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Introduction

mass and charge and energy transport in heterogeneous semiconductor devices

described by

• continuity equations for densities n, p

of electrons e− and holes h+

• Poisson equation for the electrostatic potential ϕ

• balance equation for the density of the total energy e

• reaction equations for incompletely ionized impurities

Xj, X
+(−)
j , j = 1, . . . , k

(radiation-induced traps, other deep recombination centers)
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Introduction

Mathematical problems

non-smooth data:
• heterogeneous materials – physical quantities jump at material interfaces

discontinuities w.r.t. space variable
• domain Ω in general non-smooth, but only Lipschitz
• mixed boundary conditions

strongly coupled PDEs:
• coefficients depend on the state variable
• ellipticity condition is not fulfilled uniformly
• equations degenerate if n = 0, p = 0 or T = ∞

Poisson equation singularly perturbed

constraints n, p, T > 0

restrict us to the stationary energy model
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Introduction

Stationary energy model for devices with incompletely ionized impurities

−∇ · (ε∇ϕ) = f0 − n+ p +
2k∑

i=1

qiui, ∇ · je = 0,(1)

∇ · jn = R0 +
k∑

j=1

Rj1, ∇ · jp = R0 +
k∑

j=1

Rj2,(2)

Rj1 = Rj2, u2j−1 + u2j = fj, j = 1, . . . , k.(3)

ε dielectric permittivity
f0, fj prescribed charge density and particle densities
je flux density of the total energy
jn, jp particle flux densities of electrons and holes
Rj1, Rj2 reaction rates of the ionization reactions
R0 reaction rate of the direct electron-hole recombination-generation

e− + h+

 0
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Introduction

impurities:

Xj occur in different charge states, take place ionization reactions

If Xj is an acceptor-like impurity, X−
j its ion, the reactions are

e− + Xj 
 X−
j , h+ + X−

j 
 Xj

If Xj is a donor-like impurity, X+
j its ion, the reactions are

e− + X+
j 
 Xj, h+ + Xj 
 X+

j

for donors Xj: u2j−1 – density of Xj, u2j – density of X+
j

for acceptors Xj: u2j−1 – density of X−
j , u2j – density of Xj

charge numbers: q2j−1 :=

{
0 if Xj is a donor

−1 if Xj is an acceptor
, q2j := 1 + q2j−1
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Introduction

system has to be completed by

• state equations
• kinetic relations (reactions, fluxes)
•mixed boundary conditions

denote

ζn, ζp – electrochemical potentials of electrons and holes
ζi – electrochemical potentials of immobile (neutral, ionized)
i = 1, . . . , 2k impurities
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Elimination of the constraints (3)

state equations

ui = Fi(·, ϕ, T, ζi), i = 1, . . . , 2k, n = Fn(·, ϕ, T, ζn), p = Fp(·, ϕ, T, ζp)

kinetic relations (reaction rates)

Rj1 = rj1(·, ϕ, T, ζn, ζp)
(
exp

ζ2j−1

T − exp
ζ2j+ζn
T

)
,

Rj2 = rj2(·, ϕ, T, ζn, ζp)
(
exp

ζ2j
T − exp

ζ2j−1+ζp
T

)
,

R0 = r0(·, ϕ, T, ζn, ζp)
(
1 − exp

ζn+ζp
T

)

under reliable assumptions eliminate the constraints (3) by evaluating the sub-
systems

u2j−1 + u2j = fj, Rj1 = Rj2, j = 1, . . . , k

obtain

ζ2j = Sj(·, ϕ, T, ζn, ζp, fj), ζ2j−1 = Ŝj(·, ϕ, T, ζn, ζp, fj), j = 1, . . . , k
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Elimination of the constraints (3)

use state equations and expression for ζi, i = 1, . . . , 2k, to write right hand sides
in (1), (2):

f0 − n + p +
2k∑

i=1

qiui 7→ H(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk),

R0 +
k∑

j=1

Rj1 7→ R(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk)

= r(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk)
(
1 − exp

ζn+ζp
T

)
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Reduced energy model

−∇ ·




ε 0 0 0
0 κ + ω̂0 ω1 ω2

0 ω̂1 σn + σnp σnp
0 ω̂2 σnp σp + σnp







∇ϕ
∇T
∇ζn
∇ζp


 =




H
0
R
R


 in Ω,(4)

where

(
ω̂1

ω̂2

)
=

(
σn + σnp σnp
σnp σp + σnp

)(
Pn
Pp

)
, ω̂0 = (ζn + PnT ) ω̂1 + (ζp + PpT ) ω̂2,

(
ω1

ω2

)
=

(
σn + σnp σnp
σnp σp + σnp

)(
ζn + PnT
ζp + PpT

)
,

H = H(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk), R = R(·, ϕ, T, ζn, ζp, f0, f1, . . . , fk)

with coefficients κ > 0, σn, σp > 0, σnp ≥ 0, Pn, Pp,
all depending in a nonsmooth way on x, smoothly on the state variables,
system strongly coupled, matrix not symmetric
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Reduced energy model

ΓD and ΓN denote disjoint, relatively open parts of the boundary Γ = ∂Ω with
mes(Γ \ (ΓD ∪ ΓN)) = 0

mixed boundary conditions

ϕ = vD1, T = vD2, ζn = vD3, ζp = vD4 on ΓD
ν · (ε∇ϕ) = g1, −ν · je = g2, −ν · jn = g3, −ν · jp = g4 on ΓN

(5)

notation

v = (ϕ, T, ζn, ζp), vD = (vD1, . . . , vD4), g = (g1, . . . , g4), f = (f0, f1, . . . , fk)

w = (vD, g, f) (vector of data)

look for weak solutions of (4), (5) in the form

v = V + vD

where • vD = LvD continuation of the Dirichlet values vD to Ω
•V fulfils homogeneous Dirichlet bcs on ΓD
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Outline of the results and methods for the reduced stationary energy model

result:
existence of a thermodynamic equilibrium

v∗i = const, i = 2, 3, 4, v∗3 + v∗4 = 0

local existence and uniqueness result near this thermodynamic equilibrium

methods:
• prove existence of a thermodynamic equilibrium v∗ with T ∗, n∗, p∗ > 0
• apply Implicit Function Theorem
• we obtain only local assertions

but we needn’t global assumptions

problems:
• suitable choice of function spaces and weak formulation
• supply requirements of Implicit Function Theorem
• differentiability properties of Nemyzki operators
• regularity results for strongly coupled lin. ell. systems with mixed bcs
• technique works in 2D only
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Continuation operator L

Let s ∈ [1,∞), we define

Xs = (W 1,s
0 (Ω ∪ ΓN))4

Ys = (W 1−1/s,s(ΓD))4

Lemma 1. There exists a p0 > 2 such that for all p ∈ [2, p0] the following assertion
holds true:
For all vD ∈ Yp there exists a unique solution vD ∈ (W 1,p(Ω))4 of

∆vDi = 0 in Ω, vDi = vDi on ΓD,
∂vDi
∂ν

= 0 on ΓN , i = 1, 2, 3, 4.

vD is given by vD = LvD where L ∈ L(Yp, (W
1,p(Ω))4).
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Thermodynamic equilibrium

necessary conditions for the existence of thermodynamic equilibrium:

data has to fulfil

vDi = const, i = 2, 3, 4, vD3 + vD4 = 0,

vD2 > 0, gi = 0, i = 2, 3, 4

corresponding equilibrium densities n, p are obtained by the state equations

n = Fn(·, v1, LvD2, LvD3), p = Fp(·, v1, LvD2, LvD4)

where v1 has to satisfy the nonlinear Poisson equation

−∇ · (ε∇v1) = H(·, v1, LvD2, LvD3, LvD4, f)

v1 = vD1 on ΓD, ν · (ε∇v1) = g1 on ΓN
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Thermodynamic equilibrium

Let p ∈ (2, p0],

Q =
{
w = (vD, g, f) : vD ∈ Yp, (g, f) ∈ Z,

gi = 0, vDi = const, i = 2, 3, 4, vD2 > 0, vD3 + vD4 = 0
}

Yp = (W 1−1/p,p(ΓD))4, Z = L∞(ΓN)4 ×L∞(Ω)× {y ∈ L∞(Ω) : essinfx∈Ω y > 0}k

Theorem 1. (Existence of thermodynamic equilibria)

Let w∗ = (v∗D, g
∗, f ∗) ∈ Q.

Then there exist q0 ∈ (2, p] and v∗1 ∈ W 1,q0(Ω) such that

v∗ = (v∗1, Lv
∗
D2, Lv

∗
D3, Lv

∗
D4)

is a thermodynamic equilibrium.
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Weak formulation

set
v = V + LvD, w = (vD, g, f)
v∗ = V ∗ + Lv∗D, w∗ = (v∗D, g

∗, f ∗)

Definition. Let q ∈ (2, p]. We define the open subset Mq ⊂ Xq × Yp,

Mq =
{
(V, vD) ∈ Xq × Yp with |Vi + LvDi| < τ, i = 1, 3, 4,

1
τ
< V2 + LvD2 < τ on Ω

}

where τ > 1 is such that (V ∗, v∗D) ∈Mq0
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Weak formulation

define Aq:Mq × Z → X∗
q′

〈Aq(V, w), ψ〉Xq′ =

∫

Ω

4∑

i,k=1

aik(·, v)∇vk · ∇ψi dx

+

∫

Ω

{
r(·, v, f)

(
exp

v3 + v4

T
− 1

)
(ψ3 + ψ4) −H(·, v, f)ψ1

}
dx

−

∫

ΓN

4∑

i=1

giψi dΓ, ψ ∈ Xq′, v = V + LvD

Problem (P):

find (q, V, w) such that q ∈ (2, p], (V, w) ∈ Xq × Yp × Z,

(V, vD) ∈Mq, Aq(V, w) = 0
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Implicit Function Theorem

equilibrium:
Aq0(V

∗, w∗) = 0

differentiability:
Aq:Mq × Z → X∗

q′ is continuously differentiable for all q ∈ (2, p]

properties of the linearization in the thermodynamic equilibrium:

Let w∗ = (v∗D, g
∗, f ∗) ∈ Q, and Aq0(V

∗, w∗) = 0.
Then there exists a q1 ∈ (2, q0] such that the Fréchet derivative

∂VAq1(V
∗, w∗):Xq1 → X∗

q′1

is an injective Fredholm Operator of index zero.
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Local existence and uniqueness result

Theorem 2. (Local existence and uniqueness of steady states)

Let w∗ = (v∗D, g
∗, f ∗) ∈ Q, and let (q0, V

∗, w∗) be the equilibrium solution to Prob-
lem (P) according to Theorem 1.

Then there exists q1 ∈ (2, q0] such that the following assertion holds: There exist
neighbourhoods V ⊂ Xq1 of V ∗ and W ⊂ Yp×Z of w∗ = (v∗D, g

∗, f ∗) and a C1-map
Φ:W → V such that V = Φ(w) iff

Aq1(V, w) = 0, (V, vD) ∈Mq1, V ∈ V, w = (vD, g, f) ∈ W.

For data w = (vD, g, f) near w∗ = (v∗D, g
∗, f ∗) ∈ Q there exists a locally unique

solution v = V + LvD of the stationary energy model.
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G. Albinus, H. Gajewski, and R. Hünlich, Thermodynamic design of energy mod-
els of semiconductor devices, Nonlinearity 15 (2002), 367–383.
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