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Introduction

mass, charge and energy transport in heterogeneous semiconductor materials

mass and charge transport of charged and uncharged particles —
continuity equations + Poisson equation
energy transport resulting in a variation of the lattice temperature —
heat flow equation or balance equation for the densities of entropy or energy

heterogeneity: heterogeneous materials, mixed boundary conditions

fields of application:

e application of semiconductor devices
e semiconductor technology

e other problems in electrochemistry
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Instationary energy model

Xi, 1=1,...,n - species Ui - reference density

Ui - particle density Ei - reference energy

Gi - electrochemical potential ¢ - electrostatic potential
di - charge number T - lattice temperature

e - density of the internal energy S - entropy density

e - specific energy S - specific entropy

e - lattice energy S. - lattice entropy

ansatz for the state equations

U = Ui(x,T) eléi—Ge—EX,T)/T

n
0
e=e(T gu- X, Ui, T), =E+T(TdnG) - E), '=-—
L( )+i:1 |a( I ) & |‘|‘ ( ( |) |) 9T

n
u.
s=s(T+ ) usXu.T), s=1+Tdnt) - E —In=
i—1 Ui
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Instationary energy model

reversible, charge preserving reactions
Ol]_X]_"_..."_aan ﬁﬁle"‘...—l_anXn

stoichiometric coefficients (o, B) = (a1, ..., 0n, B1, ..., Bn) € R

reaction rates according to the mass action law

Ra,B = I4p(X, U, T, ¢) (eZin:lOlié“i/T _ eZinzlﬂiéTi/T) . (@, B)eR

Energy models for heterogeneous semiconductor structures 4 [wlilals



Instationary energy model

ansatz for particle flux densities |;j and entropy flux density |s

n
ji==> o u,T)(Vi+ P, u,THVT), i=1....n
k=1
k(x,u, T L _
Js = — ( T )VT+ P(x,u, T)Ji
=1

Oik, kK - conductivities, P, - transported entropies

n
oik =0k, Y _oik(X U DYk = oo DyII® VyeR" «(x,u,T)=ko(u,T)
I,k=1

with og(U, T), xo(U, T) > O for all non-degenerated states U, T, no sign condition for P,

for isothermal case (VT =0): js= >, Pji
explains the meaning of P as transported entropies
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Instationary energy model

entropy formulation

B A T

In Oni *** Onn Tn Vin
\js) \771 e Tp %+Tn+1) KVT
n n
T :Zo'ikpk, i =1, ...,n, Thtl = ZO’ikP, Pk
k=1 I,k=1

matrix is symmetric, positive definite for non-degenerated states — Onsager’s relations
are fulfilled for fluxes (J1, ..., Jn, Js) and generalized forces (V¢y, ..., ViEn, VT)
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Instationary energy model

N continuity equations, entropy balance equation, Poisson equation

du; . :

8_t'+v.h = ) (Bi—a)Ry i=1....n
(a,B)ER

S oo _ g

ot s =

n
~V-(eVp) = T+ qu
=1

entropy production rate
n

Td=—Zji'V§i—js'VT+ Z RaﬂZ(Oli—,Bi)é“i

i=1 (a,B)ER i=1
d > O, and for non-degenerated states

(Vi =0, i=1..,n
d=0 <= { VT=0
Y@ =BG =0 V(o B)eR

conditions characterize thermodynamic equilibrium

Energy models for heterogeneous semiconductor structures 7

lwl il al's



Instationary energy model

Reformulation of the entropy balance equation by an energy balance equation

define the energy flux density

n n
je=Tis+ Y &ji=—«VT+> (& +RD)j
=1 =1

obtain by the state equations the balance equation for the internal energy

de 4
ﬁwwe:w-;mi
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Instationary energy model

Onsager’s relations for fluxes (J1, ..., Jn, Je) and generalized forces (V¢y, ..., ViEn, VT)

are not fulfilled
change of generalized forces to (V[¢1/T1, ..., V[¢n/T1, V[=1/T))

(1'1\ (011T o o1l Ty \ (V[é“l/T] \

oml -+ oml ?n V[é‘n/T]

Jn
\ e / \ % % kT24%a ) \ V=TI

n n
'ﬁ=k2;aikT<ck+ PT), i=1,..,n, %“n+1=_kzlaikT<ci + P T) (¢ + PT)
— I, K=

matrix is symmetric, positive definite for non-degenerated states = Onsager’s relations
are fulfilled for fluxes (]1,..., Jn, Je) and generalized forces (V[¢1/T1,...,V[¢n/ T, V[=1/T))
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Instationary energy model

define total energy density

~ € 5
e=e+ ;|Vy
2

and total energy flux

. d(eV)

Je=le ot

balance equation for the internal energy ‘ 9a
Poisson equation (differentiated by time) » — 3 +V.-jg=0
continuity equations with charge preserving reactions |

Conservation law for the total energy
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Instationary energy model

total entropy
S(t) = / S(X, t) dx
Q

If i -v=020, Je-v=0o0n 0L, then entropy balance equation and d > 0 —

d 0 LNy 1.

=1

—Sis a Lyapunov function of the evolution system in the energy formulation
(at least formally)
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Stationary energy model

consider the stationary problem in the energy formulation in 2D
reactions are charge preserving —

n n
Vije=¢V-> Gli=¢ > > G(Bi—a)Ry=0
i=1 (a.B)eR i=1

results the system of equations

V.ji = Z Bi —ai)Rys, 1=1,...,n
. (a,B)ER
Ve 0 L in Q C R?

n
~V-(eVe) = f+) qu
=1

y

for (J1, ..., Jn, Je) and generalized forces (V[¢1/T1, ..., V[¢n/T1, V[—=1/T]) Onsager's

relations are valid

Energy models for heterogeneous semiconductor structures 12 [wlilals



Stationary energy model

introduce new variables Z=(z Zni2) = & o 1
p— To oo oy n_|_2 _I_,...,_I_, _I_,gO

reformulate the state equations, reaction rates Ryg

000 = Hi(X,2),  Rup(x,2) = (X, 2) (€Zm% — eXi=h)

strongly coupled nonlinear (not uniformly) elliptic system

( a1 -+ Aner O \ ( Vz; \ ( Ry \
: . : 0 : :
- V. an1 - anner O Vz, = Ry
ant11 - @nyingr O VZn1 0

\ 0 0 0 &)\vVzo ) \ f4+30 k)

i = ik = gk(X, Z(X)), & = &(X)
R =2 wper(Bi — i) Rup(X, 2(X)), Hk = Hi(X, (X))
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Stationary energy model

mixed boundary conditions

z =22, i=1...,n+2 on I'p
v-Yilaw@Vac=g, i=1....,n4+1  v-(6VZy2) =0n2 on Dy
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Stationary energy model

if a thermodynamic equilibrium satisfies the boundary conditions, the data has to fulfil

z° = const, i =1,...,n, Zinzl(ozi — ,Bi)ZiD =0 V(a, B) € R,

D

npp=const <0, g =0 1=1...,n+1

Z

corresponding equilibrium densities U;j are obtained by the state equations

D D :
U =Hi(,z7,...,Z,1,Zny2), 1=1,...,N

where Z,,2 has to satisfy the nonlinear Poisson equation

n
—V . (eVzp) =1 + ZQi Hi(, z7, ..., Zr?+1, Zn42)
i—1

D
Zny2 =Zn,o0onI'p, v-(eVZy2) = gny2on 'y
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Restricted thermodynamic equilibrium

For the Dirichlet data we suppose that there exists a p > 2 such that ZiD on I'p are traces
of functions ZiD e WHP(Q), i =1,...,n+ 2, with Z 1 <0in Q

Q={w=(2"g9, f) e WHP(Q)"?* x L®(I"\)"* x L®(Q):
n
g =0 2" =const,i =1..n+1 20, <0, Y (¢i—)z =0V(e B) € R}

=1

Theorem 1. (Existence of restricted thermodynamic equilibria)

Let w* = (z°*, g*, f*) € Q.

Then there exist (o € (2, p] and z,, € W% (Q) such that
Z"=(z7", ..., n+1, Znio)

is a restricted thermodynamic equilibrium.
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Weak formulation

Let s € [1, 00), we define
Xs = (WyS(2 U T'y))"+2
Ys = (WLS())n+2

We set
Z

Z>I<

Z+ 7", (z°, 9, f)
Z*—I—ZD*, ( D>|< >|< f*)

Definition. Let q € (2, p]. We define the open subset Mq C X4 x Y,

—T < Zn+1—|—zr?+1 < —% on €2 }

where 7 > 1 is such that (Z*, zP*) e Mg,
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Weak formulation

define  Fq: Mg x L®(T\)™? x L®(Q) — X5

n+1
(Fq(Z, w), ¥)x, =f { ) a2V Vi + eVzaia- Viinia) dX
Q

I,k=1

+/Q{ > Raﬂ(-,z)Z(ozi — B)Vi + h(-, 2)¥ny2} dx

(a,B)eR

n+2
/ me—ZdX_/ Zglmdr Wexq’
I'n

Problem (P):
Find (g, Z, w) such that g € (2, p], (Z, w) € Xq X Yp x L®(TN)"2 x L2(Q),

(Z,2°) e Mg, Fq(Z,w) =0.
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Implicit Function Theorem

equilibrium:

qu(z*, w*) — O

differentiability:
Fq: Mg X L®(TN)"2 x L®(Q) — X;/ is continuously differentiable for all g € (2, p].

properties of the linearization in the restricted thermodynamic equilibrium:

Let w* = (zP*, g*, f*) € Q, and Fo (£, w*) = 0.
Then there exists a g1 € (2, (o] such that the Fréchet derivative

is an injective Fredholm Operator of index zero.
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Local existence and uniqueness result

Theorem 2. (Local existence and uniqueness of steady states)
Let w* = (zP*, g*, f*) € Q, and let (Cp, Z*, w*) be the equilibrium solution to Problem
(P) according to Theorem 1.

Then there exists 1 € (2, o] such that the following assertion holds: There exist neigh-
bourhoods U C Xg, of Z* and W C Y, x L)% x L®(Q) of w* = (zP*, g*, %)
and a Cl-map ®: W — U such that Z = ®(w) iff

F,(Z,w)=0, (Z,Z°)eMg, ZeU, w=(Z"g, f)eWw.

For data w = (Z°, g, f) near w* = (zP*, g*, f*) € Q there exists a locally unique
solution Z = Z 4+ zP of the stationary energy model.
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Corollary

Qu={w=(2"9, f)eYpx LT x L®(Q): 27, <0} > Q

Let w = (zP, g, f) € Q1 be given. Then there are constants q € (2, p], € > 0 such
that the following assertions hold: If

IVZP|lLpy <€, i=1,....,n4+1,

1D (e = B)ZP Iy <€ V(e B) €R,
=1

IGillLery <€, T=1....,n+1,

then there exists a Z € Xq such that (q, Z, w) is a solution to (P). This solution lies
in a neighbourhood of an equilibrium solution (g, Z*, w*) to Problem (P), and in this
neighbourhood there are no solutions (q, Z, w) with Z # Z.
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Outlook

e boundary conditions formulated in other quantities
(resulting in nonlinear Dirichlet boundary conditions)

e boundary conditions of third kind are more realistic
e different types of bcs for the different equations

e different domains of definition for the several equations

e models containing traps, which are immobile but can be ionized

e anisotropic materials
e global results

e instationary problem

o 3D
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