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Energy models with incompletely ionized impurities

mass and charge and energy transport in heterogeneous semiconductor devices

described by

• continuity equations for densities n, p

of electrons e− and holes h+

• Poisson equation for the electrostatic potential ϕ

• balance equation for the density of the total energy e

• reaction equations for incompletely ionized impurities

(radiation-induced traps, other deep recombination centers)

X j , X+(−)

j , j = 1, . . . , k
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Energy models with incompletely ionized impurities

Mathematical problems

non-smooth data:
• heterogeneous materials – physical quantities jump at material interfaces

discontinuities w.r.t. space variable
• domain � in general non-smooth, but only Lipschitz
• mixed boundary conditions

strongly coupled PDEs:
• coefficients depend on the state variable
• equations degenerate if n = 0, p = 0 or T = ∞

• ellipticity condition is not fulfilled uniformly

constraints n, p, T > 0

restrict us to the stationary energy model
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Energy models with incompletely ionized impurities

Stationary energy model for devices with incompletely ionized impurities

−∇ · (ε∇ϕ) = f0 − n + p +

2k∑

i=1

qiui, ∇ · je = 0,(1)

∇ · jn = R0 +

k∑

j=1

R j1, ∇ · jp = R0 +

k∑

j=1

R j2,(2)

R j1 = R j2, u2 j−1 + u2 j = f j, j = 1, . . . , k.(3)

ε dielectric permittivity
f0, f j prescribed charge density and particle densities
je flux density of the total energy
jn, jp particle flux densities of electrons and holes
R j1, R j2 reaction rates of the ionization reactions
R0 reaction rate of the direct electron-hole recombination-generation

e− + h+

 0
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Energy models with incompletely ionized impurities

impurities: X j occur in two charge states, take place ionization reactions

If X j is an acceptor-like impurity, X−
j its ion, the reactions are

e− + X j 
 X−
j , h+ + X−

j 
 X j

u2 j−1 – density of X−
j , u2 j – density of X j , q2 j−1 = −1, q2 j = 0

If X j is a donor-like impurity, X+
j its ion, the reactions are

e− + X+
j 
 X j, h+ + X j 
 X+

j

u2 j−1 – density of X j , u2 j – density of X+
j , q2 j−1 = 0, q2 j = 1
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Energy models with incompletely ionized impurities

system has to be completed by

• state equations
• kinetic relations (reactions, fluxes)
• mixed boundary conditions

denote

ζn, ζp – electrochemical potentials of electrons and holes
ζi – electrochemical potentials of immobile (neutral, ionized)
i = 1, . . . , 2k impurities
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Elimination of the constraints (3)

state equations

ui = Fi

(
·,T,

ζi − qiϕ

T

)
, i = 1,..., 2k, n = Fn

(
·,T,

ζn + ϕ

T

)
, p = Fp

(
·,T,

ζp − ϕ

T

)

kinetic relations (reaction rates)

R0 = r0(·, ϕ, T, ζn, ζp)
(

1 − exp ζn+ζp

T

)
,

R j1 = r j1(·, ϕ, T, ζn, ζp)
(

exp ζ2 j−1

T − exp ζ2 j+ζn

T

)
,

R j2 = r j2(·, ϕ, T, ζn, ζp)
(

exp ζ2 j

T − exp ζ2 j−1+ζp

T

)

under reliable assumptions eliminate the constraints (3) by evaluating the subsystems

u2 j−1 + u2 j = f j, R j1 = R j2, j = 1, . . . , k

obtain

ζ2 j = S j(·, ϕ, T, ζn, ζp, f j), ζ2 j−1 = Ŝ j(·, ϕ, T, ζn, ζp, f j), j = 1, . . . , k
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Elimination of the constraints (3)

use state equations and expression for ζi , i = 1, . . . , 2k, to write right hand sides
in (1), (2):

f0 − n + p +

2k∑

i=1

qiui 7→ H(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk),

R0 +

k∑

j=1

R j1 7→ R(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk)

= r(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk)
(

1 − exp ζn+ζp

T

)
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Reduced energy model

− ∇ ·




ε 0 0 0
0 κ + ω̂0 ω1 ω2

0 ω̂1 σn + σnp σnp

0 ω̂2 σnp σp + σnp







∇ϕ

∇T
∇ζn

∇ζp


 =




H
0
R
R


 in �,(4)

where

(
ω̂1

ω̂2

)
=

(
σn + σnp σnp

σnp σp + σnp

) (
Pn

Pp

)
, ω̂0 = (ζn + PnT ) ω̂1 + (ζp + PpT ) ω̂2,

(
ω1

ω2

)
=

(
σn + σnp σnp

σnp σp + σnp

) (
ζn + PnT
ζp + PpT

)

coefficients κ > 0, σn, σp > 0, σnp ≥ 0, Pn, Pp depend in a nonsmooth way on x ,
smoothly on the state variables,
system strongly coupled, matrix not symmetric
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Reduced energy model

possible to change the generalized forces of the fluxes to symmetrize the matrix

for the generalized forces

∇

(
−

1

T

)
,∇

(
ζn

T

)
,∇

(
ζp

T

)

and the fluxes ( je, jn, jp) the Onsager relations are fulfilled
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Reduced energy model

0D and 0N denote disjoint, relatively open parts of the boundary 0 = ∂� with
mes (0 \ (0D ∪ 0N)) = 0, � ∪ 0N regular in the sense of Gröger

mixed boundary conditions

ϕ = vD1, T = vD2, ζn = vD3, ζp = vD4 on 0D

ν · (ε∇ϕ) = g1, −ν · je = g2, −ν · jn = g3, −ν · jp = g4 on 0N
(5)

notation

v = (ϕ, T, ζn, ζp), vD = (vD1, . . . , vD4), g = (g1, . . . , g4), f = ( f0, f1, . . . , fk)

w = (vD, g, f ) (vector of data)

look for weak solutions of (4), (5) in the form

v = V + vD

where • vD = LvD continuation of the Dirichlet values vD to �
• V fulfils homogeneous Dirichlet bcs on 0D

11



Outline of the results and methods for the reduced stationary energy model

result:
existence of a thermodynamic equilibrium

vi = const, i = 2, 3, 4, v3 + v4 = 0

local existence and uniqueness result near this thermodynamic equilibrium

methods:
• prove existence of a thermodynamic equilibrium v with T, n, p > 0
• apply Implicit Function Theorem

problems:
• suitable choice of function spaces and weak formulation
• supply requirements of Implicit Function Theorem
• differentiability properties of Nemyzki operators
• regularity results for strongly coupled lin. ell. systems with mixed bcs
• technique works in 2D only
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Continuation operator L

Let p ∈ [1,∞), we define

X p = (W 1,p
0 (� ∪ 0N))

4

Yp = (W 1−1/p,p(0D))
4

Lemma 1. There exists a p0 > 2 such that for all p ∈ [2, p0] the following assertion
holds true:
For all vD ∈ Yp there exists a unique solution vD ∈ (W 1,p(�))4 of

1vD
i = 0 in �, vD

i = vDi on 0D,
∂vD

i

∂ν
= 0 on 0N , i = 1, 2, 3, 4.

vD is given by vD = LvD where L ∈ L(Yp, (W 1,p(�))4).
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Thermodynamic equilibrium

necessary conditions for the existence of thermodynamic equilibrium:

data has to fulfil
vDi = const, i = 2, 3, 4, vD3 + vD4 = 0,

vD2 > 0, gi = 0, i = 2, 3, 4

evaluate thermodynamic equilibrium v = V + LvD

set
Vi = 0, vi = LvDi, i = 2, 3, 4

v1 has to satisfy the nonlinear Poisson equation

−∇ · (ε∇v1) = H(·, v1, LvD2, LvD3, LvD4, f )

v1 = vD1 on 0D, ν · (ε∇v1) = g1 on 0N
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Thermodynamic equilibrium

Let p ∈ (2, p0],

Q =
{
w = (vD, g, f ) : vD ∈ Yp, (g, f ) ∈ Z ,

gi = 0, vDi = const, i = 2, 3, 4, vD2 > 0, vD3 + vD4 = 0
}

Yp = (W 1−1/p,p(0D))
4, Z = L∞(0N)

4×L∞(�)×
{

y ∈ L∞(�) : essinfx∈� y > 0
}k

Theorem 1. (Existence of thermodynamic equilibria)

Let w∗ = (v∗
D, g∗, f ∗) ∈ Q.

Then there exist q0 ∈ (2, p] and v∗
1 ∈ W 1,q0(�) such that

v∗ = (v∗
1, Lv∗

D2, Lv∗
D3, Lv∗

D4)

is a thermodynamic equilibrium.
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Weak formulation

set
v = V + LvD, w = (vD, g, f )
v∗ = V ∗ + Lv∗

D, w∗ = (v∗
D, g∗, f ∗)

Definition. Let q ∈ (2, p]. We define the open subset Mq ⊂ Xq × Yp,

Mq =
{
(V, vD) ∈ Xq × Yp with |Vi + LvDi | < τ, i = 1, 3, 4,

1
τ
< V2 + LvD2 < τ on �

}

where τ > 1 is such that (V ∗, v∗
D) ∈ Mq0
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Weak formulation

define Aq: Mq × Z → X∗
q ′

〈Aq(V, w),ψ〉Xq′
=

∫

�

4∑

i,k=1

aik(·, v)∇vk · ∇ψi dx

+

∫

�

{
r(·, v, f )

(
exp

v3 + v4

T
− 1

)
(ψ3 + ψ4)− H(·, v, f )ψ1

}
dx

−

∫

0N

4∑

i=1

giψi d0, ψ ∈ Xq ′, v = V + LvD

Problem (P):

find (q, V, w) such that q ∈ (2, p], (V, w) ∈ Xq × Yp × Z ,

(V, vD) ∈ Mq, Aq(V, w) = 0
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Setting for the Implicit Function Theorem

equilibrium:

Aq0(V
∗, w∗) = 0

differentiability:

Aq: Mq × Z → X∗
q ′ is continuously differentiable for all q ∈ (2, p]

properties of the linearization in the equilibrium:

Let w∗ = (v∗
D, g∗, f ∗) ∈ Q, and Aq0(V

∗, w∗) = 0.
Then there exists a q1 ∈ (2, q0] such that the Fréchet derivative

∂V Aq1(V
∗, w∗) ∈ LIS(Xq1, X∗

q ′

1
).
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Sketch of the proof

Bq : Xq → X∗
q ′,

Bq := ∂V Aq(V
∗, w∗) ◦ D(v∗), D(v∗) =




1 0 0 0
0 v∗2

2 0 0
0 v∗

2v
∗
3 v∗2

2 0
0 v∗

2v
∗
4 0 v∗2

2


 ∈ LIS(Xq, Xq)

main part of Bq: strongly coupled, symmetric, strongly elliptic

Bq = Lq + Kq

Lq injective, surjective for q ∈ (2, q1] (regularity result in Gröger’89)
Kq compact

Bq1 Fredholm operator of index zero, Bq1 injective

Bq1, ∂V Aq1(V
∗, w∗) ∈ LIS(Xq1, X∗

q ′

1
)
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Application of the Implicit Function Theorem

Theorem 2. (Local existence and uniqueness of steady states)

Let w∗ = (v∗
D, g∗, f ∗) ∈ Q, and let (q0, V ∗, w∗) be the equilibrium solution to Prob-

lem (P) according to Theorem 1.

Then there exists q1 ∈ (2, q0] such that the following assertion holds: There exist neigh-
bourhoods V ⊂ Xq1 of V ∗ and W ⊂ Yp × Z of w∗ = (v∗

D, g∗, f ∗) and a C1-map
8:W → V such that V = 8(w) iff

Aq1(V, w) = 0, (V, vD) ∈ Mq1, V ∈ V, w = (vD, g, f ) ∈ W.

For data w = (vD, g, f ) near w∗ = (v∗
D, g∗, f ∗) ∈ Q there exists a locally unique

solution v = V + LvD of the stationary energy model.
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A. Glitzky, R. Hünlich, Stationary energy models for semiconductor devices with incom-
pletely ionized impurities, to appear in ZAMM 11-2005.
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Assumptions

(A1) � is a bounded Lipschitzian domain in R
2, 0 = ∂�,

0D, 0N are disjoint open subsets of 0, mes0D > 0,
0 = 0D ∪0N ∪ (0D ∩0N), 0D ∩0N consists of finitely many points,
6 ⊂ � with mes 6 = 0.

(A2) ε ∈ L∞(�), 0 < ε0 ≤ ε(x) ≤ ε0 < ∞ in � \6.

Definition.
Let W ⊂ R

m be an open set.
b : � × W → R is of the class D(W ) iff b is a Caratheodory function, which is con-
tinuously differentiable with respect to the second argument and for which the function
itself as well as its derivative with respect to the second argument are locally bounded
and locally uniformly continuous.
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Assumptions

(A3) κ, σn, σp, σnp, Pn, Pp : �× W1 → R are of the class D(W1) with
W1 = (0,∞)× R

2.
For all K > 1 there exists a cK > 1 such that
κ(x, T, ζn, ζp), σn(x, T, ζn, ζp), σp(x, T, ζn, ζp) ∈ [1/cK , cK ]

for x ∈ � \6, (T, ζn, ζp) ∈ [1/K , K ] × [−K , K ]2.
σnp(x, T, ζn, ζp) ≥ 0 for x ∈ � \6, (T, ζn, ζp) ∈ W1.

(A4) Fi : � × W2 → R+ are of the class D(W2) with W2 = (0,∞) × R.
For all K > 1 there exist ĉK > 0, cK > 1 such that ∂ Fi

∂y (x, T, y) ≥ ĉK ,
Fi(x, T, y) ∈ [1/cK , cK ] for x ∈ � \6, (T, y) ∈ [1/K , K ] × [−K , K ],
limy→−∞ Fi(x, T, y) = 0, limy→+∞ Fi(x, T, y) = +∞ for x ∈ � \ 6,
T ∈ (0,∞), i = n, p and i = 1, . . . , 2k.
For all K > 1 there exists cK > 0 such that Fi(x, T, y) ≤ cK e cK |y| for
x ∈ � \6, (T, y) ∈ [1/K , K ] × R, i = n, p.

(A5) r0, r ji : �×W3 → R+ are of the class D(W3)with W3 = R×(0,∞)×R
2.

For all K > 1 there exists a cK > 1 such that r ji(x, ϕ, T, ζn, ζp) ∈

[1/cK , cK ] for x ∈ � \ 6, (ϕ, T, ζn, ζp) ∈ [−K , K ] × [1/K , K ] ×

[−K , K ]2, j = 1, . . . , k, i = 1, 2.
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