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Semiconductor spintronic refers to the phenomena of spin-polarized transport in semiconductors. The goal is to find effective ways of controlling electronic properties
such as current or accumulated charge, by spin or magnetic field as well as of controlling spin or magnetic properties by electric currents or gate voltages. From the
technological point of view an efficient spin injection, slow spin relaxation and reliable spin detection are the important requirements. The aim is to develop practical
device schemes what would enhance the functionality of the current charge based electronics. Examples are magnetic diodes, spin LEDs or a spin field effect transistor,
which would change his logic state from ON to OFF by flipping the orientation of a magnetic field. Both figures below are taken from Zutic et al., [3]. Left: Scheme of

a magnetic bipolar diode. The p region (left)
is magnetic, indicated by the spin splitting
2qζ of the conduction band. The n region
(right) is nonmagnetic, but spin polarized by a
spin source: Filled circles. spin-polarized elec-
trons; empty circles unpolarized holes. If the
nonequilibrium spin in the n region is orien-
tated parallel (upper figure) to the equilibrium
spin in the p region, large forward current

eV m) to allow at least a half pre-

These four factors present a great challenge to fabri-

the design to special materials and very clean interfaces.
by biasing voltage (iii)

,
, 1999; Grundler, 2000) (for GaAs/

, 2003). Initial ex-
flows. If the relative orientation is antiparallel (lower figure) the current drops significantly. Right: Scheme of an n/p/n magnetic bipolar transistor with magnetic base
B, nonmagnetic emitter E, and collector C. Conduction and valence bands are separated by the energy gap Eg . The conduction band has a spin splitting 2qζ leading
to an equilibrium spin polarization PB0 = tanh(qζ/kBT ). Carriers and depletion regions are represented as in the left figure.

Spin-polarized drift-diffusion
model

3D simulation of a classical MOSFET. Electrostatic potential at
equilibrium (top, gate wide strip in light blue); under operating
conditions (bottom, drain blue, source orange).

Four continuity equations involving drift, diffusion, spin relaxation and genera-
tion/recombination reaction terms which are coupled with a Poisson equation

state equations

nλ =
Nc

2
exp[−(Ec0 − qψ − λqζc − qϕnλ)/kBT ]

pλ =
Nv

2
exp[−(qψ + λqζc + qϕpλ − Ev0)/kBT ]

−∇ · (ε∇ψ) = f − nλ − n−λ + pλ + p−λ

evolution equations

∂nλ

∂t
−∇ ·

jnλ

q
= −R̃nλ,

∂pλ

∂t
+∇ ·

jpλ

q
= −R̃pλ

kinetic relations

jnλ = µnλnλ∇ϕnλ, jpλ = µpλpλ∇ϕpλ

R̃nλ = r(nλp− nλ0p0) +
nλ − n−λ − λs̃n

2τsn

R̃pλ = r(npλ − n0pλ0) +
pλ − p−λ − λs̃p

2τsp

nλ, pλ densities of electrons and holes with spin λ=±1

ϕnλ, ϕpλ electrochemical potentials
ψ, T electrostatic potential, lattice temperature
q, kB elementary charge, Boltzmann’s constant
Nc, Nv effective densities of state
Ec0, Ev0 band edge energies
ζc, ζv spin splitting of conduction and valence band

due to magnetic impurities or an applied magnetic field
ε, f dielectric permittivity, fixed charge density
µnλ, µpλ mobility coefficients
τsn, τsp spin relaxation times
nλ0, pλ0 equilibrium densities (n0, p0)

s̃n, s̃p equilibrium spin densities

s̃n = n tanh(qζc/kBT ), n = nλ + n−λ

s̃p = p tanh(qζv/kBT ), p = pλ + p−λ

These model equations taken from [1-3] form an initial boundary value prob-
lem with mixed boundary conditions from device simulation which has to be
treated in heterostructures. Its physical parameters may jump at interfaces.

Analytical results

Carrier densities log(n) (top) and log(p) (bottom), the
holes beneath the gate carry the current.
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Stationary spin-polarized drift-diffusion problem (see [6])

Continuous stationary problem
• A priori estimates for steady states
• Existence of weak steady state solutions

• nested iteration scheme for Poisson equation and continuity equations,
• Schauders Fixed Point Theorem in L2(Ω)4

• Uniqueness result for Dirichlet data compatible or nearly compatible with
thermodynamic equilibrium (i.e. uniqueness for small applied voltage)

• formulation in a Sobolev-Campanato space setting
• application of the Implicit Function Theorem

Discretized stationary problem
• Discretization

• boundary conforming Delaunay grid
• finite volume discretization of the Poisson equation and right hand side

of the continuity equations
• Scharfetter Gummel scheme for discretizing the flux terms in the conti-

nuity equations

• Existence of bounded solutions to the discretized stationary problem
• establishing the same bounds as in the continuous problem
• Brouwers Fixed Point Theorem

• Uniqueness for small applied voltages

• Qualitatively same behavior as van the Roosbroeck system (see [4])

Instationary spin-polarized drift-diffusion problem (see [5])

• Estimate of the free energy F (u(t)) along solutions

• For general mixed boundary conditions

F (u(t)) ≤ (F (u(0)) + 1) ect for all t ∈ R.

• If Dirichlet boundary conditions are compatible with thermodynamic
equilibrium then the free energy decays monotonously and exponen-
tially to its equilibrium value.

• Existence of global weak solutions to the spin-polarized drift-diffusion
problem

• regularization in state equations, reaction terms on finite time interval
• time discretization, passing to the limit
• a priori estimates
• for sufficiently large regularization parameter each solution to the

regularized problem is a solution to the original problem

• Uniqueness of the solution

Open questions
• Simulation tool for spin-polarized semiconductor devices based on

existing simulation tools for classical semiconductor devices
• Mathematical modeling of optoelectronic devices in a spin-polarized drift-

diffusion context
• Interaction between currents and magnetic field
• Extension to a spin vector approach
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