This cut is based on the linear slave problem for fixed %:

minimize 0

y
subject to pTy >1—g¢, (12)
OSMS 1a = 17'-'asv

ylé ¢t(gk(‘x/\7§l))7 k: 17"'7K7i: 17"'7S7

Its optimal value is 0 if X is feasible for (8) and +oo otherwise. The dual problem for (12) reads

max1mlze ZZ(]), gr(£, &) ) ug +v(1 —¢) +Zw,

=1i=1 i=1

‘ K (13)
subjecttoz i +vpi+w; <0,i=1,....,5,
k=1

uip <0, v=>0, w; <0.

Since the feasible region of (13) is a cone, its optimal value is zero or it is unbounded. In the former
case, the optimal value of (12) is also zero, which means that £ is optimal for (8). In the latter case,
the dual slave problem (13) is unbounded in some direction (i1, ¥,) and we construct the feasibility
Benders cut

)=y ¥

=1i
1) and continue in the same way. We justify these cuts in the next

S
X, &)l +9(1—€)+ ) w; <0, (14)
i=1

MC/)

I
_

1

—kk‘

add it to the master problem (
statement.

Lemma 8 Assume that problem (12) does not have a feasible solution. Then cut (14) is viable, thus
vg(X) > 0 and vp(x) < 0 if x is feasible for (8).

Proof. Since (13) is unbounded in direction (i, ¥, W), we immediately get vg(£) > 0. Consider now
any feasible point x of (8). Then the optimal value of (12) with X replaced by x equals to zero and the
same holds for (13). But this implies vB(x) < 0, which concludes the proof. [

Even though (13) is a linear problem, it still depends on the number of scenarios S. Here, we derive
its explicit solution, which means that we are able to generate the cuts quickly even for large S. Since

DOI 10.20347/WIAS.PREPRINT.2471 Berlin 2018



L. Adam, M. Branda, H. Heitsch, R. Henrion 10

the feasible set of (13) is a cone and the objective is linear, we may consider only v € {0, 1}. If v =10,
then constraint Zszl ujr +vpi +w; < 0 is redundant and we may decompose (13) into S problems,
from which we obtain w; = 0. Since ¢ is positive, we also obtain u;; = 0. Consider thus v = 1. Then
we may again decompose (13) into S problems

maximize Z O (8k (%, &) )i + wi

Uik, Wi k=1
K
subject to Y uy +w; < —pj,
k=1

ui <0, w; <0.
This problem has, together with v = 1, the explicit solution
mlflxgk(f, &) >0 = ¢i(g;,(%,&) <1 = i =0fork #ki, dz = —pi, Wi =0, (15a)
maxge(%,5) <0 = ¢:(8x(£,6) > 1 = e = 0for k # ki, g =0, Wi =—pi, (15b)
where k; := argmaxy gx (£,&;). Then if the objective of (13) is positive, thus if

Y pit(gp (£,8) <1—e— Y pi, (16)
icl(%) i¢1(%)

where I(X) := {i| max; gx(%,&;) > 0}, then problem (13) is unbounded and cut (14) amounts to

Y piti(g(x,&)>1—e— Y pi, (17)
i€l(%) i¢l(X)

In the opposite case X is optimal for (8).

3.2 Cut reduction

To propose a method for cut reduction, we start with the following technical lemma.
Lemma 9 Consider two points £, %2 such that for all i we have

maxgi(£,6) > 0 = maxgi(¥',&) > 0, argmax gi(¢', &) = argmaxgi(£,&).  (19)
Define now for j = 1,2 mappings # 7 : {1,...,8} — {0,1,...,K} andv/ : R" — R by

) = 0 y if max g (¥, &) <0,
argmaxy gx(£/,&;) otherwise,

V=), pitgrinn&)—1+er Y b

{i| i (i)>0} {i] 74 (i)=0}

Then for any x we have
vi(x) >0 = v}(x) > —(sup () — 1).

DOI 10.20347/WIAS.PREPRINT.2471 Berlin 2018



Solving joint chance constrained problems using regularization and Benders’ decomposition 11

Proof. Due to (18) we have {i| #2(i) > 0} C {i| #'(i) > 0} and subsequently

v (x) =v!(x) — Y Pi®(8.1(y(x, &) + Y pi
{il 71(i)>0, 22(i)=0} {il #1(i)>0, #2(i)=0}
>v!(x) - ) pi(sup @i (-) = 1) > v (x) = (sup 9 (-) = 1),

(il #1(i)>0, #2(i)=0}

which finishes the proof. ]

Note that the cuts generated by (17) equal to {x| v/(x) > 0}. This lemma states that if (18) holds
true, then the cut generated by £! is tighter than the one generated by £2 up to a margin sup;(-)—1.
Since ¢;(0) = 1, this margin may be made arbitrarily small by a proper choice of ¢, the best cut in
(17) is generated whenever maxy g (£, &;) > 0 for all i.

This also gives rise to a cut reduction technique. If we add a new cut generated by some %!, we remove

all the previously included cuts, generated by £2, for which (18) is satisfied. Alternatively, we remove
all previous cuts, for which (18) is violated only for a small number of scenarios.

3.3 Algorithm summary

Denote the projections of the feasible sets of (8) and (4) into the x dimension by Z’ and Z*, respec-
tively. For any #; < t, we have Z'' D Z” D Z*. This means that cuts generated for (8) for t =t are
also valid for problem (8) with # = #,. In other words, when we pass to a greater ¢, it is not necessary
to delete cuts from (11). We summarize the whole procedure in Algorithm 3.1.

Algorithm 3.1 for solving problem (1)

Input: starting point (xo,yo), regularization parameters 0 < th<... <t

1: B+1
2:forl=1,...,Ldo
3ttt
4: while true do
5: find £8 solving (11)
6: set ¥ = 1 and (i, w) according to (15)
7: if (16) is violated or termination criterion then
8: break while
9 else
10: add cut vg via (17)
11: remove all cuts generated by £2 for which (18) is satisfied with £! = £'8
12: update B to equal to the current cut number
13: end if
14: end while
15: it £'B is feasible for (2) or termination criterion is satisfied then
16: break for
17: end if
18: end for

19: return © = £'B
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3.4 Convergence analysis

First note that the number of possible cuts in (17) is finite and thus Algorithm 3.1 stops after finite
number of iterations. Moreover, from the discussion above, there are K best cuts. This has a direct
consequence for individual chance constraints with K = 1, where there is only one best cut which in
(17) corresponds to 1(£) = {1,...,S} and takes the form

S
Y pii(g1(x,&)) > 1—¢.
i=1

which is nothing else than direct smoothing of chance constraints, see [45]. This cut is also close to
the true feasible set which equals to

S
Y pimax{¢:(g1(x,&)),1} > 1 —e¢. (19)
i=1

Finally, from the next lemma it follows that the added cuts are optimal as they cannot be linear combi-
nation of each other. Recall that a direction d is an extremal direction of a cone C if there do not exist
directions d;,d, € C different from d and a scalar k € (0, 1) such that d = kd; + (1 — K)d>.

Lemma 10 The direction defined in (15) is an extremal direction of the feasible set of (13).

Proof. Denote the feasible set of problem (13) by Z. For contradiction assume that (i, V,w) is not

an extremal direction of Z. Then there are some (u!',v!,w!) € Z and (u?,v?,w?) € Z diferent from

(@,9,w) and some k € (0, 1) such that
(2,0,@) = xe(u' ,vhwh) + (1= 1) (2, w?). (20)

Note now that the role of ﬁi,;i and W; is symmetric in (15) and thus, it suffices to consider only (15b).
Define
Zi:={(vyw1)|vp1 +w1 <0,v>0, w; <0}

and observe that (¥,v1), (v, wl), (v?,w?) € Z;. But this due to (20) means that (9,31 is not an
extremal direction of Z;. But since the extremal directions of Z; amount to (0, —p;) and (1,—p1),
this is a contradiction with (15b). [ ]

4 Numerical experiments

In this section we show a very good performance of the proposed discrete method on a gas network
problem from [22].

4.1 Application to gas network design problem

We consider a gas network described as follows:

B withdrawal points (exit nodes) # = {1,...,n} with random exit loads & = (£!,... &™),

B one injection point O corresponding to the root,
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W directed edges (pipes) & with e = (i, j) C ¥ x ¥ and coefficient of the pressure drop in D,

B lower and upper pressure bounds p}fi”7pkm“x.

For trees-connected networks without cycles, it was shown in [22] that a random demand & can be
satisfied if and only if

(PE™? < (PP + i (E), k= 1,...,|7],
(PFY? > (PP + g (E), k=1,...,|¥], (21)
(PP + hie(&) > (P + (&), k1 =1,....7],

Here, functions /(&) can be computed by

2
hk(é): Z cbe( Z ()(él) )

ecIl(k) leV,l-m

where TI(k) denotes the unique directed path (edges) from the root to node k, k >= [ means that the
unique path from root to k passes through / and 7(e) is the end node of edge e.

There are many ways of defining the objective. The simplest way is to minimize the upper pressure
bounds, which with a cost vector ¢, results in

minimize ¢ p"*

max
p

subject to P(system (21) is fulfilled) > 1 — €.

(22)

The minimal capacities p™" are usually considered to be fixed. Then we can reduce the number of
inequalities in (21) to (pk'”w‘)2 >V, k=0,1,...,|¥|, where we make use of iip(&) = 0 and where

vor=  max {(p")? +m(§)},

k=0,1,....| 7] (23)
Vi = Vo — hk(é).
Then problem (22) reduces to
LI T max
minimize ¢ p
P (24)

subject to P ((pg*)* > vy, ..., (pray? > V) > 1—¢.

4.2 Parameter description

In this short section we describe parameter choice and their update. For the probability level we chose
€ = 0.15. Whenever we needed to compute the true probability, we employed the technique from
Section 2.3 with 100000 samples.

For the discrete (scenario) approach, we randomly generated 10000 scenarios of & with quasi-
Monte Carlo sampling. Then we used Algorithm 3.1 to solve (22) with fixed scenario number S €
{100,300, 500, 1000, 3000, 5000, 10000}. We made use of all generated scenarios, thus we solved
it altogether 100 times for § = 100, 33 times for § = 300 and so on. For the result presentation we
then averaged the results.
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We solved the master problem (11) by the SQP method implemented in MATLAB’s fmincon. We
set the initial ! = 10> and employed the simplest update rule /1 = 2¢!. For all not-the-last 7, we
increased it whenever constraint

p'y>1—¢g—0.0005

was satisfied or whenever we added 100 Benders cuts. For the last 20 we used the usual stopping
criterion pTy > 1 — €. We removed cuts based on the strategy presented in Section 3.2 whenever
at most 2 indices differed for S < 1000 or whenever at most 20 indices differed for S > 1000. Even
though this is a highly heuristic strategy, it performed very well. For algorithm details we refer to our
codes available online.

4.3 Numerical results

In this section we solve problem (22) by both the discrete and continuous approach, thus by the
procedures described in Algorithm 3.1 and Section 2.3, respectively. We considered two networks
depicted in Figure 2.

Figure 2: Network topology of small (left) and medium (right) size network examples. The entry and
exit points of the considered gas transportation networks are displayed in black (entry) and white (exit),
respectively.

Table 1 displays the results for the small network whereas Table 2 corresponds to the larger network.
Every column corresponds to a given scenario count S. In the first part of both tables we have the
mean and standard deviation of the obtained optimal value and probability. For the probability we
present the reached true probability and the reached probability inside the sample. This corresponds
to the standard machine learning technique to dividing the data into training and testing samples, see
[24]. In the second part of the table, we depict the number of solves of (11), number of cuts B and the
number of eliminated cuts via the procedure described in Section 3.2.

There are several things worth mentioning. Namely, with increasing S:

B The probability in sample stays close to the desired 85%. This means that Algorithm 3.1 always
either managed to find a solution or was close to it.

B The true probability increases. This makes sense as the approximation of the true distribution
gets better.
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Scenario number § 100 300 500 1000 3000 5000 10000
Mean objective 728.1 7341 7356 7372 7375 737.7 738.0
Mean probability (true) [%)] 79.94 8297 83.60 84.14 8450 84.69 84.84
Mean probability (in sample) [%] | 84.97 84.96 84.99 85.00 84.99 84.96 84.98
SD objective 5.4 3.0 1.4 1.6 0.5 0.5 -
SD probability (true) [%] 1.72 087 045 029 013 0.21 -
Number of solves of (11) 137.8 177.8 211.3 253.1 341.7 385.0 647.0
Number of cuts B 752 126.8 1625 209.3 216.0 248.0 537.0
Cut reduction [%] 39.01 22.31 1741 1221 3347 32.05 14.63

Table 1: Network |: Results for small network with n = K = 4.

Scenario number § 100 300 500 1000 3000 5000 10000
Mean objective 3022.2 3079.6 3097.0 31122 31275 3131.4 31323
Mean probability (true) [%] 77.32 81.08 8222 8320 84.09 84.37 8442
Mean probability (in sample) [%] | 84.98 85.00 85.00 84.99 8496 84.84 84.80
SD objective 45.5 24.9 18.0 11.8 5.4 2.7 -
SD probability (true) [%] 2.51 1.32 0.77 0.52 0.23 0.09 -
Number of solves of (11) 572.8 716.8 789.1 876.6 2011.3 2613.0 2976.0
Number of cuts B 513.8 678.3 756.6 839.8 1961.7 2603.5 2970.0
Cut reduction [%] 838 400 3.03 335 201 0.02 0.00

Table 2: Network Il: Results for medium size network with n = K = 12.

B The objective gets worse and the standard deviation decreases. This also make sense for the
same reason as in the previous bullet.

B The number of solves of (11) increases. Even though it should be constant theoretically, our
guess is that cuts (14) provide worse approximation of the feasible set for large S and thus the
efficiency decreases.

B Cut reduction decreases. Empirically we found out that most of the cut reduction happens at the
end of the algorithm (and seems to be necessary for its convergence). For large S the algorithm
either needed large number of cuts to get close to the solution or was only able to get close to
it but not actually find it.

Not surprisingly the larger network needed more iterations.

Method ‘ CCP (projection) ProGrad CCP + ProGrad
Network | 738.56  738.40 738.40
Network Il 3146.52 3157.68 3145.47

Table 3: Comparison of the best CCP solution (projected onto the feasibility set) with the solution of
the continuous approach based on spheric-radial decomposition (ProGrad). In addition, a combination
of both methods has been performed, where the CCP solution serves as the starting point for the
ProGrad method (CCP + ProGrad).

In Table 3 we compare the discrete method with the continuous one for both Network | and Network
Il. We have chosen the best discrete approximation which is obtained for 10000 samples. Since its
obtained probability level is less then the required 85%, we have projected it onto the feasible set
using the gradient information that is available by the spheric-radial approach, see Section 2.3. This
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optimal value is displayed in the column “CCP (projection)”. The next column shows the results for the
continuous method when applying a simple projected gradient method (ProGrad). Finally, a combina-
tion of both methods is performed, where the computed CCP solution serves as a starting point for
the ProGrad computation. In both examples, the best result is obtained by the combination of CCP
and ProGrad. For the larger network, CCP performed better than ProGrad. Since the problem is highly
nonconvex, we believe that this superiority is caused by the slow update in ¢ which is able to evade
local minima, see [5, Example 3.1].

Figure 3: Six simulations of exit pressure realizations compared to the upper pressure bounds (dashed
lines) provided by the numerical solution for Network Il. Feasible and infeasible pressure realizations
at each node are shown in green and red, respectively.

In Figure 3 we perform a posterior check of the computed solution. We simulate six sets of exit loads
according to the given Gaussian distribution and check whether the corresponding minimal pressure
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is feasible with respect to the computed upper pressure limits. Feasible pressures are displayed in
green whereas violated pressures in red. If all nodes are shown in green, this load scenario is feasi-
ble. According to Figure 3, five out of six gas demand scenarios are feasible which agrees with the
prescribed probability level 85%. Moreover, the method seems to be rather stable as for the infeasible
scenario, the minimal needed pressures did not exceed the upper pressure bounds by a large margin.

A New result for sufficient optimality conditions for hierarchical
problems

In this short section we present a new result which may play a crucial role in deriving sufficient op-
timality conditions for hierarchical problems such as bilevel problems, mathematical problems with
equilibrium/complementarity/vanishing constraints and so on. In these problems, the feasible set is
usually rather nasty but may be written as a finite union of nice sets. We show that if these nice sets
are convex, then strong stationary points are immediately local minima.

Theorem 11 Consider a convex differentiable function f : R" — R, a setX C R", a pointx € X and
an optimization problem

minimize f(x) (25)
subject to x € X.

Assume that X is its S-stationary point, thus a point with
0 € V(%) + Nx(%),

where Ny (X) stands for the Fréchet normal cone of X at X. If X can be locally around X written as
a union of finite number of (possibly overlapping) convex sets, then x is a local minimum of problem
(25).

Proof. From the theorem statement, there are convex sets X;, i = 1,...,I such that locally around X
we have that X coincides with UleX,-. First, we realize that

Ny (%) = (Tx (9))" = (Ui T, (0)" = Nizy (Tx,(8)" = i Ny (%)
Since x is a S-stationary point of (25), we have
I I
0.€ V() +Rx(8) = V() + N (D) = () (V/(0) + Ny, (7))
i=1 i=1
Fix now any i. From the equation above we obtain that X is a stationary point of

minimize f(x)

subject to x € X;.

Due to the data convexity, it is a local minimum of the above problem and thus for all x € X; sufficiently
close to X we have f(x) > f(X). But since i was chosen arbitrarily, we obtain that X is a local minimum
of problem (25). ]
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B Proofs

In this section we collect the skipped proofs from Section 2.
Proposition 1. It is sufficient to follow the proof of Lemma 3.1 in [5]. |

Theorem 3. Denote the feasible set of problem (2) by Z and consider a point X € Z. Then Z coincides
locally around x with

U z= U {x:gk(x,éi)gO,ielo(i)ﬁl,kel(é(x)}

Ie.7 (%) 1€ (%) hj(x) <0, j€Jo

which means that

B® =@ = U @] = N S

Ie 7 (x) Ie 7 ()

By [42, Theorem 6.12] we obtain that 0 € V f(X) 4+ Nz(%) is a necessary optimality condition for
chance constrained problem (2). To obtain the first statement, it suffices to use chain rule [42, Theorem
6.14].

The proof of the second part goes in a similar way. Due to [42, Theorem 6.12], the necessary optimality
conditions for problem (4) read

0€ (V{)@) +Nz(%,7) (26)

where Z is the feasible set of problem (4). For the computation of the normal cone, realize first that Z
locally around (%, ) coincides with the union of Z; := Z} x Z; with respect to all I C Ipo(,¥), where

. {x 8. &) <0, i€ 1UI(%5), ke Ké(f)}
hj(x) <0, j€Jo
ply>l-¢
Zy:=<y:y;i€0,1],i € IUly (%,5)U{i: max; gi(%,&) < 0}
yi=0, i€ (Ipo(x,y) \ 1) U{i: max; gi(¥,&) >0}

As before, we have
N&y)= () NzEn= [ Ng@®x ) Np0).

ICIy(%,5) ICIy(%,9) ICIy(%,5)
Since zero always belongs to a normal cone, the optimality condition (26) is equivalent to
0evVi®+ [\ Nzp@®). (27)

IClyo(%,5)

To finish the proof, it suffices to realize that the intersection in (27) is manifested for I = () and to use
either [29, Proposition 3.4] (if the first part of Assumption 2 holds true) or [42, Theorem 6.14] (if the
second part of Assumption 2 holds true). ]

The proof of Theorem 6 is more complicated. For notational simplicity, we consider only the case of
Jo(¥) = 0. First, we write down the stationarity conditions of (8), then show two preliminary lemmas
and only then proof the theorem itself.
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The necessary optimality conditions for problem (8) at a point (¥',3") read as follows: there exist
multipliers o € R, B! € RS and ¥ & RSX such that the optimality conditions

S K
0=VF(E) =Y Y 78 (ex(¥, &) Vign(®, &), (28a)
i=1k=1
K
O=—a'pi+B+ Y vy i=1,....8 (28b)
k=1
and the complementarity conditions
o (l—e—p'y)=0, (29a)
>0 ity =1,
Biq=0 if0<y <1, (29b)
<0 ify; =0,
Va7 — 0 (g (¥, &) =0 (29¢)

are satisfied. Moreover, the sign restrictions o’ > 0 and yfk > 0 hold true.

Lemma 12 Assume that (¥',¥') is a stationary point of problem (8). Then the following assertions
hold true:

1 gk(¥,6) <0 = 7,=0
20 =0= B/ =7, =0foralliandk;

Lemma 13 If for allt we have p' 7' = 1 — & and for some i and k we have ¢,(gi(¥,&)) = 7. \, 0,
then there exists a subsequence int such that }/l.’k = 0 for all t or such that there exists index j such

that
_ﬁk(])t/(gk (Xta 51))
700 (8 (T,8))

— 0, (30)

Proof. Due to the assumptions there exists index j, and possibly a subsequence in ¢, such that y"j is
strictly increasing. This implies that 0 < §; < 1 and 3/ = f3; = O for all z. If 7, = 0, then the proof is
finished. In the opposite case, we realize that o' > 0, 7, > O and ¢/ (gx(¥,&;)) < 0 to deduce

/e, 8) (%) oled. &)

E 0 ®.8) T —EK 70l (g(7.8))
Y By ACAER)) @)
I K }’;.,;(Pz(gkt( 75]))

_ —o'pi ¢/ (g(®, &)
I Pj ‘Pz(gkt( 751)) -0

where k' := arg maxy ¢/ (g; (¥, &), the last equality follows from (28b) and the convergence follows
from assumption (9d), for which we realize that ¢y (gz (¥, 5,)) > ¥, the fact that ¥ is a strictly in-
creasing sequence and the assumed convergence ¢ (gx (%', &;)) = 3. \, 0. n
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Theorem 6. We will show first that (%, ¥) is a feasible point of (4). Due to continuity, it is sufficient to
show that g (%, &;)¥; < 0. Since this relation is obvious whenever g (¥, &;) < 0 for all k, we consider
scenario i with gk( ,&) > 0 for some k. But then g, (¥, &;) > 0 for sufficiently large ¢ and thus
0 <7 < ¢(g(¥,&)). But since gx(¥, &) — gi(%, &) > 0, assumption (9c) implies that y; = 0,
and thus (X, y) is a feasible point of problem (4).

Define now
= =Yt (en(#,8)) >0

where the nonnegativity follows from the property that ¢; is decreasing. Then for a subsequence in ¢,
optimality condition (28a) reads

S K
0=Vf(# ZZ AL Vag(®, &)

(32)
=VfE)+ ) A Vg (&, &) + ) A Vagr(®,&).
{(i.k):8x(%,6:)=0,5,>0} {(i.4):8(%,6)>0, y;=0}
Here we can omit pairs of indices (i, k) with gx (%, &;) < 0 due to Lemma 12.
We claim now that Zk 1 lk is uniformly bounded in i and ¢. If this is not the case, then we have
t fp—
)’max ; HII?X, ]; 2‘lk —r .
Then dividing equation (32) by A}, vields
1 =t litk =t ltlk
0=——Vf(E)+ )y 7 Vagk(®, &) + )y Vagk(¥, &). (33)
A A
max {(1.k):8x(%,&:)=0,3;>0} “"max {(1.k):81(%,£)>0, 5;=0} ax

When taking limit £ — oo, the first term vanishes. Consider now the third term. If pT)'/’ > 1 —¢, from
Lemma 12 we have A/, = 0 for all i and k. Assume thus that p ' ' = 1 — € for all £. If ¢ (g, (¥, &;)) >
yl-, then from Lemma 12 we have ?L? = 0. In the opposite case, we may use Lemma 13 to obtain again

that Nk = 0 or there exists j such that ZK)L T — 0. But this implies that the last term in (33) vanishes
k=1""jk
as well. This means that !
A i}
0= ) IILm oY kv gn(@,E).
{(ik):81(%,8)=0,5,>0} max

. Al .
Since )alk [0, 1] and the numerators sum to one, at least one of these fractions converges to a pos-

itive number. However, the existence of such positive limit contradicts Assumption 2 and thus Zszl /'Ll-’k
is indeed bounded. Since it is a sum of nonnegative elements, these elements 7Ll.’k are uniformly
bounded in i, k and ¢.

This means that we may pass to a converging subsequence, say li’k — Ajk. Since ?Lfk > 0 for all ¢, the
same property holds for A;. In the light of (32), to finish the proof it suffices to show that A;; = O for
all pairs (i,k) such that g (%, &;) > 0 and y; = 0. But this may be shown as in the previous paragraph
via applying Lemmas 12 and 13. Thus (&, y) is indeed a stationary point of problem (4). [
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