$\sqrt{W} \sqrt{\text { I }} \sqrt{\text { A }}$

Weierstraß-Institut für Angew andte Analysis und Stochastik
A. Glitzky (joint work with J. A. Griepentrog)

Discrete Sobolev-Poincaré inequalities using
the $W^{1, p}$-seminorm in the setting of
Voronoi finite volume approximations

Outline of the talk

\triangleright Notation in finite volume methods
\triangleright Assumptions
\triangleright Potential theoretical lemmas
\triangleright Main result
\triangleright Ideas of the proof of the discrete Sobolev-Poincaré inequality
\triangleright Concluding remarks

Sobolev imbedding result

$$
\|u\|_{L^{q}} \leq c_{q, p}\|u\|_{W^{1, p}(\Omega)} \quad \forall u \in W^{1, p}(\Omega)
$$

for $q \in[1, \infty)$ if $p=n$, for $q \in\left[1, \frac{p n}{n-p}\right]$ if $p<n$.
Discrete imbedding results in the context of finite volume schemes
zero boundary values general boundary values

	YES	NO
$p=2$	$[1],[2]$	WIAS-Preprint 1429 (2009)
non Hilbertian case	$[3],[4]$	talk

[1] Eymard, Gallouët, Herbin, in Handbook of Numerical Analysis VII 2000.
[2] Coudière, Gallouët, Herbin, M2AN 35 (2001).
[3] Droniou, Gallouët, Herbin, SINUM 41 (2003).
[4] Eymard, Gallouët, Herbin to appear in IMA JMA.

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be an open, bounded, polyhedral domain.

- A Voronoi mesh of Ω denoted by $\mathcal{M}=(\mathcal{P}, \mathcal{T}, \mathcal{E})$ is formed by
- a family \mathcal{P} of grid points in $\bar{\Omega}$,
- a family \mathcal{T} of Voronoi control volumes,
- a family \mathcal{E} of parts of hyperplanes in \mathbb{R}^{n} (faces of the Voronoi boxes).
- For $x_{K} \in \mathcal{P}$ the control volume K of the Voronoi mesh is defined by

$$
K=\left\{x \in \Omega:\left|x-x_{K}\right|<\left|x-x_{L}\right| \quad \forall x_{L} \in \mathcal{P}, x_{L} \neq x_{K}\right\}, \quad K \in \mathcal{T} .
$$

The set \mathcal{E} and subsets

- For $K, L \in \mathcal{T}$ with $K \neq L$ either the $(n-1)$ dimensional Lebesgue measure of $\bar{K} \cap \bar{L}$ is zero or $\bar{K} \cap \bar{L}=\bar{\sigma}$ for some $\sigma \in \mathcal{E}$.
- $\sigma=K \mid L$ denotes the Voronoi face between K and L.
- $\mathcal{E}_{\text {int }}$ denotes the set of interior Voronoi faces.
- $\mathcal{E}_{\text {ext }}$ denotes the set of external Voronoi faces.
- For $K \in \mathcal{T}: \mathcal{E}_{K}$ is the subset of \mathcal{E} such that $\partial K=\bar{K} \backslash K=\cup_{\sigma \in \mathcal{E}_{K}} \bar{\sigma}$.

For $\sigma \in \mathcal{E}: \quad m_{\sigma}{ }^{-} \quad(n-1)$-dimensional measure of the Voronoi face σ.
x_{σ} - center of gravity of σ.
$d_{K, \sigma}$ - Euclidean distance between x_{K} and σ, if $\sigma \in \mathcal{E}_{K}$. $d_{\sigma}=\left|x_{K}-x_{L}\right|$ if $\sigma=K \mid L \in \mathcal{E}_{\text {int }}$.

half-diamonds

$$
D_{K \sigma}=\left\{t x_{K}+(1-t) y: t \in(0,1), y \in \sigma\right\}, \quad \operatorname{mes}\left(D_{K \sigma}\right)=\frac{1}{n} m_{\sigma} d_{K, \sigma}
$$

Definition.

Let \mathcal{M} be a Voronoi finite volume mesh of Ω.

1. $X(\mathcal{M})=$ set of functions from Ω to \mathbb{R} which are constant on each $K \in \mathcal{T}$. $u_{K}=$ value of $u \in X(\mathcal{M})$ on K.
2. Discrete $W^{1, p}$-seminorm of $u \in X(\mathcal{M}), p \in[1, \infty)$

$$
|u|_{1, p, \mathcal{M}}=\left(\sum_{\sigma \in \mathcal{E}_{i n t}}\left(\frac{D_{\sigma} u}{d_{\sigma}}\right)^{p} m_{\sigma} d_{\sigma}\right)^{1 / p}
$$

where $D_{\sigma} u=\left|u_{K}-u_{L}\right|$ for $\sigma=K \mid L$.

Aim of the talk:

$$
\left\|u-m_{\Omega}(u)\right\|_{L^{q}(\Omega)} \leq c_{q, p}|u|_{1, p, \mathcal{M}} \quad \forall u \in X(\mathcal{M}), \quad m_{\Omega}(u)=\frac{1}{\operatorname{mes}(\Omega)} \int_{\Omega} u(x) \mathrm{d} x .
$$

(A1) $\Omega \subset B(0, \widetilde{R}) \subset \mathbb{R}^{n}$ open, polyhedral, star shaped w.r.t. some ball $B(0, R)$.

$$
\begin{aligned}
& \text { Let } \varrho: \mathbb{R}^{n} \rightarrow[0, \infty), \quad \varrho(y)= \begin{cases}\exp \left\{-\frac{R^{2}}{R^{2}-|y|^{2}}\right\} & \text { if }|y|<R \\
0 & \text { if }|y| \geq R\end{cases} \\
& \text { define } \varrho^{\mathcal{M}} \in X(\mathcal{M}) \text { as } \quad \varrho_{K}^{\mathcal{M}}(x)=\min _{y \in \bar{K}} \varrho(y) \quad \text { for } x \in K .
\end{aligned}
$$

(A2) Let $\mathcal{M}=(\mathcal{P}, \mathcal{T}, \mathcal{E})$ be a Voronoi finite volume mesh with $\int_{\Omega} \varrho^{\mathcal{M}}(x) \mathrm{d} x \geq \rho_{0}$ $\left(\rho_{0}>0\right)$ and with the property that $\mathcal{E}_{K} \cap \mathcal{E}_{e x t} \neq \emptyset \Longrightarrow x_{K} \in \partial \Omega$.
(A3) The geometric weights fulfill $0<\frac{\operatorname{diam}(\sigma)}{d_{\sigma}} \leq \kappa_{1}$ for all $\sigma \in \mathcal{E}_{\text {int }}$.
(A4) There exists a constant $\kappa_{2} \geq 1$ such that
$\max _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{\text {int }}} \max _{x \in \bar{\sigma}}\left|x_{K}-x\right| \leq \kappa_{2} \min _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{i n t}} d_{K, \sigma}$ for all $x_{K} \in \mathcal{P}$.
(A1) $\Omega \subset B(0, \widetilde{R}) \subset \mathbb{R}^{n}$ open, polyhedral, star shaped w.r.t. some ball $B(0, R)$.

$$
\begin{aligned}
& \text { Let } \varrho: \mathbb{R}^{n} \rightarrow[0, \infty), \quad \varrho(y)=\left\{\begin{array}{ll}
\exp \left\{-\frac{R^{2}}{R^{2}-|y|^{2}}\right\} & \text { if }|y|<R \\
0 & \text { if }|y| \geq R
\end{array} .\right. \\
& \text { define } \varrho^{\mathcal{M}} \in X(\mathcal{M}) \text { as } \quad \varrho_{K}^{\mathcal{M}}(x)=\min _{y \in \bar{K}} \varrho(y) \quad \text { for } x \in K .
\end{aligned}
$$

(A2) Let $\mathcal{M}=(\mathcal{P}, \mathcal{T}, \mathcal{E})$ be a Voronoi finite volume mesh with $\int_{\Omega} \varrho^{\mathcal{M}}(x) \mathrm{d} x \geq \rho_{0}$ ($\rho_{0}>0$) and with the property that $\mathcal{E}_{K} \cap \mathcal{E}_{e x t} \neq \emptyset \Longrightarrow x_{K} \in \partial \Omega$.
(A3) The geometric weights fulfill $0<\frac{\operatorname{diam}(\sigma)}{d_{\sigma}} \leq \kappa_{1}$ for all $\sigma \in \mathcal{E}_{\text {int }}$.
(A4) There exists a constant $\kappa_{2} \geq 1$ such that
$\max _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{\text {int }}} \max _{x \in \bar{\sigma}}\left|x_{K}-x\right| \leq \kappa_{2} \min _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{\text {int }}} d_{K, \sigma}$ for all $x_{K} \in \mathcal{P}$.
(A1) $\Omega \subset B(0, \widetilde{R}) \subset \mathbb{R}^{n}$ open, polyhedral, star shaped w.r.t. some ball $B(0, R)$.

$$
\begin{aligned}
& \text { Let } \varrho: \mathbb{R}^{n} \rightarrow[0, \infty), \quad \varrho(y)=\left\{\begin{array}{ll}
\exp \left\{-\frac{R^{2}}{R^{2}-|y|^{2}}\right\} & \text { if }|y|<R \\
0 & \text { if }|y| \geq R
\end{array} .\right. \\
& \text { define } \varrho^{\mathcal{M}} \in X(\mathcal{M}) \text { as } \quad \varrho_{K}^{\mathcal{M}}(x)=\min _{y \in \bar{K}} \varrho(y) \quad \text { for } x \in K .
\end{aligned}
$$

(A2) Let $\mathcal{M}=(\mathcal{P}, \mathcal{T}, \mathcal{E})$ be a Voronoi finite volume mesh with $\int_{\Omega} \varrho^{\mathcal{M}}(x) \mathrm{d} x \geq \rho_{0}$ ($\rho_{0}>0$) and with the property that $\mathcal{E}_{K} \cap \mathcal{E}_{e x t} \neq \emptyset \Longrightarrow x_{K} \in \partial \Omega$.
(A3) The geometric weights fulfill $0<\frac{\operatorname{diam}(\sigma)}{d_{\sigma}} \leq \kappa_{1}$ for all $\sigma \in \mathcal{E}_{\text {int }}$.
(A4) There exists a constant $\kappa_{2} \geq 1$ such that $\max _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{\text {int }}} \max _{x \in \bar{\sigma}}\left|x_{K}-x\right| \leq \kappa_{2} \min _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{\text {int }}} d_{K, \sigma}$ for all $x_{K} \in \mathcal{P}$.
(A1) $\Omega \subset B(0, \widetilde{R}) \subset \mathbb{R}^{n}$ open, polyhedral, star shaped w.r.t. some ball $B(0, R)$.

$$
\begin{aligned}
& \text { Let } \varrho: \mathbb{R}^{n} \rightarrow[0, \infty), \quad \varrho(y)= \begin{cases}\exp \left\{-\frac{R^{2}}{R^{2}-|y|^{2}}\right\} & \text { if }|y|<R \\
0 & \text { if }|y| \geq R .\end{cases} \\
& \text { define } \varrho^{\mathcal{M}} \in X(\mathcal{M}) \text { as } \quad \varrho_{K}^{\mathcal{M}}(x)=\min _{y \in \bar{K}} \varrho(y) \quad \text { for } x \in K .
\end{aligned}
$$

(A2) Let $\mathcal{M}=(\mathcal{P}, \mathcal{T}, \mathcal{E})$ be a Voronoi finite volume mesh with $\int_{\Omega} \varrho^{\mathcal{M}}(x) \mathrm{d} x \geq \rho_{0}$ ($\rho_{0}>0$) and with the property that $\mathcal{E}_{K} \cap \mathcal{E}_{e x t} \neq \emptyset \Longrightarrow x_{K} \in \partial \Omega$.
(A3) The geometric weights fulfill $0<\frac{\operatorname{diam}(\sigma)}{d_{\sigma}} \leq \kappa_{1}$ for all $\sigma \in \mathcal{E}_{\text {int }}$.
(A4) There exists a constant $\kappa_{2} \geq 1$ such that

$$
\max _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{\text {int } t}} \max _{x \in \bar{\sigma}}\left|x_{K}-x\right| \leq \kappa_{2} \min _{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{i n t}} d_{K, \sigma} \text { for all } x_{K} \in \mathcal{P} .
$$

Discrete Poincaré inequality

Lemma 1.

Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded, polyhydral and connected. And let $n \geq 2$, $p \in(1, \infty)$. Then there exists a $C_{1, p}>0$ such that for all Voronoi finite volume meshes \mathcal{M}

$$
\left\|u-m_{\Omega}(u)\right\|_{L^{1}(\Omega)} \leq C_{1, p}|u|_{1, p \mathcal{M}} \quad \forall u \in X(\mathcal{M}), \quad m_{\Omega}(u)=\frac{1}{\operatorname{mes}(\Omega)} \int_{\Omega} u(x) \mathrm{d} x .
$$

Idea:

Discrete Poincaré inequality + Hölder's inequality

$$
\left\|u-m_{\Omega}(u)\right\|_{L^{p}(\Omega)} \leq C_{p, p}|u|_{1, p \mathcal{M}} \quad \forall u \in X(\mathcal{M}), \quad p \in(1,2] .
$$

Prove for convex subdomains Ω_{i} that $\left\|u-m_{\omega}(u)\right\|_{L^{p}\left(\Omega_{i}\right)} \leq C_{i}|u|_{1, p \mathcal{M}}$ where $\omega \subset \Omega_{i}, \operatorname{mes}(\omega)>0$, write $\Omega=\cup_{i=1}^{r} \Omega_{i}$, think of $\omega=\Omega_{i}, \omega=\Omega_{i} \cap \Omega_{j}$, compose the estimates.

Lemma 2.

Let \mathcal{M} be a Voronoi finite volume mesh of Ω such that (A1) - (A3) are fulfilled. Let $x_{K_{0}}$ be a fixed grid point and $\sigma \in \mathcal{E}_{\text {int }}$ an internal Voronoi face with gravitational center x_{σ}. Then

$$
\begin{aligned}
& \operatorname{mes}\left(\left\{x \in B(0, R):\left[x_{K_{0}}, x\right] \cap \sigma \neq \emptyset\right\}\right) \\
& \quad \leq \frac{1}{n} \operatorname{diam}(\Omega)^{n} \max \left\{2,4 \kappa_{1}\right\}^{n-1} \frac{m_{\sigma}}{\left|x_{K_{0}}-x_{\sigma}\right|^{n-1}}=: A_{n} \frac{m_{\sigma}}{\left|x_{K_{0}}-x_{\sigma}\right|^{n-1}} .
\end{aligned}
$$

Idea:

Estimation of the solid angle, estimate mes(...) by the measure of the corresponding segment of the ball with radius $\operatorname{diam}(\Omega)$.

Lemma 3.

We assume (A1) - (A3). Let $p \in(1, n]$,

$$
q \in\left\{\begin{array}{ll}
(p, \infty) & \text { if } p=n \\
\left(p, \frac{p n}{n-p}\right) & \text { if } p<n
\end{array}, \quad 2 \beta=\frac{n}{q}+\frac{n}{p^{\prime}}-n+1, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1\right.
$$

Let $x_{K_{0}} \in \mathcal{P}$ be a fixed grid point. Then

$$
\sum_{K \in \mathcal{T}} \sum_{\sigma \in \mathcal{E}_{K}} \frac{\operatorname{mes}\left(D_{K \sigma}\right)}{\left|x_{K_{0}}-x_{\sigma}\right|^{n-p^{\prime} \beta}} \leq \max \left\{1+2 \kappa_{1}, 2\right\}^{n-p^{\prime} \beta} \frac{m_{n-1}}{p^{\prime} \beta}(2 \widetilde{R})^{p^{\prime} \beta}=: \frac{B_{n}}{n}
$$

where m_{n-1} denotes the measure of the $(n-1)$ dimensional unit sphere in \mathbb{R}^{n}.

Idea: Show

$$
\sum_{K \in \mathcal{T}} \sum_{\sigma \in \mathcal{E}_{K}} \frac{\operatorname{mes}\left(D_{K \sigma}\right)}{\left|x_{K_{0}}-x_{\sigma}\right|^{n-p^{\prime} \beta}} \leq c \int_{\Omega} \frac{\mathrm{d} x}{\left|x_{K_{0}}-x\right|^{n-p^{\prime} \beta}}(<\infty)
$$

Lemma 4.

We assume (A1) - (A4). Let $p \in(1, n]$,

$$
q \in\left\{\begin{array}{ll}
(p, \infty) & \text { if } p=n \\
\left(p, \frac{p n}{n-p}\right) & \text { if } p<n
\end{array}, \quad 2 \beta=\frac{n}{q}+\frac{n}{p^{\prime}}-n+1, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1 .\right.
$$

Let $\sigma \in \mathcal{E}_{\text {int }}$ be a fixed inner Voronoi face with gravitational center x_{σ}. Then

$$
\sum_{K_{0} \in \mathcal{T}} \sum_{\sigma_{0} \in \mathcal{E}_{K_{0}}} \frac{\operatorname{mes}\left(D_{K_{0} \sigma_{0}}\right)}{\left|x_{K_{0}}-x_{\sigma}\right|^{n-q \beta}} \leq\left(1+\kappa_{2}\left(1+2 \kappa_{1}\right)\right)^{n-q \beta} \frac{m_{n-1}}{q \beta}(2 \widetilde{R})^{q \beta}=: D_{n}
$$

Idea: Show

$$
\sum_{K_{0} \in \mathcal{T}} \sum_{\sigma_{0} \in \mathcal{E}_{K_{0}}} \frac{\operatorname{mes}\left(D_{K_{0} \sigma_{0}}\right)}{\left|x_{K_{0}}-x_{\sigma}\right|^{n-q \beta}} \leq c \int_{\Omega} \frac{\mathrm{d} x}{\left|x-x_{\sigma}\right|^{n-q \beta}}
$$

Theorem 1.

Let Ω be an open bounded polyhedral subset of \mathbb{R}^{n} and let \mathcal{M} be a Voronoi finite volume mesh such that (A1) - (A4) are fulfilled. Let $p \in(1, n]$, and $q \in(p, \infty)$ for $p=n$ and $q \in\left(p, \frac{p n}{n-p}\right)$ for $p<n$, respectively. Then there exists a constant $c_{q, p}>0$ only depending on n, p, q, Ω and the constants in (A1) (A4) such that

$$
\left\|u-m_{\Omega}(u)\right\|_{L^{q}(\Omega)} \leq c_{q, p}|u|_{1, p, \mathcal{M}} \quad \forall u \in X(\mathcal{M}), \quad m_{\Omega}(u)=\frac{1}{\operatorname{mes}(\Omega)} \int_{\Omega} u(x) \mathrm{d} x .
$$

Glitzky, Griepentrog, WIAS-Preprint 1429 (2009) for $p=2$.

Let $\mathcal{T}_{0}=\{K \in \mathcal{T}: \bar{K} \subset B(0, R)\}$.

$$
I_{1}:=\int_{\Omega}\left(u(x)-m_{\Omega}(u)\right) \varrho^{\mathcal{M}}(x) \mathrm{d} x=\sum_{K^{\prime} \in \mathcal{T}_{0}} \int_{K^{\prime}}\left(u(x)-m_{\Omega}(u)\right) \varrho_{K^{\prime}}^{\mathcal{M}} \mathrm{d} x .
$$

Let $K_{0} \in \mathcal{T}$ be arbitrarily fixed. For all $K^{\prime} \in \mathcal{T}_{0}$, f.a.a. $x \in K^{\prime}$ write

$$
u(x)-m_{\Omega}(u)=u_{K_{0}}-m_{\Omega}(u)+\sum_{\sigma=K_{i} \mid K_{j}}\left(u_{K_{i}}-u_{K_{j}}\right) \chi_{\sigma}\left(x_{K_{0}}, x\right)
$$ use correct order!

where

$$
\chi_{\sigma}(x, y)= \begin{cases}1 & \text { if } x, y \in \bar{\Omega} \text { and }[x, y] \cap \sigma \neq \emptyset \\ 0 & \text { if } x \notin \bar{\Omega} \text { or } y \notin \bar{\Omega} \text { or }[x, y] \cap \sigma=\emptyset\end{cases}
$$

and $[x, y]$ denotes the line segment $\{s x+(1-s) y, s \in[0,1]\}$.

Discrete Sobolev's integral representation

$$
I_{1}=\left(u_{K_{0}}-m_{\Omega}(u)\right) \int_{\Omega} \varrho^{\mathcal{M}} \mathrm{d} x+\sum_{K^{\prime} \in \mathcal{T}_{0}} \int_{K^{\prime}} \sum_{\sigma=K_{i} \mid K_{j}}\left(u_{K_{i}}-u_{K_{j}}\right) \varrho_{K^{\prime}}^{\mathcal{M}} \chi_{\sigma}\left(x_{K_{0}}, x\right) \mathrm{d} x
$$

By (A2) \Longrightarrow

$$
\begin{gathered}
\left|u_{K_{0}}-m_{\Omega}(u)\right| \leq \frac{\left|I_{1}\right|}{\rho_{0}}+\frac{I_{2}\left(K_{0}\right)}{\rho_{0}} \\
I_{2}\left(K_{0}\right):=\sum_{K^{\prime} \in \mathcal{T}_{0}} \int_{K^{\prime}} \sum_{\sigma=K_{i} \mid K_{j} \in \mathcal{E}_{i n t}} D_{\sigma} u \varrho_{K^{\prime}}^{\mathcal{M}} \chi_{\sigma}\left(x_{K_{0}}, x\right) \mathrm{d} x \\
\left|I_{1}\right| \leq\left|\int_{\Omega}\left(u(x)-m_{\Omega}(u)\right) \varrho^{\mathcal{M}}(x) \mathrm{d} x\right| \\
\leq\left\|u-m_{\Omega}(u)\right\|_{L^{1}(\Omega)} \\
\leq C_{1, p}|u|_{1, p, \mathcal{M}}
\end{gathered} \quad \text { Lemma 1 }
$$

$$
\begin{aligned}
I_{2}\left(K_{0}\right) & =\sum_{\sigma \in \mathcal{E}_{i n t}} D_{\sigma} u \sum_{K^{\prime} \in \mathcal{T}_{0}} \int_{K^{\prime}} \varrho_{K^{\prime}}^{\mathcal{M}} \chi_{\sigma}\left(x_{K_{0}}, x\right) \mathrm{d} x \\
& \leq \sum_{\sigma \in \mathcal{E}_{i n t}} D_{\sigma} u \operatorname{mes}\left(\left\{x \in B(0, R): \sigma \cap\left[x_{K_{0}}, x\right] \neq \emptyset\right\}\right) \\
& \leq A_{n} \sum_{\sigma \in \mathcal{E}_{i n t}} D_{\sigma} u \frac{m_{\sigma}}{\left|x_{K_{0}}-x_{\sigma}\right|^{n-1}}
\end{aligned}
$$

Hölder's inequality for $\alpha_{1}=q, \alpha_{2}=p q /(q-p), \alpha_{3}=p^{\prime}$, let $2 \beta=\frac{n}{q}+\frac{n}{p^{\prime}}-n+1$

$$
\begin{aligned}
\frac{I_{2}\left(K_{0}\right)}{A_{n}} \leq & \sum_{\sigma \in \mathcal{E}_{i n t}} D_{\sigma} u\left|x_{K_{0}}-x_{\sigma}\right|^{1-n} m_{\sigma} \\
\leq & \left(\sum_{\sigma \in \mathcal{E}_{\text {int }}}\left(\frac{D_{\sigma} u}{d_{\sigma}}\right)^{p}\left|x_{K_{0}}-x_{\sigma}\right|^{-n+q \beta} m_{\sigma} d_{\sigma}\right)^{1 / q}\left(\sum_{\sigma \in \mathcal{E}_{\text {int }}}\left(\frac{D_{\sigma} u}{d_{\sigma}}\right)^{p} m_{\sigma} d_{\sigma}\right)^{\frac{q-p}{p q}} \\
& \times\left(\sum_{K \in \mathcal{T}} \sum_{\sigma \in \mathcal{E}_{K}}\left|x_{K_{0}}-x_{\sigma}\right|^{-n+p^{\prime} \beta} m_{\sigma} d_{K, \sigma}\right)^{1 / p^{\prime}} \\
\leq & B_{n}^{1 / p^{\prime}}|u|_{1, p, \mathcal{M}}^{1-p / q}\left(\sum_{\sigma \in \mathcal{E}_{i n t}}\left(\frac{D_{\sigma} u}{d_{\sigma}}\right)^{p}\left|x_{K_{0}}-x_{\sigma}\right|^{-n+q \beta} m_{\sigma} d_{\sigma}\right)^{1 / q}
\end{aligned}
$$

Lemma 3, discrete $W^{1, p}$-seminorm

$$
\begin{aligned}
& \left\|I_{2}\right\|_{L^{q}(\Omega)}^{q}=\sum_{K_{0} \in \mathcal{T}} \sum_{\sigma_{0} \in \mathcal{E}_{K_{0}}} I_{2}\left(K_{0}\right)^{q} \operatorname{mes}\left(D_{K_{0} \sigma_{0}}\right) \\
& \leq A_{n}^{q} B_{n}^{q / p^{\prime}}|u|_{1, p, \mathcal{M}}^{q-p} \sum_{\sigma \in \mathcal{E}_{i n t}}\left(\frac{D_{\sigma} u}{d_{\sigma}}\right)^{p} m_{\sigma} d_{\sigma} \sum_{K_{0} \in \mathcal{T}} \sum_{\sigma_{0} \in \mathcal{E}_{K_{0}}}\left|x_{K_{0}}-x_{\sigma}\right|^{-n+q \beta} \operatorname{mes}\left(D_{K_{0} \sigma_{0}}\right) \\
& \leq A_{n}^{q} B_{n}^{q / p^{\prime}} D_{n}|u|_{1, p, \mathcal{M}}^{q} \quad \text { Lemma 4, discrete } W^{1, p} \text {-seminorm }
\end{aligned}
$$

In summary, for $u \in X(\mathcal{M})$

$$
\begin{aligned}
\left\|u-m_{\Omega}(u)\right\|_{L^{q}(\Omega)} & \leq \frac{1}{\rho_{0}}\left[\left\|I_{1}\right\|_{L^{q}(\Omega)}+\left\|I_{2}\right\|_{L^{q}(\Omega)}\right] \\
& \leq \frac{1}{\rho_{0}} \operatorname{mes}(\Omega)^{1 / q} C_{1, p}|u|_{1, p, \mathcal{M}}+\frac{A_{n}}{\rho_{0}} B_{n}^{1 / p^{\prime}} D_{n}^{1 / q}|u|_{1, p, \mathcal{M}}
\end{aligned}
$$

- For $q \in[1, p]$ and $n \geq p$, the discrete Sobolev-Poincaré inequalities

$$
\left\|u-m_{\Omega}(u)\right\|_{L^{q}(\Omega)} \leq c_{q, p}|u|_{1, p, \mathcal{M}} \quad \forall u \in X(\mathcal{M})
$$

are a direct consequence of Theorem 1 and Hölder's inequality.

- Corollary. Assume (A1) - (A4). Let $q \in[1, \infty)$ for $n=p$ and $q \in\left[1, \frac{p n}{n-p}\right)$ for $n>p$, respectively. Then there exists a constant $c_{q, p}>0$ only depending on n, q, p, Ω and the constants in (A1) - (A4) such that
- More general domains: Discrete Sobolev inequalities remain true if Ω is a finite union of δ-overlapping star shaped domains $\Omega_{i}, i=1$,
- For $q \in[1, p]$ and $n \geq p$, the discrete Sobolev-Poincaré inequalities

$$
\left\|u-m_{\Omega}(u)\right\|_{L^{q}(\Omega)} \leq c_{q, p}|u|_{1, p, \mathcal{M}} \quad \forall u \in X(\mathcal{M})
$$

are a direct consequence of Theorem 1 and Hölder's inequality.

- Corollary. Assume (A1) - (A4). Let $q \in[1, \infty)$ for $n=p$ and $q \in\left[1, \frac{p n}{n-p}\right)$ for $n>p$, respectively. Then there exists a constant $c_{q, p}>0$ only depending on n, q, p, Ω and the constants in (A1) - (A4) such that

$$
\|u\|_{L^{q}(\Omega)} \leq c_{q, p}|u|_{1, p, \mathcal{M}}+\operatorname{mes}(\Omega)^{\frac{1}{q}-1}\left|\int_{\Omega} u \mathrm{~d} x\right| \quad \forall u \in X(\mathcal{M})
$$

- More general domains: Discrete Sobolev inequalities remain true if Ω is a finite union of δ-overlapping star shaped domains $\Omega_{i}, i=1$,
- For $q \in[1, p]$ and $n \geq p$, the discrete Sobolev-Poincaré inequalities

$$
\left\|u-m_{\Omega}(u)\right\|_{L^{q}(\Omega)} \leq c_{q, p}|u|_{1, p, \mathcal{M}} \quad \forall u \in X(\mathcal{M})
$$

are a direct consequence of Theorem 1 and Hölder's inequality.

- Corollary. Assume (A1) - (A4). Let $q \in[1, \infty)$ for $n=p$ and $q \in\left[1, \frac{p n}{n-p}\right)$ for $n>p$, respectively. Then there exists a constant $c_{q, p}>0$ only depending on n, q, p, Ω and the constants in (A1) - (A4) such that

$$
\|u\|_{L^{q}(\Omega)} \leq c_{q, p}|u|_{1, p, \mathcal{M}}+\operatorname{mes}(\Omega)^{\frac{1}{q}-1}\left|\int_{\Omega} u \mathrm{~d} x\right| \quad \forall u \in X(\mathcal{M})
$$

- More general domains: Discrete Sobolev inequalities remain true if Ω is a finite union of δ-overlapping star shaped domains $\Omega_{i}, i=1, \ldots, N$.
- Exponential estimate for $p=n$: Under the assumptions (A1) - (A4) there exist constants $\Sigma>0$ and $\gamma>0$ only depending on n, Ω and the constants in (A1) - (A4) such that

$$
\int_{\Omega} \mathrm{e}^{r|u|} \mathrm{d} x \leq \gamma \exp \left\{r\left|m_{\Omega}(u)\right|+\frac{\left(r|u|_{1, n, \mathcal{M}}\right)^{n}}{n\left(n^{\prime} \Sigma\right)^{\frac{n}{n^{\prime}}}}\right\} \quad \forall u \in X(\mathcal{M}), \forall r \in(0, \infty)
$$

- The case $p>n$

Discrete analog to the imbedding of $W^{1, p}(\Omega)$ in $C^{0, \alpha}(\bar{\Omega})$
is under discussion.

- Exponential estimate for $p=n$: Under the assumptions (A1) - (A4) there exist constants $\Sigma>0$ and $\gamma>0$ only depending on n, Ω and the constants in (A1) - (A4) such that

$$
\int_{\Omega} \mathrm{e}^{r|u|} \mathrm{d} x \leq \gamma \exp \left\{r\left|m_{\Omega}(u)\right|+\frac{\left(r|u|_{1, n, \mathcal{M}}\right)^{n}}{n\left(n^{\prime} \Sigma\right)^{\frac{n}{n^{\prime}}}}\right\} \quad \forall u \in X(\mathcal{M}), \forall r \in(0, \infty)
$$

- The case $p>n$:
$\triangleright \quad\left\|u-m_{\Omega}(u)\right\|_{L^{\infty}(\Omega)} \leq c_{\infty, p}|u|_{1, p, \mathcal{M}} \quad \forall u \in X(\mathcal{M})$.
$\triangleright \quad$ Discrete analog to the imbedding of $W^{1, p}(\Omega)$ in $C^{0, \alpha}(\bar{\Omega})$ is under discussion.

