$\lceil W\rceil{ }_{\mathrm{W}}^{\mathrm{A}} \varlimsup_{\mathrm{S}}$

Weierstraß-Institut für Angewandte Analysis und Stochastik

Regularity Workshop Hirschegg

Annegret Glitzky

An application of the Implicit Function Theorem to stationary energy models for semiconductor devices

Leibniz
Gemeinschaft

Energy models with incompletely ionized impurities

mass and charge and energy transport in heterogeneous semiconductor devices
described by

- continuity equations for densities n, p of electrons e^{-}and holes h^{+}
- Poisson equation for the electrostatic potential φ
- balance equation for the density of the total energy e
- reaction equations for incompletely ionized impurities (radiation-induced traps, other deep recombination centers)

$$
X_{j}, X_{j}^{+(-)}, j=1, \ldots, k
$$

Energy models with incompletely ionized impurities

Mathematical problems

non-smooth data:

- heterogeneous materials - physical quantities jump at material interfaces discontinuities w.r.t. space variable
- domain Ω in general non-smooth, but only Lipschitz
- mixed boundary conditions

strongly coupled PDEs:

- coefficients depend on the state variable
- equations degenerate if $n=0, p=0$ or $T=\infty$
- ellipticity condition is not fulfilled uniformly
constraints $n, p, T>0$
restrict us to the stationary energy model

Energy models with incompletely ionized impurities

Stationary energy model for devices with incompletely ionized impurities

$$
\begin{gather*}
-\nabla \cdot(\varepsilon \nabla \varphi)=f_{0}-n+p+\sum_{i=1}^{2 k} q_{i} u_{i}, \quad \nabla \cdot j_{e}=0 \tag{1}\\
\nabla \cdot j_{n}=R_{0}+\sum_{j=1}^{k} R_{j 1}, \quad \nabla \cdot j_{p}=R_{0}+\sum_{j=1}^{k} R_{j 2} \tag{2}\\
R_{j 1}=R_{j 2}, \quad u_{2 j-1}+u_{2 j}=f_{j}, \quad j=1, \ldots, k \tag{3}
\end{gather*}
$$

$\varepsilon \quad$ dielectric permittivity
$f_{0}, f_{j} \quad$ prescribed charge density and particle densities
$j_{e} \quad$ flux density of the total energy
$j_{n}, j_{p} \quad$ particle flux densities of electrons and holes
$R_{j 1}, R_{j 2}$ reaction rates of the ionization reactions
$R_{0} \quad$ reaction rate of the direct electron-hole recombination-generation $\mathrm{e}^{-}+\mathrm{h}^{+} \rightleftharpoons 0$

Energy models with incompletely ionized impurities

impurities: X_{j} occur in two charge states, take place ionization reactions

If X_{j} is an acceptor-like impurity, X_{j}^{-}its ion, the reactions are

$$
\mathrm{e}^{-}+\mathrm{X}_{j} \rightleftharpoons \mathrm{X}_{j}^{-}, \quad \mathrm{h}^{+}+\mathrm{X}_{j}^{-} \rightleftharpoons \mathrm{X}_{j}
$$

$u_{2 j-1}-$ density of $X_{j}^{-}, \quad u_{2 j}-$ density of $X_{j}, \quad q_{2 j-1}=-1, \quad q_{2 j}=0$

If X_{j} is a donor-like impurity, X_{j}^{+}its ion, the reactions are

$$
\mathrm{e}^{-}+\mathrm{X}_{j}^{+} \rightleftharpoons \mathrm{X}_{j}, \quad \mathrm{~h}^{+}+\mathrm{X}_{j} \rightleftharpoons \mathrm{X}_{j}^{+}
$$

$u_{2 j-1}-$ density of $X_{j}, \quad u_{2 j}-$ density of $X_{j}^{+}, \quad q_{2 j-1}=0, \quad q_{2 j}=1$

Energy models with incompletely ionized impurities

system has to be completed by

- state equations
- kinetic relations (reactions, fluxes)
- mixed boundary conditions
denote
ζ_{n}, ζ_{p}
- electrochemical potentials of electrons and holes
$\zeta_{i} \quad-$ electrochemical potentials of immobile (neutral, ionized)
$i=1, \ldots, 2 k \quad$ impurities

Elimination of the constraints (3)

state equations

$$
u_{i}=F_{i}\left(\cdot, T, \frac{\zeta_{i}-q_{i} \varphi}{T}\right), \quad i=1, \ldots, 2 k, \quad n=F_{n}\left(\cdot, T, \frac{\zeta_{n}+\varphi}{T}\right), \quad p=F_{p}\left(\cdot, T, \frac{\zeta_{p}-\varphi}{T}\right)
$$

kinetic relations (reaction rates)

$$
\begin{aligned}
& R_{0}=r_{0}\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}\right)\left(1-\exp \frac{\zeta_{n}+\zeta_{p}}{T}\right) \\
& R_{j 1}=r_{j 1}\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}\right)\left(\exp \frac{\zeta_{2 j-1}}{T}-\exp \frac{\zeta_{2 j}+\zeta_{n}}{T}\right), \\
& R_{j 2}=r_{j 2}\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}\right)\left(\exp \frac{\zeta_{2 j}}{T}-\exp \frac{\zeta_{2 j-1}+\zeta_{p}}{T}\right)
\end{aligned}
$$

under reliable assumptions eliminate the constraints (3) by evaluating the subsystems

$$
u_{2 j-1}+u_{2 j}=f_{j}, \quad R_{j 1}=R_{j 2}, \quad j=1, \ldots, k
$$

obtain

$$
\zeta_{2 j}=S_{j}\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}, f_{j}\right), \quad \zeta_{2 j-1}=\widehat{S}_{j}\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}, f_{j}\right), \quad j=1, \ldots, k
$$

Elimination of the constraints (3)

use state equations and expression for $\zeta_{i}, i=1, \ldots, 2 k$, to write right hand sides in (1), (2):

$$
\begin{aligned}
f_{0}-n+p+\sum_{i=1}^{2 k} q_{i} u_{i} & \mapsto
\end{aligned} \quad H\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}, f_{0}, f_{1}, \ldots, f_{k}\right), \quad \begin{aligned}
R_{0}+\sum_{j=1}^{k} R_{j 1} & \mapsto
\end{aligned} \begin{aligned}
& R\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}, f_{0}, f_{1}, \ldots, f_{k}\right) \\
& =r\left(\cdot, \varphi, T, \zeta_{n}, \zeta_{p}, f_{0}, f_{1}, \ldots, f_{k}\right)\left(1-\exp \frac{\zeta_{n}+\zeta_{p}}{T}\right)
\end{aligned}
$$

Reduced energy model

(4) $-\nabla \cdot\left(\begin{array}{llll}\varepsilon & 0 & 0 & 0 \\ 0 & \kappa+\widehat{\omega}_{0} & \omega_{1} & \omega_{2} \\ 0 & \widehat{\omega}_{1} & \sigma_{n}+\sigma_{n p} & \sigma_{n p} \\ 0 & \widehat{\omega}_{2} & \sigma_{n p} & \sigma_{p}+\sigma_{n p}\end{array}\right)\left(\begin{array}{l}\nabla \varphi \\ \nabla T \\ \nabla \zeta_{n} \\ \nabla \zeta_{p}\end{array}\right)=\left(\begin{array}{l}H \\ 0 \\ R \\ R\end{array}\right) \quad$ in Ω,
where

$$
\begin{gathered}
\binom{\widehat{\omega}_{1}}{\widehat{\omega}_{2}}=\left(\begin{array}{ll}
\sigma_{n}+\sigma_{n p} & \sigma_{n p} \\
\sigma_{n p} & \sigma_{p}+\sigma_{n p}
\end{array}\right)\binom{P_{n}}{P_{p}}, \quad \widehat{\omega}_{0}=\left(\zeta_{n}+P_{n} T\right) \widehat{\omega}_{1}+\left(\zeta_{p}+P_{p} T\right) \widehat{\omega}_{2} \\
\binom{\omega_{1}}{\omega_{2}}=\left(\begin{array}{ll}
\sigma_{n}+\sigma_{n p} & \sigma_{n p} \\
\sigma_{n p} & \sigma_{p}+\sigma_{n p}
\end{array}\right)\binom{\zeta_{n}+P_{n} T}{\zeta_{p}+P_{p} T}
\end{gathered}
$$

coefficients $\kappa>0, \sigma_{n}, \sigma_{p}>0, \sigma_{n p} \geq 0, P_{n}, P_{p}$ depend in a nonsmooth way on x, smoothly on the state variables,
system strongly coupled, matrix not symmetric

Reduced energy model

possible to change the generalized forces of the fluxes to symmetrize the matrix for the generalized forces

$$
\nabla\left(-\frac{1}{T}\right), \nabla\left(\frac{\zeta_{n}}{T}\right), \nabla\left(\frac{\zeta_{p}}{T}\right)
$$

and the fluxes $\left(j_{e}, j_{n}, j_{p}\right)$ the Onsager relations are fulfilled

Reduced energy model

Γ_{D} and Γ_{N} denote disjoint, relatively open parts of the boundary $\Gamma=\partial \Omega$ with $\operatorname{mes}\left(\Gamma \backslash\left(\Gamma_{D} \cup \Gamma_{N}\right)\right)=0, \quad \Omega \cup \Gamma_{N}$ regular in the sense of Gröger mixed boundary conditions

$$
\begin{array}{rrrrr}
\varphi=v_{D 1}, & T=v_{D 2}, & \zeta_{n}=v_{D 3}, & \zeta_{p}=v_{D 4} & \text { on } \Gamma_{D} \tag{5}\\
v \cdot(\varepsilon \nabla \varphi)=g_{1}, & -v \cdot j_{e}=g_{2}, & -v \cdot j_{n}=g_{3}, & -v \cdot j_{p}=g_{4} & \text { on } \Gamma_{N}
\end{array}
$$

notation

$$
\begin{gathered}
v=\left(\varphi, T, \zeta_{n}, \zeta_{p}\right), \quad v_{D}=\left(v_{D 1}, \ldots, v_{D 4}\right), \quad g=\left(g_{1}, \ldots, g_{4}\right), \quad f=\left(f_{0}, f_{1}, \ldots, f_{k}\right) \\
w=\left(v_{D}, g, f\right) \quad(\text { vector of data })
\end{gathered}
$$

look for weak solutions of (4), (5) in the form

$$
v=V+v^{D}
$$

where $\bullet v^{D}=L v_{D}$ continuation of the Dirichlet values v_{D} to Ω

- V fulfils homogeneous Dirichlet bcs on Γ_{D}

Outline of the results and methods for the reduced stationary energy model

result:
existence of a thermodynamic equilibrium

$$
v_{i}=\mathrm{const}, \quad i=2,3,4, \quad v_{3}+v_{4}=0
$$

local existence and uniqueness result near this thermodynamic equilibrium

methods:

- prove existence of a thermodynamic equilibrium v with $T, n, p>0$
- apply Implicit Function Theorem

problems:

- suitable choice of function spaces and weak formulation
- supply requirements of Implicit Function Theorem
- differentiability properties of Nemyzki operators
- regularity results for strongly coupled lin. ell. systems with mixed bcs
- technique works in 2D only

Continuation operator L

Let $p \in[1, \infty)$, we define

$$
\begin{aligned}
& X_{p}=\left(W_{0}^{1, p}\left(\Omega \cup \Gamma_{N}\right)\right)^{4} \\
& Y_{p}=\left(W^{1-1 / p, p}\left(\Gamma_{D}\right)\right)^{4}
\end{aligned}
$$

Lemma 1. There exists a $p_{0}>2$ such that for all $p \in\left[2, p_{0}\right]$ the following assertion holds true:
For all $v_{D} \in Y_{p}$ there exists a unique solution $v^{D} \in\left(W^{1, p}(\Omega)\right)^{4}$ of

$$
\Delta v_{i}^{D}=0 \text { in } \Omega, \quad v_{i}^{D}=v_{D i} \text { on } \Gamma_{D}, \quad \frac{\partial v_{i}^{D}}{\partial v}=0 \text { on } \Gamma_{N}, \quad i=1,2,3,4
$$

v^{D} is given by $v^{D}=L v_{D}$ where $L \in \mathcal{L}\left(Y_{p},\left(W^{1, p}(\Omega)\right)^{4}\right)$.

Thermodynamic equilibrium

necessary conditions for the existence of thermodynamic equilibrium: data has to fulfil

$$
\begin{gathered}
v_{D i}=\mathrm{const}, \quad i=2,3,4, \quad v_{D 3}+v_{D 4}=0 \\
v_{D 2}>0, \quad g_{i}=0, \quad i=2,3,4
\end{gathered}
$$

evaluate thermodynamic equilibrium $\quad v=V+L v_{D}$
set

$$
V_{i}=0, \quad v_{i}=L v_{D i}, \quad i=2,3,4
$$

v_{1} has to satisfy the nonlinear Poisson equation

$$
\begin{gathered}
-\nabla \cdot\left(\varepsilon \nabla v_{1}\right)=H\left(\cdot, v_{1}, L v_{D 2}, L v_{D 3}, L v_{D 4}, f\right) \\
v_{1}=v_{D 1} \text { on } \Gamma_{D}, \quad v \cdot\left(\varepsilon \nabla v_{1}\right)=g_{1} \text { on } \Gamma_{N}
\end{gathered}
$$

Thermodynamic equilibrium

Let $p \in\left(2, p_{0}\right]$,

$$
\begin{gathered}
Q=\left\{w=\left(v_{D}, g, f\right): v_{D} \in Y_{p}, \quad(g, f) \in Z\right. \\
\left.g_{i}=0, v_{D i}=\mathrm{const}, i=2,3,4, v_{D 2}>0, v_{D 3}+v_{D 4}=0\right\} \\
Y_{p}=\left(W^{1-1 / p, p}\left(\Gamma_{D}\right)\right)^{4}, \quad Z=L^{\infty}\left(\Gamma_{N}\right)^{4} \times L^{\infty}(\Omega) \times\left\{y \in L^{\infty}(\Omega): \operatorname{essinf}_{x \in \Omega} y>0\right\}^{k}
\end{gathered}
$$

Theorem 1. (Existence of thermodynamic equilibria)

Let $w^{*}=\left(v_{D}^{*}, g^{*}, f^{*}\right) \in Q$.
Then there exist $q_{0} \in(2, p]$ and $v_{1}^{*} \in W^{1, q_{0}}(\Omega)$ such that

$$
v^{*}=\left(v_{1}^{*}, L v_{D 2}^{*}, L v_{D 3}^{*}, L v_{D 4}^{*}\right)
$$

is a thermodynamic equilibrium.

Weak formulation

set

$$
\begin{aligned}
v & =V+L v_{D}, & w & =\left(v_{D}, g, f\right) \\
v^{*} & =V^{*}+L v_{D}^{*}, & w^{*} & =\left(v_{D}^{*}, g^{*}, f^{*}\right)
\end{aligned}
$$

Definition. Let $q \in(2, p]$. We define the open subset $M_{q} \subset X_{q} \times Y_{p}$,

$$
\begin{array}{r}
M_{q}=\left\{\left(V, v_{D}\right) \in X_{q} \times Y_{p} \text { with }\left|V_{i}+L v_{D i}\right|<\tau, i=1,3,4,\right. \\
\left.\frac{1}{\tau}<V_{2}+L v_{D 2}<\tau \text { on } \Omega\right\}
\end{array}
$$

where $\tau>1$ is such that $\left(V^{*}, v_{D}^{*}\right) \in M_{q_{0}}$

Weak formulation

define $\quad A_{q}: M_{q} \times Z \rightarrow X_{q^{\prime}}^{*}$

$$
\begin{aligned}
\left\langle A_{q}(V, w), \psi\right\rangle_{X_{q^{\prime}}} & =\int_{\Omega} \sum_{i, k=1}^{4} a_{i k}(\cdot, v) \nabla v_{k} \cdot \nabla \psi_{i} \mathrm{~d} x \\
& +\int_{\Omega}\left\{r(\cdot, v, f)\left(\exp \frac{v_{3}+v_{4}}{T}-1\right)\left(\psi_{3}+\psi_{4}\right)-H(\cdot, v, f) \psi_{1}\right\} \mathrm{d} x \\
& -\int_{\Gamma_{N}} \sum_{i=1}^{4} g_{i} \psi_{i} \mathrm{~d} \Gamma, \quad \psi \in X_{q^{\prime}}, \quad v=V+L v_{D}
\end{aligned}
$$

Problem (\mathbf{P}):

find (q, V, w) such that $q \in(2, p],(V, w) \in X_{q} \times Y_{p} \times Z$,

$$
\left(V, v_{D}\right) \in M_{q}, \quad A_{q}(V, w)=0
$$

Setting for the Implicit Function Theorem

equilibrium:

$$
A_{q_{0}}\left(V^{*}, w^{*}\right)=0
$$

differentiability:

$$
A_{q}: M_{q} \times Z \rightarrow X_{q^{\prime}}^{*} \text { is continuously differentiable for all } q \in(2, p]
$$

properties of the linearization in the equilibrium:
Let $w^{*}=\left(v_{D}^{*}, g^{*}, f^{*}\right) \in Q$, and $A_{q_{0}}\left(V^{*}, w^{*}\right)=0$.
Then there exists a $q_{1} \in\left(2, q_{0}\right]$ such that the Fréchet derivative

$$
\partial_{V} A_{q_{1}}\left(V^{*}, w^{*}\right) \in \mathcal{L I} \mathcal{I}\left(X_{q_{1}}, X_{q_{1}^{\prime}}^{*}\right)
$$

Sketch of the proof

$B_{q}: X_{q} \rightarrow X_{q^{\prime}}^{*}$,

$$
B_{q}:=\partial_{V} A_{q}\left(V^{*}, w^{*}\right) \circ D\left(v^{*}\right), \quad D\left(v^{*}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & v_{2}^{* 2} & 0 & 0 \\
0 & v_{2}^{v_{3}^{*}} & v_{2}^{* 2} & 0 \\
0 & v_{2}^{*} v_{4}^{*} & 0 & v_{2}^{* 2}
\end{array}\right) \in \mathcal{L} \mathcal{I} \mathcal{S}\left(X_{q}, X_{q}\right)
$$

main part of B_{q} : strongly coupled, symmetric, strongly elliptic
$B_{q}=L_{q}+K_{q}$
L_{q} injective, surjective for $q \in\left(2, q_{1}\right] \quad$ (regularity result in Gröger'89) K_{q} compact
$B_{q_{1}}$ Fredholm operator of index zero, $B_{q_{1}}$ injective
$B_{q_{1}}, \partial_{V} A_{q_{1}}\left(V^{*}, w^{*}\right) \in \mathcal{L} \mathcal{I} \mathcal{S}\left(X_{q_{1}}, X_{q_{1}}^{*}\right)$

Application of the Implicit Function Theorem

Theorem 2. (Local existence and uniqueness of steady states)
Let $w^{*}=\left(v_{D}^{*}, g^{*}, f^{*}\right) \in Q$, and let $\left(q_{0}, V^{*}, w^{*}\right)$ be the equilibrium solution to Problem (P) according to Theorem 1.

Then there exists $q_{1} \in\left(2, q_{0}\right]$ such that the following assertion holds: There exist neighbourhoods $\mathcal{V} \subset X_{q_{1}}$ of V^{*} and $\mathcal{W} \subset Y_{p} \times Z$ of $w^{*}=\left(v_{D}^{*}, g^{*}, f^{*}\right)$ and a C^{1}-map $\Phi: \mathcal{W} \rightarrow \mathcal{V}$ such that $V=\Phi(w)$ iff

$$
A_{q_{1}}(V, w)=0, \quad\left(V, v_{D}\right) \in M_{q_{1}}, \quad V \in \mathcal{V}, \quad w=\left(v_{D}, g, f\right) \in \mathcal{W}
$$

For data $w=\left(v_{D}, g, f\right)$ near $w^{*}=\left(v_{D}^{*}, g^{*}, f^{*}\right) \in Q$ there exists a locally unique solution $v=V+L v_{D}$ of the stationary energy model.

References

G. Albinus, H. Gajewski, and R. Hünlich, Thermodynamic design of energy models of semiconductor devices, Nonlinearity 15 (2002), 367-383.
A. Glitzky, R. Hünlich, Stationary solutions of two-dimensional heterogeneous energy models with multiple species, Banach Center Publ. 66 (2004), 135-151.
A. Glitzky, R. Hünlich, Stationary energy models for semiconductor devices with incompletely ionized impurities, to appear in ZAMM 11-2005.
K. Gröger, Initial-boundary value problems describing mobile carrier transport in semiconductor devices, Math. Univ. Carolin. 26 (1985), 75-89.
K. Gröger, $A W^{1, p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann. 283 (1989), 679-687.
L. Recke, Applications of the Implicit Function Theorem to quasi-linear elliptic boundary value problems with non-smooth data, Comm. Partial Differential Equations 20 (1995), 1457-1479.

Assumptions

(A1) Ω is a bounded Lipschitzian domain in $\mathbb{R}^{2}, \Gamma=\partial \Omega$, Γ_{D}, Γ_{N} are disjoint open subsets of Γ, mes $\Gamma_{D}>0$, $\Gamma=\Gamma_{D} \cup \Gamma_{N} \cup\left(\overline{\Gamma_{D}} \cap \overline{\Gamma_{N}}\right), \overline{\Gamma_{D}} \cap \overline{\Gamma_{N}}$ consists of finitely many points, $\Sigma \subset \Omega$ with mes $\Sigma=0$.
(A2) $\varepsilon \in L^{\infty}(\Omega), 0<\varepsilon_{0} \leq \varepsilon(x) \leq \varepsilon^{0}<\infty$ in $\Omega \backslash \Sigma$.

Definition.

Let $W \subset \mathbb{R}^{m}$ be an open set.
$b: \Omega \times W \rightarrow \mathbb{R}$ is of the class $D(W)$ iff b is a Caratheodory function, which is continuously differentiable with respect to the second argument and for which the function itself as well as its derivative with respect to the second argument are locally bounded and locally uniformly continuous.

Assumptions

(A3) $\kappa, \sigma_{n}, \sigma_{p}, \sigma_{n p}, P_{n}, P_{p}: \Omega \times W_{1} \rightarrow \mathbb{R}$ are of the class $D\left(W_{1}\right)$ with $W_{1}=(0, \infty) \times \mathbb{R}^{2}$.
For all $K>1$ there exists a $c_{K}>1$ such that
$\kappa\left(x, T, \zeta_{n}, \zeta_{p}\right), \sigma_{n}\left(x, T, \zeta_{n}, \zeta_{p}\right), \sigma_{p}\left(x, T, \zeta_{n}, \zeta_{p}\right) \in\left[1 / c_{K}, c_{K}\right]$
for $x \in \Omega \backslash \Sigma,\left(T, \zeta_{n}, \zeta_{p}\right) \in[1 / K, K] \times[-K, K]^{2}$.
$\sigma_{n p}\left(x, T, \zeta_{n}, \zeta_{p}\right) \geq 0$ for $x \in \Omega \backslash \Sigma,\left(T, \zeta_{n}, \zeta_{p}\right) \in W_{1}$.
(A4) $\quad F_{i}: \Omega \times W_{2} \rightarrow \mathbb{R}_{+}$are of the class $D\left(W_{2}\right)$ with $W_{2}=(0, \infty) \times \mathbb{R}$. For all $K>1$ there exist $\widehat{c}_{K}>0, c_{K}>1$ such that $\frac{\partial F_{i}}{\partial y}(x, T, y) \geq \widehat{c}_{K}$, $F_{i}(x, T, y) \in\left[1 / c_{K}, c_{K}\right]$ for $x \in \Omega \backslash \Sigma,(T, y) \in[1 / K, K] \times[-K, K]$, $\lim _{y \rightarrow-\infty} F_{i}(x, T, y)=0, \lim _{y \rightarrow+\infty} F_{i}(x, T, y)=+\infty$ for $x \in \Omega \backslash \Sigma$, $T \in(0, \infty), i=n, p$ and $i=1, \ldots, 2 k$.
For all $K>1$ there exists $c_{K}>0$ such that $F_{i}(x, T, y) \leq c_{K} \mathrm{e}^{c_{K}|y|}$ for $x \in \Omega \backslash \Sigma,(T, y) \in[1 / K, K] \times \mathbb{R}, i=n, p$.
(A5) $\quad r_{0}, r_{j i}: \Omega \times W_{3} \rightarrow \mathbb{R}_{+}$are of the class $D\left(W_{3}\right)$ with $W_{3}=\mathbb{R} \times(0, \infty) \times \mathbb{R}^{2}$. For all $K>1$ there exists a $c_{K}>1$ such that $r_{j i}\left(x, \varphi, T, \zeta_{n}, \zeta_{p}\right) \in$ $\left[1 / c_{K}, c_{K}\right]$ for $x \in \Omega \backslash \Sigma,\left(\varphi, T, \zeta_{n}, \zeta_{p}\right) \in[-K, K] \times[1 / K, K] \times$ $[-K, K]^{2}, j=1, \ldots, k, i=1,2$.

