

WIAS-Day 26. Februar 2004

Annegret Glitzky

Energiemodelle für heterogene Halbleiterstrukturen DFG-Projekt GL 359/1-1

Introduction

mass, charge and energy transport in heterogeneous semiconductor materials

mass and charge transport of charged and uncharged particles \Longrightarrow continuity equations + Poisson equation energy transport resulting in a variation of the lattice temperature \Longrightarrow heat flow equation or balance equation for the densities of entropy or energy

heterogeneity: heterogeneous materials, mixed boundary conditions

fields of application:

- application of semiconductor devices
- semiconductor technology
- other problems in electrochemistry

$$X_i, \ i=1,\dots,n$$
 - species \overline{u}_i - reference density E_i - reference energy ζ_i - electrochemical potential φ - electrostatic potential q_i - charge number q_i - lattice temperature q_i - density of the internal energy q_i - entropy density q_i - specific energy q_i - lattice entropy q_i - lattice entropy

ansatz for the state equations

$$u_{i} = \overline{u}_{i}(x, T) e^{(\zeta_{i} - q_{i}\varphi - E_{i}(x, T))/T}$$

$$e = e_{L}(T) + \sum_{i=1}^{n} u_{i}e_{i}(x, u_{i}, T), \quad e_{i} = E_{i} + T(T(\ln \overline{u}_{i})' - E_{i}'), \quad ' = \frac{\partial}{\partial T}$$

$$s = s_{L}(T) + \sum_{i=1}^{n} u_{i}s_{i}(x, u_{i}, T), \quad s_{i} = 1 + T(\ln \overline{u}_{i})' - E_{i}' - \ln \frac{u_{i}}{\overline{u}_{i}}$$

reversible, charge preserving reactions

$$\alpha_1 X_1 + \ldots + \alpha_n X_n \Longrightarrow \beta_1 X_1 + \ldots + \beta_n X_n$$

stoichiometric coefficients $(\alpha, \beta) = (\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n) \in \mathcal{R}$ reaction rates according to the mass action law

$$R_{\alpha\beta} = r_{\alpha\beta}(x, u, T, \varphi) \left(e^{\sum_{i=1}^{n} \alpha_i \zeta_i / T} - e^{\sum_{i=1}^{n} \beta_i \zeta_i / T} \right), \quad (\alpha, \beta) \in \mathcal{R}$$

ansatz for particle flux densities j_i and entropy flux density j_s

$$j_{i} = -\sum_{k=1}^{n} \sigma_{ik}(x, u, T) \left(\nabla \zeta_{k} + P_{k}(x, u, T) \nabla T \right), \quad i = 1, \dots, n$$

$$j_{s} = -\frac{\kappa(x, u, T)}{T} \nabla T + \sum_{i=1}^{n} P_{i}(x, u, T) j_{i}$$

 σ_{ik} , κ - conductivities, P_i - transported entropies

$$\sigma_{ik} = \sigma_{ki}, \sum_{i,k=1}^{n} \sigma_{ik}(x, u, T) y_i y_k \ge \sigma_0(u, T) \|y\|^2 \quad \forall y \in \mathbb{R}^n, \quad \kappa(x, u, T) \ge \kappa_0(u, T)$$

with $\sigma_0(u, T)$, $\kappa_0(u, T) > 0$ for all non-degenerated states u, T, no sign condition for P_i

for isothermal case $(\nabla T = 0)$: $j_s = \sum_{i=1}^n P_i j_i$ explains the meaning of P_i as transported entropies

entropy formulation

$$\left(egin{array}{c} j_1 \ dots \ j_n \ j_s \end{array}
ight) = - \left(egin{array}{cccc} \sigma_{11} & \cdots & \sigma_{1n} & au_1 \ dots & \ddots & dots & dots \ \sigma_{n1} & \cdots & \sigma_{nn} & au_n \ au_1 & \cdots & au_n & rac{\kappa}{T} + au_{n+1} \end{array}
ight) \left(egin{array}{c}
abla \zeta_1 \ dots \
abla \zeta_n \
abla T \end{array}
ight)$$

$$\tau_i = \sum_{k=1}^n \sigma_{ik} P_k, \quad i = 1, ..., n, \quad \tau_{n+1} = \sum_{i,k=1}^n \sigma_{ik} P_i P_k$$

matrix is symmetric, positive definite for non-degenerated states \Longrightarrow Onsager's relations are fulfilled for fluxes (j_1, \ldots, j_n, j_s) and generalized forces $(\nabla \zeta_1, \ldots, \nabla \zeta_n, \nabla T)$

n continuity equations, entropy balance equation, Poisson equation

$$\frac{\partial u_i}{\partial t} + \nabla \cdot j_i = \sum_{(\alpha,\beta)\in\mathcal{R}} (\beta_i - \alpha_i) R_{\alpha\beta}, \quad i = 1, \dots, n$$

$$\frac{\partial s}{\partial t} + \nabla \cdot j_s = d$$

$$-\nabla \cdot (\varepsilon \nabla \varphi) = f + \sum_{i=1}^n q_i u_i$$

entropy production rate

$$T d = -\sum_{i=1}^{n} j_i \cdot \nabla \zeta_i - j_s \cdot \nabla T + \sum_{(\alpha,\beta) \in \mathcal{R}} R_{\alpha\beta} \sum_{i=1}^{n} (\alpha_i - \beta_i) \zeta_i$$

 $d \geq 0$, and for non-degenerated states

$$d = 0 \iff \begin{cases} \nabla \zeta_i = 0, & i = 1, ..., n \\ \nabla T = 0 \\ \sum_{i=1}^{n} (\alpha_i - \beta_i) \zeta_i = 0 & \forall (\alpha, \beta) \in \mathcal{R} \end{cases}$$

conditions characterize thermodynamic equilibrium

Reformulation of the entropy balance equation by an energy balance equation

define the energy flux density

$$j_e = Tj_s + \sum_{i=1}^n \zeta_i j_i = -\kappa \nabla T + \sum_{i=1}^n (\zeta_i + P_i T) j_i$$

obtain by the state equations the balance equation for the internal energy

$$\frac{\partial e}{\partial t} + \nabla \cdot j_e = \varphi \nabla \cdot \sum_{i=1}^n q_i j_i$$

Onsager's relations for fluxes (j_1, \ldots, j_n, j_e) and generalized forces $(\nabla \zeta_1, \ldots, \nabla \zeta_n, \nabla T)$ are not fulfilled

change of generalized forces to $(\nabla[\zeta_1/T], \ldots, \nabla[\zeta_n/T], \nabla[-1/T])$

$$\begin{pmatrix} j_1 \\ \vdots \\ j_n \\ j_e \end{pmatrix} = - \begin{pmatrix} \sigma_{11}T & \cdots & \sigma_{1n}T & \widetilde{\tau}_1 \\ \vdots & \ddots & \vdots & \vdots \\ \sigma_{n1}T & \cdots & \sigma_{nn}T & \widetilde{\tau}_n \\ \widetilde{\tau}_1 & \cdots & \widetilde{\tau}_n & \kappa T^2 + \widetilde{\tau}_{n+1} \end{pmatrix} \begin{pmatrix} \nabla[\zeta_1/T] \\ \vdots \\ \nabla[\zeta_n/T] \\ \nabla[-1/T] \end{pmatrix}$$

$$\widetilde{\tau}_i = \sum_{k=1}^n \sigma_{ik} T(\zeta_k + P_k T), \ i = 1, ..., n, \ \widetilde{\tau}_{n+1} = \sum_{i,k=1}^n \sigma_{ik} T(\zeta_i + P_i T)(\zeta_k + P_k T)$$

matrix is symmetric, positive definite for non-degenerated states \Longrightarrow Onsager's relations are fulfilled for fluxes $(j_1,...,j_n,j_e)$ and generalized forces $(\nabla[\zeta_1/T],...,\nabla[\zeta_n/T],\nabla[-1/T])$

define total energy density

$$\widetilde{e} = e + \frac{\varepsilon}{2} |\nabla \varphi|^2$$

and total energy flux

$$j_{\tilde{e}} = j_e - \varphi \frac{\partial (\varepsilon \nabla \varphi)}{\partial t}$$

balance equation for the internal energy Poisson equation (differentiated by time) continuity equations with charge preserving reactions

$$\implies \frac{\partial \widetilde{e}}{\partial t} + \nabla \cdot j_{\widetilde{e}} = 0$$

Conservation law for the total energy

total entropy

$$S(t) = \int_{\Omega} s(x, t) \, \mathrm{d}x$$

If $j_i \cdot \nu = 0$, $j_e \cdot \nu = 0$ on $\partial \Omega$, then entropy balance equation and $d \geq 0 \Longrightarrow$

$$\frac{\mathrm{d}}{\mathrm{d}t}S(t) = \int_{\Omega} \frac{\partial}{\partial t} s(x,t) \, \mathrm{d}x = \int_{\Omega} d \, \mathrm{d}x + \int_{\partial \Omega} \left(\sum_{i=1}^{n} \frac{\zeta_i}{T} j_i \cdot \nu - \frac{1}{T} j_e \cdot \nu \right) \mathrm{d}\Gamma \ge 0$$

-S is a Lyapunov function of the evolution system in the energy formulation (at least formally)

consider the stationary problem in the energy formulation in 2D reactions are charge preserving \Longrightarrow

$$\nabla \cdot j_e = \varphi \nabla \cdot \sum_{i=1}^n q_i j_i = \varphi \sum_{(\alpha,\beta) \in \mathcal{R}} \sum_{i=1}^n q_i (\beta_i - \alpha_i) R_{\alpha\beta} = 0$$

results the system of equations

$$\nabla \cdot j_{i} = \sum_{(\alpha,\beta)\in\mathcal{R}} (\beta_{i} - \alpha_{i}) R_{\alpha\beta}, \quad i = 1, \dots, n$$

$$\nabla \cdot j_{e} = 0$$

$$-\nabla \cdot (\varepsilon \nabla \varphi) = f + \sum_{i=1}^{n} q_{i} u_{i}$$
in $\Omega \subset \mathbb{R}^{2}$

for (j_1, \ldots, j_n, j_e) and generalized forces $(\nabla[\zeta_1/T], \ldots, \nabla[\zeta_n/T], \nabla[-1/T])$ Onsager's relations are valid

introduce new variables

$$z=(z_1,\ldots,z_{n+2})=\left(\frac{\zeta_1}{T},\ldots,\frac{\zeta_n}{T},-\frac{1}{T},\varphi\right)$$

reformulate the state equations, reaction rates $R_{lphaeta}$

$$u_i(x) = H_i(x, z), \quad R_{\alpha\beta}(x, z) = \tilde{r}_{\alpha\beta}(x, z) \left(e^{\sum_{i=1}^n \alpha_i z_i} - e^{\sum_{i=1}^n \beta_i z_i} \right)$$

strongly coupled nonlinear (not uniformly) elliptic system

$$-\nabla \cdot \begin{pmatrix} a_{11} & \cdots & a_{1,n+1} & 0 \\ \vdots & \ddots & \vdots & 0 \\ a_{n,1} & \cdots & a_{n,n+1} & 0 \\ a_{n+1,1} & \cdots & a_{n+1,n+1} & 0 \\ 0 & 0 & 0 & \varepsilon \end{pmatrix} \begin{pmatrix} \nabla z_1 \\ \vdots \\ \nabla z_n \\ \nabla z_{n+1} \\ \nabla z_{n+2} \end{pmatrix} = \begin{pmatrix} R_1 \\ \vdots \\ R_n \\ 0 \\ f + \sum_{k=1}^n q_k H_k \end{pmatrix}$$

$$a_{ki} = a_{ik} = a_{ik}(x, z(x)), \quad \varepsilon = \varepsilon(x)$$

$$R_i = \sum_{(\alpha, \beta) \in \mathcal{R}} (\beta_i - \alpha_i) R_{\alpha\beta}(x, z(x)), \quad H_k = H_k(x, z(x))$$

mixed boundary conditions

$$z_i = z_i^D, \qquad i = 1, \dots, n+2, \qquad \qquad \text{on } \Gamma_D$$

$$\nu \cdot \sum_{k=1}^{n+1} a_{ik}(z) \nabla z_k = g_i, \qquad i = 1, \dots, n+1, \qquad \nu \cdot (\varepsilon \nabla z_{n+2}) = g_{n+2} \quad \text{on } \Gamma_N$$

if a thermodynamic equilibrium satisfies the boundary conditions, the data has to fulfil

$$z_i^D = \text{const}, \quad i = 1, \dots, n, \quad \sum_{i=1}^n (\alpha_i - \beta_i) z_i^D = 0 \quad \forall (\alpha, \beta) \in \mathcal{R},$$
 $z_{n+1}^D = \text{const} < 0, \quad g_i = 0, \quad i = 1, \dots, n+1$

corresponding equilibrium densities u_i are obtained by the state equations

$$u_i = H_i(\cdot, z_1^D, \dots, z_{n+1}^D, z_{n+2}), \quad i = 1, \dots, n$$

where z_{n+2} has to satisfy the nonlinear Poisson equation

$$-\nabla \cdot (\varepsilon \nabla z_{n+2}) = f + \sum_{i=1}^{n} q_i H_i(\cdot, z_1^D, \dots, z_{n+1}^D, z_{n+2})$$

$$z_{n+2} = z_{n+2}^D$$
 on Γ_D , $\nu \cdot (\varepsilon \nabla z_{n+2}) = g_{n+2}$ on Γ_N

Restricted thermodynamic equilibrium

For the Dirichlet data we suppose that there exists a p>2 such that z_i^D on Γ_D are traces of functions $z_i^D \in W^{1,p}(\Omega), \ i=1,\ldots,n+2$, with $z_{n+1}^D<0$ in Ω

$$Q = \{ w = (z^D, g, f) \in W^{1,p}(\Omega)^{n+2} \times L^{\infty}(\Gamma_N)^{n+2} \times L^{\infty}(\Omega) :$$

$$g_i = 0, \ z_i^D = \text{const}, \ i = 1, ..., n+1, \ z_{n+1}^D < 0, \ \sum_{i=1}^n (\alpha_i - \beta_i) \ z_i^D = 0 \ \forall (\alpha, \beta) \in \mathcal{R}$$

Theorem 1. (Existence of restricted thermodynamic equilibria)

Let
$$w^* = (z^{D*}, g^*, f^*) \in Q$$
.

Then there exist $q_0 \in (2, p]$ and $z_{n+2}^* \in W^{1,q_0}(\Omega)$ such that

$$z^* = (z_1^{D*}, \dots, z_{n+1}^{D*}, z_{n+2}^*)$$

is a restricted thermodynamic equilibrium.

Weak formulation

Let $s \in [1, \infty)$, we define

$$X_s = (W_0^{1,s}(\Omega \cup \Gamma_N))^{n+2}$$
$$Y_s = (W^{1,s}(\Omega))^{n+2}$$

We set

$$z = Z + z^{D},$$
 $w = (z^{D}, g, f)$
 $z^{*} = Z^{*} + z^{D*},$ $w^{*} = (z^{D*}, g^{*}, f^{*})$

Definition. Let $q \in (2, p]$. We define the open subset $M_q \subset X_q \times Y_p$,

$$\begin{aligned} \mathbf{M}_{q} &= \left\{ (Z, z^{D}) \in X_{q} \times Y_{p} \text{ with } |Z_{i} + z_{i}^{D}| < \tau, \ i = 1, \dots, n, n + 2, \\ &-\tau < Z_{n+1} + z_{n+1}^{D} < -\frac{1}{\tau} \text{ on } \Omega \right. \end{aligned}$$

where $\tau > 1$ is such that $(Z^*, z^{D*}) \in M_{q_0}$

Weak formulation

define
$$F_q: M_q \times L^{\infty}(\Gamma_N)^{n+2} \times L^{\infty}(\Omega) \to X_{q'}^*$$

$$\langle F_{q}(Z, w), \psi \rangle_{X_{q'}} = \int_{\Omega} \left\{ \sum_{i,k=1}^{n+1} a_{ik}(\cdot, z) \nabla z_{k} \cdot \nabla \psi_{i} + \varepsilon \nabla z_{n+2} \cdot \nabla \psi_{n+2} \right\} dx$$

$$+ \int_{\Omega} \left\{ \sum_{(\alpha, \beta) \in \mathcal{R}} R_{\alpha\beta}(\cdot, z) \sum_{i=1}^{n} (\alpha_{i} - \beta_{i}) \psi_{i} + h(\cdot, z) \psi_{n+2} \right\} dx$$

$$- \int_{\Omega} f \psi_{n+2} dx - \int_{\Gamma_{N}} \sum_{i=1}^{n+2} g_{i} \psi_{i} d\Gamma, \quad \psi \in X_{q'}$$

Problem (P):

Find
$$(q,Z,w)$$
 such that $q\in(2,p],\ (Z,w)\in X_q\times Y_p\times L^\infty(\Gamma_N)^{n+2}\times L^\infty(\Omega),$
$$(Z,z^D)\in M_q,\quad F_q(Z,w)=0.$$

Implicit Function Theorem

equilibrium:

$$F_{q_0}(Z^*, w^*) = 0$$

differentiability:

 $F_q: M_q \times L^\infty(\Gamma_N)^{n+2} \times L^\infty(\Omega) \to X_{q'}^*$ is continuously differentiable for all $q \in (2, p]$.

properties of the linearization in the restricted thermodynamic equilibrium:

Let $w^* = (z^{D*}, g^*, f^*) \in Q$, and $F_{q_0}(Z^*, w^*) = 0$.

Then there exists a $q_1 \in (2, q_0]$ such that the Fréchet derivative

$$\partial_Z F_{q_1}(Z^*, w^*): X_{q_1} \to X_{q'_1}^*$$

is an injective Fredholm Operator of index zero.

Local existence and uniqueness result

Theorem 2. (Local existence and uniqueness of steady states)

Let $w^* = (z^{D^*}, g^*, f^*) \in Q$, and let (q_0, Z^*, w^*) be the equilibrium solution to Problem (P) according to Theorem 1.

Then there exists $q_1 \in (2, q_0]$ such that the following assertion holds: There exist neighbourhoods $U \subset X_{q_1}$ of Z^* and $W \subset Y_p \times L^\infty(\Gamma_N)^{n+2} \times L^\infty(\Omega)$ of $w^* = (z^{D*}, g^*, f^*)$ and a C^1 -map $\Phi: W \to U$ such that $Z = \Phi(w)$ iff

$$F_{q_1}(Z, w) = 0, \quad (Z, z^D) \in M_{q_1}, \quad Z \in U, \quad w = (z^D, g, f) \in W.$$

For data $w=(z^D,g,f)$ near $w^*=(z^{D*},g^*,f^*)\in Q$ there exists a locally unique solution $z=Z+z^D$ of the stationary energy model.

Corollary

$$Q_1 = \{ w = (z^D, g, f) \in Y_p \times L^{\infty}(\Gamma_N)^{n+2} \times L^{\infty}(\Omega) : z_{n+1}^D < 0 \} \supset Q$$

Let $w=(z^D,g,f)\in Q_1$ be given. Then there are constants $q\in(2,p],\ \epsilon>0$ such that the following assertions hold: If

$$\|\nabla z_{i}^{D}\|_{L^{p}(\Omega)} < \epsilon, \quad i = 1, \dots, n+1,$$

$$\|\sum_{i=1}^{n} (\alpha_{i} - \beta_{i}) z_{i}^{D}\|_{L^{1}(\Gamma_{D})} < \epsilon \quad \forall (\alpha, \beta) \in \mathcal{R},$$

$$\|g_{i}\|_{L^{\infty}(\Gamma_{N})} \leq \epsilon, \quad i = 1, \dots, n+1,$$

then there exists a $Z \in X_q$ such that (q, Z, w) is a solution to (P). This solution lies in a neighbourhood of an equilibrium solution (q, Z^*, w^*) to Problem (P), and in this neighbourhood there are no solutions (q, \tilde{Z}, w) with $\tilde{Z} \neq Z$.

Outlook

- boundary conditions formulated in other quantities (resulting in nonlinear Dirichlet boundary conditions)
- boundary conditions of third kind are more realistic
- different types of bcs for the different equations
- different domains of definition for the several equations
- models containing traps, which are immobile but can be ionized
- anisotropic materials
- global results
- instationary problem
- 3D

