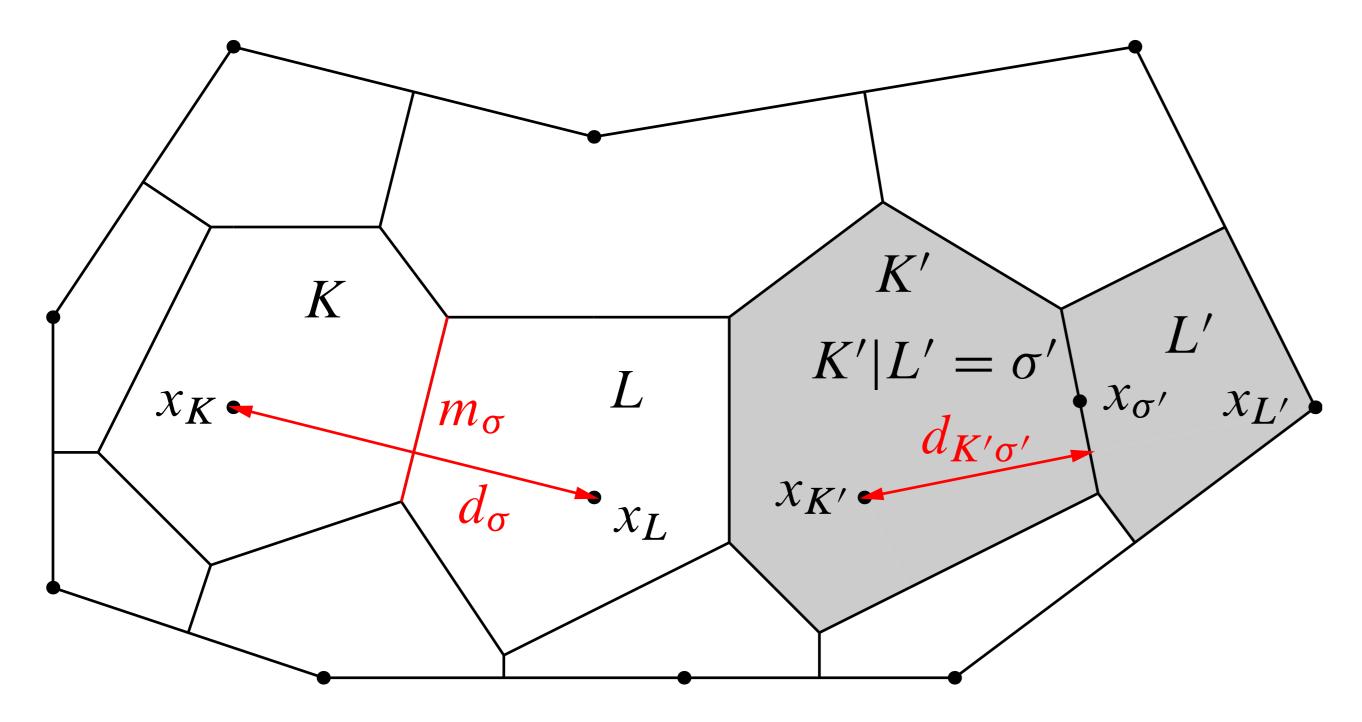


Weierstrass Institute for Applied Analysis and Stochastics ANNEGRET GLITZKY, JENS A. GRIEPENTROG Discrete Sobolev–Poincaré inequalities for Voronoi finite volume approximations

SIAM J. Numer. Anal. 48 (2010), pp. 372–391

Boundary conforming Delaunay grids for $\Omega \subset \mathbb{R}^n$

-open, polyhedral domain Ω contained in a ball B_R and star shaped with respect to some concentric ball $B_r \subset \Omega$,



Discrete version of Sobolev's integral representation

 $|u_L - m_{\Omega}(u)| \int_{\Omega} \rho^{\mathcal{M}}(x) \, dx \le I_1 + I_2(L) \text{ for all } L \in \mathcal{T},$

estimated by the sum of integrals

Meshes $\mathcal{M} = (\mathcal{P}, \mathcal{T}, \mathcal{E})$ for Ω

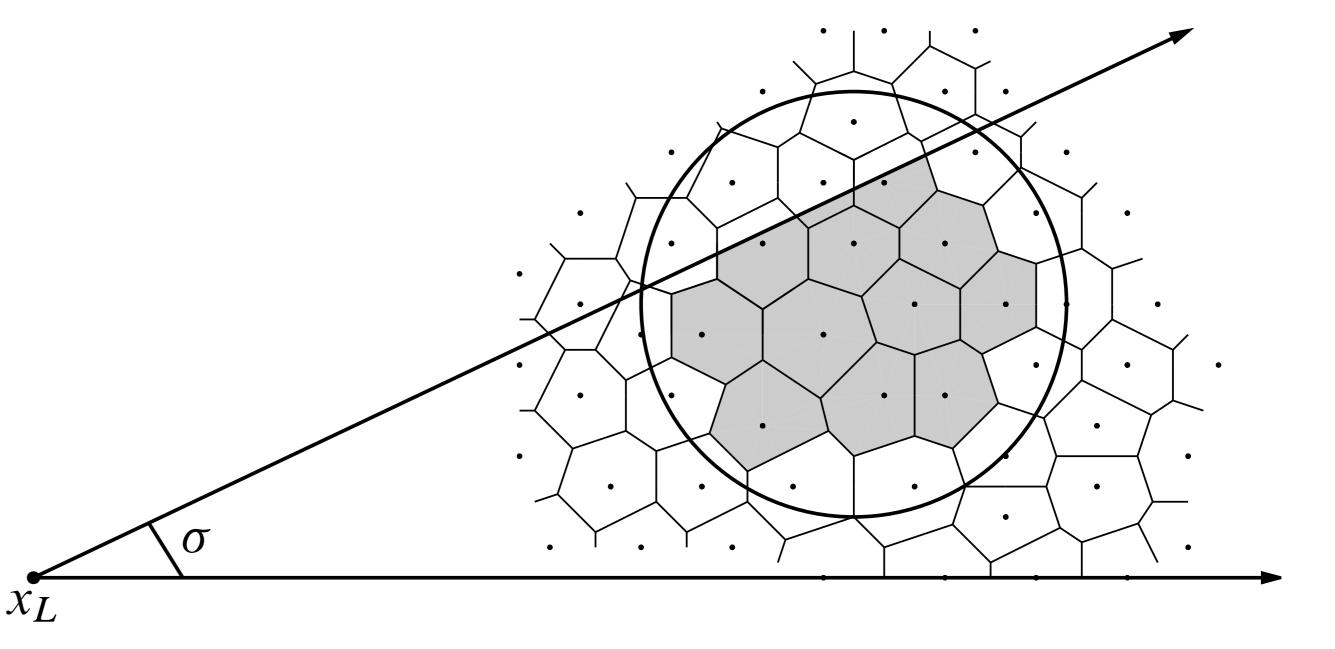
- -family \mathcal{P} of grid points x_K in Ω ,
- -family \mathcal{T} of Voronoi control volumes K,
- -set $\mathcal{E} = \mathcal{E}_{int} \cup \mathcal{E}_{ext}$ of interior/exterior Voronoi faces σ , -subset $\mathcal{E}_K \subset \mathcal{E}$ of faces forming the boundary of $K \in \mathcal{T}$, -assume that $\mathscr{E}_K \cap \mathscr{E}_{ext} \neq \emptyset$ always implies $x_K \in \partial \Omega$, -Voronoi face $\sigma = K | L$ between $K, L \in \mathcal{T}$ with surface

$$I_1 = \int_{\Omega} |u(x) - m_{\Omega}(u)| \rho^{\mathcal{M}}(x) \, dx,$$

and

$$I_2(L) = \sum_{\sigma \in \mathscr{E}_{int}} D_{\sigma} u \operatorname{mes} \left(\{ x \in B_r : [x_L, x] \cap \sigma \neq \emptyset \} \right).$$

Parts of Voronoi boxes included in the ball B_r and shaded by the Voronoi surface σ with respect to the viewpoint x_L :



area m_{σ} and gravitational center x_{σ} , Euclidean distance $d_{\sigma} = |x_K - x_L|$ between x_K and x_L and Euclidean distance $d_{K\sigma}$ between x_K and σ ,

-set $X(\mathcal{M})$ of functions $u : \Omega \to \mathbb{R}$ being constant on each $K \in \mathcal{T}$, where u_K is the value of u in the Voronoi box K, -discrete H^1 -seminorm for $u \in X(\mathcal{M})$:

$$|u|_{1,\mathcal{M}}^2 = \sum_{\sigma \in \mathcal{E}_{\text{int}}} |D_{\sigma}u|^2 \frac{m_{\sigma}}{d_{\sigma}}, \quad \text{where } D_{\sigma}u = |u_K - u_L|.$$

Mesh quality of \mathcal{M}

-cut-off function $\rho : \mathbb{R}^n \to [0, 1]$ defined as

$$\rho(y) = \begin{cases} \exp(r^2/(|y|^2 - r^2)) & \text{if } |y| < r, \\ 0 & \text{if } |y| \ge r, \end{cases}$$

-piecewise constant approximation $\rho^{\mathcal{M}} \in X(\mathcal{M})$ given by

Potential theoretical lemmas

There exists some constant $A = A(R, n, \kappa_1) > 0$ such that for all $L \in \mathcal{T}$ and $\sigma \in \mathcal{E}_{int}$ the following solid angle estimate holds true:

$$\operatorname{mes}\left(\{x \in B_r : [x_L, x] \cap \sigma \neq \emptyset\}\right) \leq \frac{A m_{\sigma}}{|x_{\sigma} - x_L|^{n-1}}.$$

Let $q \in (2, \infty)$ for $n = 2, q \in (2, 2n/(n-2))$ for $n \ge 3$, and fix $\beta > 0$ by $2\beta = n/q - n/2 + 1$. There exist constants $B = B(q, n, \kappa_1) > 0$ and $D = D(q, n, \kappa_1, \kappa_2) > 0$ such that the following *weakly singular integral estimates* hold true:

$$\sum_{K \in \mathcal{T}} \sum_{\sigma \in \mathcal{E}_K} \frac{m_\sigma d_{K\sigma}}{|x_\sigma - x_L|^{n-2\beta}} \le \int_{\Omega} \frac{B \, dx}{|x - x_L|^{n-2\beta}} \quad \text{for all } L \in \mathcal{T}$$

and

$$\rho_K^{\mathcal{M}}(x) = \min_{y \in \overline{K}} \rho(y) \text{ for } x \in K,$$

-consider meshes with constants
$$\rho_0 > 0$$
, $\kappa_1 > 0$ and $\kappa_2 > 0$
such that $\int_{\Omega} \rho^{\mathcal{M}}(x) dx \ge \rho_0$ and

$$\frac{\operatorname{diam} \sigma}{d_{\sigma}} \leq \kappa_1 \text{ for all } \sigma \in \mathcal{E}_{\operatorname{int}}, \quad \frac{R_{K,\operatorname{out}}}{R_{K,\operatorname{int}}} \leq \kappa_2 \text{ for all } K \in \mathcal{T}$$

-minimal radius $R_{K,out}$ of balls $B \supset K$ centered at x_K , -maximal radius $R_{K,int}$ of balls $B \subset K$ centered at x_K .

$$\sum_{L \in \mathcal{T}} \sum_{\tau \in \mathcal{E}_L} \frac{m_\tau d_{L\tau}}{|x_L - x_\sigma|^{n - q\beta}} \le \int_{\Omega} \frac{D dx}{|x - x_\sigma|^{n - q\beta}} \text{ for all } \sigma \in \mathcal{E}_{\text{int}}$$

Discrete Sobolev–Poincaré inequality

Let $q \in [1, \infty)$ for n = 2 and $q \in [1, 2n/(n-2))$ for $n \ge 3$. Then there exists some constant C > 0 depending only on n, q, Ω and the mesh constants $\rho_0, \kappa_1, \kappa_2$ such that

$$||u - m_{\Omega}(u)||_{L^{q}(\Omega)} \leq C ||u|_{1,\mathcal{M}}$$
 for all $u \in X(\mathcal{M})$.