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Energy models with incompletely ionized impurities

mass and charge and energy transport in heterogeneous semiconductor devices

described by

e continuity equations for densitiesn, p
of electrons e~ and holes h*

e Poisson equation for the electrostatic potential ¢
e balance equation for the density of the total energy e

e reaction equations for incompletely ionized impurities
(radiation-induced traps, other deep recombination centers)
Xj, X7 j=1,...,k
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Energy models with incompletely ionized impurities

Mathematical problems

non-smooth data:

e heterogeneous materials — physical quantities jump at material interfaces
discontinuities w.r.t. space variable

e domain €2 in general non-smooth, but only Lipschitz

e mixed boundary conditions

strongly coupled PDES:

e coefficients depend on the state variable

e equationsdegenerateif N =0, p=00r T = ¢
e dlipticity condition is not fulfilled uniformly

constraints n, p, T >0

restrict ustothe ~ Stationary energy model
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Energy models with incompletely ionized impurities

Stationary energy model for devices with incompletely ionized impurities

(1) -V (8V§0)—fo—n+ p+Zq.u., V-je=o,

(2 Jn—Ro—l-ZRJl, Jp—Ro+ZRjz,

(3) R]l— RJZv u2j—l—|—u2j — fja J :19'--ak°

3 dielectric permittivity

fo, fj prescribed charge density and particle densities

Je flux density of the total energy

Jns Jp particle flux densities of electrons and holes

Rj1, Rj2 reaction rates of the ionization reactions

Ro reaction rate of the direct € ectron-hole recombination-generation
e +ht=0
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Energy models with incompletely ionized impurities

Impurities: X; occur in two charge states, take place ionization reactions

If X isan acceptor-like impurity, X; itsion, the reactions are
e‘+Xj\:Xj‘, h++Xj‘\:\Xj

Upj_1 —density of Xj‘, Up; —density of X, Opj_1=-1, qg2; =0

If Xj isadonor-like impurity, X7 itsion, the reactions are
e‘—|—X}L¢Xj, h+—|—Xj¢X}|—

uzj_l—density of Xj, U2j —density of X_-'_, Qoj—-1 = 0, Q) = 1
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Energy models with incompletely ionized impurities

system has to be completed by

e State equations
e kinetic relations (reactions, fluxes)
e mixed boundary conditions

denote
¢n, Cp — electrochemical potentials of electrons and holes
i — electrochemical potentials of immobile (neutral, ionized)

1=1,...,2K Impurities
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Elimination of the constraints (3)

state equations

Ui — Fi(-,T, i — q””), i =1..2k n= Fn(-,T, G‘“”), D= Fp(-,T,

T

Kinetic relations (reaction rates)
RO — rO(’ (P, Ta {n, é‘p) (1 _ eXp é‘n_':'_{p) ’
Riv=ri1(, 0, T, tn. p) (exp 21 exp@),
Ri2 =2l @, T, &n, ¢p) (exp 2 — exp 235e

under reliable assumptions eiminate the constraints (3) by evaluating the subsystems

U2j—1+U2j:fj, Rj]_: Rjz, j=1,...,k

obtain

CZJ — Sj ('a §0, T, é‘n, {p, fj)a 4‘2]—1 — /S\j('a §0, T, {n, {pa fj)a

ji=1...

, k
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Elimination of the constraints (3)

use state equations and expression for ¢, 1 = 1, ..., 2K, to write right hand sides
in (1), (2):
2k
fO_n‘|‘ p—l_ qlul e H(',QO, Ta {n,é‘p, fO, fl,"'a fk),
i=1
k
Ro-l—Zle — R, @, T, n, Cp, fo, f1,..., 1)
j=1

— r(., Q, T, Cn, é'p, fo, f]_, ceey fk) (1 — exp fn-_::{p)
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Reduced energy model

/8 0 0 0 \ Vo /H
0 k+wp w1 w2 vT | 0 .
@ -v-|, 5, on -+ Oy O ve, | = = inQ,
\ 0 @ Onp op+om ) \ Vip \ R

(3)\1 ) — ( On 1+ Onp Onp )( En ) wo = (Zn + PnT)ZU\1+(§p+ PpT)&)},
p

(wl):(0n+0np Onp )(§n+PnT)

coefficientsk > 0, on, op > 0, onp > 0, P, P, depend in a nonsmooth way on X,
smoothly on the state variables,
system strongly coupled, matrix not symmetric

9 lwlilal's



Reduced energy model

possible to change the generalized forces of the fluxes to symmetrize the matrix

(3)+(3)+ (9

and the fluxes (je, Jn, Jp) the Onsager relations are fulfilled

for the generalized forces
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Reduced energy model

['p and I'y denote digoint, relatively open parts of the boundary I' = 02 with
mes(I'\ I'pUT'y)) =0, UTI\ regular inthe sense of Groger

mixed boundary conditions

@ = Up1, T = vpy, {n = UD3, {p —=vpsa OnI'p
O 0L Vo= —V-jn=0s —v-j,=
V (SVgD) - gl’ V Je — 92, V Jn - 93, V Jp - g4 on 1_1N

notation
v=1(¢, T,%n¢p), vo= (D1, ...,Vpa), 9=(01,....04), T =(~fo, fo,..., f)
w = (vp, g, f) (vector of data)
look for weak solutions of (4), (5) intheform
v=V + P

where e vP = Lup continuation of the Dirichlet values vp to
¢ V fulfils homogeneous Dirichlet bcson I'p
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Outline of theresults and methods for the reduced stationary energy mode

result:
existence of athermodynamic equilibrium

vy =const, 1 =2,3,4, v3+v4=0
local existence and uniqueness result near this thermodynamic equilibrium

methods:
e prove existence of athermodynamic equilibrium v with T, n, p > 0O
e apply Implicit Function Theorem

problems;

e suitable choice of function spaces and weak formulation

supply requirements of Implicit Function Theorem

differentiability properties of Nemyzki operators

regularity results for strongly coupled lin. ell. systems with mixed bcs
technique works in 2D only
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Continuation operator L

Let p € [1, o0), we define

Xp = (Wy'P(QU ')
Yp = (WEY/PP(Dp))s

Lemma 1. There existsa pg > 2 such that for al p € [2, pg] the following assertion
holds true:
For al vp € Yp there exists a unique solution v° € (W P(Q2))* of

D

. v, .
Av° =0inQ, v° =wvp;onTp, av—'=OonFN, i =123 4.
V

vP isgiven by vP = Lvp where L € L(Yp, (WHP(Q))%).
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Thermodynamic equilibrium

necessary conditions for the existence of thermodynamic equilibrium:

data has to fulfil
vpi =const, 1 =2,3,4, wvp3z+ vpsa=0,

vp2 >0, g =0 1=234

evaluate thermodynamic equilibrium v =V + Lvp
set
Vi=0, v =Lup, 1=234

v1 has to satisfy the nonlinear Poisson equation
—V - (eVv1) = H(-, v1, Lvpo, Lups, Lvpg, T)

vi=vp1onl'p, v-(eVuvy) = gronl'y

14
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Thermodynamic equilibrium

L et p S (2’ pO];

Qz{w:(vD,g,f) tvp € Yy, (0, f) € Z,

g =0, vpi =const, i =2,3,4, vpp > 0, vpg + vps = 0}
Yo = (WEYPPIE)Y 7 = L¥T)*xL®(@)x{y € L¥(Q) : essinfyeq ¥ > 0}

Theorem 1. (Existence of thermodynamic equilibria)
Let w* = (v, g%, ) € Q.
Then there exist o € (2, p] and v} € W%(Q) such that

* * * * *
vV = (Ul, LUDZ’ LUD3, LUD4)

IS a thermodynamic equilibrium.
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Weak formulation

<
|

= V + Lup, w = (vp, g, f)
v* = V* + Lvg, w* = (v, g%, %)

Definition. Let g € (2, p]. We define the open subset My C Xq x Yy,
Mg = {(V, vp) € Xq x Ypwith |Vi + Luvpi| <7, i =1,3,4,

%<V2—|—LUD2<‘L' onQ}

where r > 1issuchthat (V*, vy) € Mg,
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Weak formulation

define  Aq: Mg x Z — X

(aCV.w) i, = | S e 1) Vo Vi o

I,k=1

/ {r("v’ f) (expv3+v4_ 1) (¢3+¢4) - H(',U, fh”l} dX

T

/Zg.w.dl“ veXy, v=V+Lup
r

N |=

Problem (P):
find (q, V, w) suchthat q € (2, pl, (V,w) € Xq x Yp X Z,

(V,vp) e Mg, Aq(V,w)=0
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Setting for the Implicit Function Theorem

equilibrium:
Agp,(V5, w™) =0

differentiability:
Aq: Mg x Z — X iscontinuously differentiable for al g € (2, p]

properties of the linearization in the equilibrium:

Let w* = (v, g%, %) € Q, and Ay (V*, w*) = 0.
Then thereexistsaq; € (2, qo] such that the Frechet derivative

dv A (V*, w") € LIS(Xq, X3
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Sketch of the proof

Bg : Xq — X,

1 0 O O

(O vi2 0 0 \
0 vivi vi2 0O
K 0 v%v% 02 V32 )

By 1= dv Aq(V*, w*) o D(v¥), D(v*) = e LIS(Xq, Xq)

main part of By: strongly coupled, symmetric, strongly elliptic

Ly Injective, surjectivefor q € (2,01]  (regularity result in Groger’ 89)
Kq compact

By, Fredholm operator of index zero, By, injective

By, v Aq,(V*, w*) € LIS(Xq, XE)
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Application of the Implicit Function Theorem

Theorem 2. (Local existence and uniqueness of steady states)
Let w* = (vh, 0% %) € Q, andlet (qo, V*, w*) be the equilibrium solution to Prob-
lem (P) according to Theorem 1.

Thenthereexistsq; € (2, go] such that the following assertion holds. There exist neigh-
bourhoods V C Xq, of V¥ and W C Y, x Z of w* = (v}, g%, f*) and a Ct-map
®: W — Vsauchtha V = & (w) iff

AV, w)=0, (V,up) e Mg, VeV, w=(vpg, f)eW.

For dataw = (vp, g, f) near w* = (v§, g% %) € Q there exists a locally unique
solution v = V + Lvp of the stationary energy model.
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Assumptions

(A1) < isabounded Lipschitzian domaininR?, ' = 9%,
['p, 'y aredigoint open subsetsof I', mesI'p > 0,
=TpUl'nNUTpNTIyN), 'pNIy consistsof finitely many points,
> C Qwith mesX =0.

(A2) e lL®(Q),0<eg<eX)<e’<o0inQ\X.

Definition.

Let W C R™ be an open s&t.

b: QxW — Risof theclass D(W) iff b is a Caratheodory function, which is con-
tinuoudly differentiable with respect to the second argument and for which the function
Itself as well as its derivative with respect to the second argument are locally bounded
and locally uniformly continuous.
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Assumptions

(A3)

(A4)

(A5)

K, On, Op, Onp, Pn, Pp: Q2 x W; — R are of theclass D(W;) with
W; = (0, 0o) x R2.

For al K > 1thereexistsack > 1 such that

K(X, T, ¢n, ¢p), on(X, T, &n, Cp)rop(X, T, ¢n, &p) € [1/Ck, Ck]
forx € Q\ =, (T, ¢, ¢p) € [1/K, K] x [—K, K2

onp(X, T, ¢n, £p) = 0for x € 2\ Z, (T, &n, £p) € Wh.

F: Q xW, - R, areof theclass D(W,) with W, = (0, 00) x R.
Forall K > 1thereexistCx > 0, ck > 1 such that E;—';‘(X, T,y) > Ck,
Fi(x, T,y) e[l/ck,ck]forx e Q\ X, (T,y) €[1/K, K] x [-K, K],
limy_ _ R T,y) =0, limy_, KX T,y) =4ocoforx e @\ %,
Te0,00),l =n,pandi =1,...,2k

For all K > 1thereexistsck > Osuchthat F(x, T,y) < cxe%V for
XxeQ\X,(T,y) e [1/K, K] xR,i =n, p.

ro, fji: 2xWs; — R, areof theclass D(Ws) withWs = R x (0, 00) x R?.
For all K > 1thereexistsack > 1suchthatri(x,e, T,¢n, ¢p) €
[1/ck.ck] for x € Q\ %, (o, T,¢n. ¢p) € [—K, K] x [1/K, K] x
[-K, K% j=1...,ki=12
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