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An electronic model for solar cells

(Helmholtz-Zentrum Berlin für Materialien und Energie)

Situation:

� semiconductor heterostructure with mixed boundary conditions

� technological treatment leads to energy resolved defect distributions

� besides electron/hole generation/recombination there occur special recombinations at

defects
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An electronic model for solar cells

� species: n−(x), p+(x) electrons and holes

t−/0(x, E), t0/+(x, E) defects occupied/unoccupied by electrons

� reactions: (for acceptor like defects)

R0: n− + p+ 
 ∅ generation/recombination of electrons and holes

R1: n− + t0/+ 
 t−/0 capture/escape of electrons

R2: p+ + t−/0 
 t0/+ capture/escape of holes

� distribution of defects N(x, E) defines measure µ = NdE on G := Ω× EG

� vector of quantities:

u = (u1, u2, u3, u4) ∈ Y := L2(Ω)2 × L2(G; dµ)2

• u1, u2 densities of electrons and holes

• u3 occupation probability by an electron for defects with trap distribution N(x, E),

u4 = 1− u3
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Notation

electrostatic potential z

charge numbers λi, λ = (λ1, . . . λ4)

positive reference densities eui

chemical activities bi = uieui
H1- functions, i = 1, 2,

flux terms

ji = −Dieui(∇bi + λibi∇z), i = 1, 2

reaction rates

R0(x)−Gphot(x) = r0(u1u2 − k0)(x),

R1(x, E) = r1(u1u4 − k1u3)(x, E), R2(x, E) = r2(u2u3 − k2u4)(x, E)

quantities integrated over the energy interval

〈〈g〉〉(x) :=

Z
EG

g(E)µ(x, dE)
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Model equations

Drift-diffusion system

−∇ · (ε∇z) = f − u1 + u2 +
4X

i=3

λi〈〈ui〉〉 on R+ × Ω,

∂

∂t
ui +∇ · ji = Gphot −R0 −〈〈Ri〉〉 on R+ × Ω, i = 1, 2,

ODEs for defects

∂

∂t
u3 = R1 −R2,

∂

∂t
u4 = − ∂

∂t
u3 on R+ × supp µ,

Boundary conditions

z = zD, bi = bD
i on R+ × ΓD, i = 1, 2,

ν · (ε∇z) = 0, ν · ji = 0 on R+ × ΓN , i = 1, 2.

Initial conditions u(0) = U
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Weak formulation, Problem (P)

Poisson equationZ
Ω

n
ε∇z ·∇bz− ˆ

f +

2X
i=1

λiui

˜ bzo
dx−

4X
i=3

Z
G

λiuibz dµ = 0, bz ∈ Z =H1
0 (Ω∪ΓN).

Continuity equationsZ
S


(u′,bb)X +

2X
i=1

Z
Ω

n
Diūi(∇bi + λibi∇z) · ∇bbi + r0(u1u2 − k0)bbi

o
dx

+

Z
G

n
r1(u1u4 − k1u3)(bb1 + bb4 −bb3) + r2(u2u3 − k2u4)(bb2 + bb3 −bb4)

o
dµ

ff
ds = 0,

bb ∈ L2(S, X), X :=
˘
b ∈ Y : bi ∈ H1

0 (Ω ∪ ΓN ), i = 1, 2
¯

.

For all t ∈ R+ the solutions (u, z) to (P) fulfill

0 ≤ u3(t), u4(t) ≤ 1, u3(t) + u4(t) = U3 + U4 = 1 µ-a.e. on G.
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Energy estimates

Lemma (Poisson equation)

For all u ∈Y there is exactly one solution z to the Poisson equation, z − zD ∈ Z .

� ‖z − z̄‖Z ≤ c‖u− ū‖Y ∀u, ū ∈ Y,

� ‖z‖W1,q ≤ c
“
1 +

2X
i=1

‖ui‖L2q/(2+q)

”
for a suitable q > 2 N=2!!.

Free energy

F (u) :=

Z
Ω

ε

2
|∇(z−zD)|2+

2X
i=1

˘
ui(ln

ui

uD
i

−1)+uD
i

¯
dx+

4X
i=3

Z
G

˘
ui(ln

uieui
−1)+eui

¯
dµ,

where z is the solution to the Poisson equation with this u in the right hand side,

uD
i = euib

D
i , uD

1 eu4 = k1eu3.

Lower estimate of the free energy

‖z − zD‖2
Z +

2X
i=1

‖ui ln ui‖L1 +

2X
i=1

‖ui‖L1 ≤ cF (u) + ec.
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Energy estimates

Theorem (Energy estimate)

Let (u, z) be a solution to (P) and T ∈ R+. Then

F (u(t)) ≤ (F (U) + c0) ec0t ∀t ∈ [0, T ], (1)

where the constant c0 > 0 does not depend on U and T . If the data is compatible with

thermodynamic equilibrium, meaning that

ln bD
i + λiz

D is constant on Ω, uD
1 uD

2 = k0 a.e. on Ω, k1k2 = k0 µ-a.e. on G,

then (1) holds true with c0 = 0.

Idea of the proof:

formally test by

λ(z − zD) +
“

ln
b1

bD
1

, ln
b2

bD
2

, ln b3, ln b4

”
, bi =

uieui
, i = 1, . . . , 4,

more precise, use
“

ln
bδ
1

bD
1

, ln
bδ
2

bD
2

, ln bδ
3, ln bδ

4

”
, where bδ

i = max{bi, δ}, let δ → 0
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A priori estimates

Using • monotonicity of the ln function

• definition of eu3, eu4

• boundedness of u3, u4

• case by case analysis

it results

F (u(t))− F (U)

≤ c

Z t

0

2X
i=1

(1 + ‖ui‖L1)
“
‖∇(ln bD

i +λiz
D)‖2

L∞ + ‖ln k1k2
uD
1 uD

2
‖L∞(G,dµ)

”
ds

+ c

Z t

0

‖ln uD
1 uD

2
k0

‖L∞ ds

� BCs compatible with thermodynamic equilibrium: F (u(t)) ≤ F (U)

� More general case: use lower estimate of the free energy and Gronwall’s Lemma.
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A priori estimates

Theorem (Boundedness)

There exists a monotonously increasing function d : R+ → R+, depending on the data, but

independent of T , such that

‖ui(t)‖L∞ ≤ d(‖F (u)‖C(S)), i = 1, 2,

‖z(t)‖L∞ ≤ d(‖F (u)‖C(S)) ∀t ∈ S

for all solutions (u, z) to (P).

Idea of the proof:

� test functions

p ept (vp−1
1 , vp−1

2 , 0, 0) ∈ L2(S, X), p = 2m, m ≥ 1,

where vi := (bi −K)+, K = max
`
1, maxi=1,2 ‖Ui

ūi
‖L∞ , maxi=1,2 ‖bD

i ‖L∞
´

� L2 estimate: m = 1: regularity results for the solution to the Poisson equation (Gröger),

lower estimate of the free energy, and energy estimate

� Moser iteration
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Existence and uniqueness

Theorem (Existence and uniqueness)

There is exactly one solution to problem (P).

Steps of the proof

• consider regularized problem (PM ) on arbitrarily fixed time interval S = [0, T ]

regularize flux terms, reaction terms (parameter M )

• show solvability of (PM ) by

decomposition into problems with partly frozen arguments for

� Poisson equation � immobile species � mobile species

iteration

Schauder’s Fixed Point Theorem for densities of the mobile species

• a priori estimates ( independent of M ! )

� energy estimates for (FM )

� Moser technique for getting upper bounds

• solution to (PM ) is a solution to (P) if M is chosen sufficiently large

• uniqueness result
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Comments

Generalizations

� different kinds of defects with different trap distributions Nj(x, E) leading to measures

µj on Ω× EG

� different kinds of traps on different subdomains of Ω× EG

� traps with more than two charge states other types of ionization reactions

Outlook

� heterostructures with active interfaces:

• traps confined at interfaces

• defects capture/escape the electrons/holes from both sides

• thermionic emission of electrons/holes at the active interface

� derivation of the resulting interface-model as limit model of models with volume-traps in

thin layers (M. Liero)

� formulation of the system as generalized gradient flow (together with A. Mielke)

� investigations of the stationary (continuous and discretized) problem (together with

K. Gärtner)
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