
27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 1/9

Grid creation and visualization
This notebook shows how to perform grid creation and visualization with the assistance of the
packages ExtendableGrids.jl and SimplexGridFactory.jl. Visualization in this notebook is done using
the GridVisualize.jl package.

1D grids
1D grids are created just from arrays of montonically increasing coordinates using the simplexgrid
method.

X1 0.0:0.1:1.0 =

g1 ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 1 nodes: 11 cells: 10 bfaces: 2

 =

We can plot a grid with a method from GridVisualize.jl

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1
c1

b1

b2

We see some additional information:

cellregion : each grid cell (interval, triangle, tetrahedron) as an integer region marker attached
bfaceregion : boundary faces (points, lines, triangles) have an interger boundary region marker

attached

We can also have a look into the grid structure:

Dict(CellRegions => [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], NumBFaceRegions => 2, CellNodes => 2×10
 1
 2

Components can be accessed via [] . In fact the keys in the dictionary of components are types.

1×11 Matrix{Float64}:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2×10 Matrix{Int32}:

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 11

Modifying region markers
The simplexgrid method provides a default distribution of markers, but we would like to be able to
change them. This can be done by putting masks on cells or faces (points in 1D):

g2 ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 1 nodes: 11 cells: 10 bfaces: 2

 =

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1
c2

c1

b1

b2

begin
	 using SimplexGridFactory

	 using ExtendableGrids

	 using Triangulate

	 using TetGen

	 using GridVisualize

 using PlutoVista

	 using PlutoUI

	 default_plotter!(PlutoVista)
	 using PyPlot

end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

X1=range(0,1;length=11)⋅

g1=simplexgrid(X1)⋅

gridplot(g1; resolution=(500,150),legend=:rt)⋅

g1.components⋅

g1[Coordinates]⋅

g1[CellNodes]⋅

g2=deepcopy(g1)⋅

cellmask!(g2, [0.0], [0.5], 2);⋅

bfacemask!(g2, [0.5],[0.5], 3);⋅

gridplot(g2; resolution=(500, 150),legend=:rt)⋅

https://github.com/j-fu/ExtendableGrids.jl
https://github.com/j-fu/SimplexGridFactory.jl
https://github.com/j-fu/GridVisualize.jl
https://j-fu.github.io/ExtendableGrids.jl/stable/simplexgrid/#ExtendableGrids.simplexgrid-Tuple{AbstractVector{T}%20where%20T}
https://j-fu.github.io/ExtendableGrids.jl/stable/tdict/

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 2/9

Creating locally refined grids
For this purpose, we just need to create arrays with the corresponding coordinate values. This can be
done programmatically.

Two support metods are provided for this purpose.

0.1

The geomspace method creates an array such that the smallest interval size is hmin and the largest
interval size is not larger but close to hmax , and the interval sizes constitute a geometric sequence.

X2L
[0.0, 0.0931551, 0.170501, 0.234722, 0.288044, 0.332316, 0.369076, 0.399597, 0.424939, 0.44
 =

DX2
[0.0931551, 0.0773463, 0.0642203, 0.0533218, 0.0442729, 0.0367596, 0.0305213, 0.0253417, 0
 =

[1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439,

X2R
[0.5, 0.51, 0.522044, 0.536549, 0.55402, 0.575061, 0.600403, 0.630924, 0.667684, 0.711956,
 =

We can glue these arrays together and create a grid from them:

X2
[0.0, 0.0931551, 0.170501, 0.234722, 0.288044, 0.332316, 0.369076, 0.399597, 0.424939, 0.44
 =

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1
c1

b1

b2

Plotting functions
We assume that functions can be represented by their node values an plotted via their piecewise
linear interpolants. E.g. they could come from some simulation.

g1d2 ExtendableGrids.ExtendableGrid{Float64, Int32};

dim: 1 nodes: 201 cells: 200 bfaces: 2

 =

fsin

[0.544021, 0.457536, 0.366479, 0.271761, 0.174327, 0.0751511, -0.0247754, -0.124454, -0.22

 =

fcos

[-0.839072, -0.889191, -0.930426, -0.962365, -0.984688, -0.997172, -0.999693, -0.992225, -

 =

fsinh

[-3.62686, -3.55234, -3.47923, -3.40752, -3.33718, -3.26816, -3.20046, -3.13403, -3.06886,

 =

hmin=0.01 ; hmax=0.1⋅

X2L=geomspace(0,0.5,hmax,hmin)⋅

DX2=X2L[2:end].-X2L[1:end-1]⋅

DX2[1:end-1]./DX2[2:end]⋅

X2R=geomspace(0.5,1,hmin,hmax)⋅

X2=glue(X2L,X2R)⋅

gridplot(simplexgrid(X2); resolution=(500,150),legend=:rt)⋅

g1d2=simplexgrid(range(-10,10,length=201))⋅

fsin=map(sin,g1d2)⋅

fcos=map(cos,g1d2)⋅

fsinh=map(x->sinh(0.2*x), g1d2)⋅

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 3/9

−10 −5 0 5 10

−4

−2

0

2

4
sinh

cos

sin

x

y

2D grids

Tensor product grids
For 2D tensor product grids, we can again use the simplexgrid method and apply the mask methods
for modifying cell and boundary region markers.

ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 2 nodes: 297 cells: 520 bfaces: 72

To interact with the plot, you can use the mouse wheel or double toch to zoom, "shift-mouse-left" to
pan, and "alt-mouse-left" or "ctrl-mouse-left" to reset.

We can also have a look into the components of a 2D grid:

Dict(CellRegions => [2, 2, 2, 2, 2, 2, 2, 2, 2, more ,3], NumBFaceRegions => 5, CellNode

Unstructured grids
For the triangulation of unstructured grids, we use the mesh generator Triangle via the Triangulate.jl
and SimplexGridFactory.jl packages.

The later package exports the SimplexGridBuilder which shall help to simplify the creation of the
input for Triangulate .

let
	 vis=GridVisualizer(;resolution=(600,300),legend=:lt)
	
	 scalarplot!(vis, g1d2, fsinh, label="sinh", markershape=:dtriangle,

color=:red,markevery=5,clear=false)

	 scalarplot!(vis, g1d2, fcos, label="cos", markershape=:xcross, color=:green,

linestyle=:dash, clear=false,markevery=20)
	 	
	 scalarplot!(vis, g1d2, fsin, label="sin", markershape=:none, color=:blue,

linestyle=:dot, clear=false, markevery=20)

	 reveal(vis)
end

⋅
⋅
⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅
⋅

begin
	 g2d1=simplexgrid(X1,X2)
	 cellmask!(g2d1, [0.0,0.0], [0.5, 0.5], 2)
	 cellmask!(g2d1, [0.5,0.5], [1.0, 1.0], 3)
	 bfacemask!(g2d1, [0.0, 0.0], [0.0, 0.5],5)
end

⋅
⋅
⋅
⋅
⋅
⋅

gridplot(g2d1,resolution=(600,400),linewidth=0.5,legend=:lt)⋅

g2d1.components⋅

https://github.com/JuliaGeometry/Triangulate.jl
https://github.com/j-fu/SimplexGridFactory.jl

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 4/9

builder2

SimplexGridBuilder(Triangulate, 3, 1, 1.0, 1.0e-12, [1, 2, 3], [[1, 2], [2, 3], [3, 1]], Bi

 =

We can plot the current state of the builder (in the moment this works only with PyPlot):

grid2d2 ExtendableGrids.ExtendableGrid{Float64, Int32};

dim: 2 nodes: 449 cells: 793 bfaces: 103

 =

More complicated grids
More complicated grids include:

local refinement
interior boundaries
different region markers
holes

The particular way to describe these things is due to Jonathan Shewchuk and his mesh generator
Triangle via its Julia wrapper package Triangulate.jl.

Local refinement

refinement_center [0.8, 0.2] =

For local refimenent, we define a function, which is able to tell if a triangle is to be refined
("unsuitable") or can be kept as it is.

The function measures the distance between the refinement center and the triangle barycenter. We
require that the area increases with the distance from the refinement center.

Interior boundaries
Interior boundaries are described in a similar as exterior ones - just by facets connecting points.

builder2=let
	 b=SimplexGridBuilder(Generator=Triangulate)
	 p1=point!(b,0,0)
	 p2=point!(b,1,0)
	 p3=point!(b,1,1)

	 # Specify outer boundary
	 facetregion!(b,1)
	 facet!(b,p1,p2)
	 facetregion!(b,2)
	 facet!(b,p2,p3)
	 facetregion!(b,3)
	 facet!(b,p3,p1)	
	
	 cellregion!(b,1)
	 regionpoint!(b,0.75,0.25)
	
	 options!(b,maxvolume=0.01)
	 b
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

builderplot(builder2,Plotter=PyPlot)⋅

grid2d2=simplexgrid(builder2;maxvolume=0.001)⋅

gridplot(grid2d2, resolution=(400,300),linewidth=0.5)⋅

refinement_center=[0.8,0.2]⋅

function unsuitable(x1,y1,x2,y2,x3,y3,area)
 bary_x=(x1+x2+x3)/3.0
 bary_y=(y1+y2+y3)/3.0
 dx=bary_x-refinement_center[1]
 dy=bary_y-refinement_center[2]
 qdist=dx^2+dy^2
 area>0.1*max(1.0e-2,qdist)
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://www.cs.cmu.edu/~quake/triangle.html
https://github.com/JuliaGeometry/Triangulate.jl

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 5/9

Subregions
Subregions are defined as regions surrounded by interior boundaries. By placing a "region point" into
such a region and specifying a "region number", we can set the cell region marker for all triangles
created in the subregion.

Holes
Holes are defined in a similar way as subregions, but a "hole point" is places into the place which shall
become the hole.

Create a simplex grid from the builder

grid2d3 ExtendableGrids.ExtendableGrid{Float64, Int32};

dim: 2 nodes: 117 cells: 199 bfaces: 47

 =

builder3=let
	 b=SimplexGridBuilder(Generator=Triangulate;tol=1.0e-10)

	 # Specify points
	 p1=point!(b,0,0)
	 p2=point!(b,1,0)
	 p3=point!(b,1,1)
	 p4=point!(b,0,0.7)
	
	 # Specify outer boundary
	 facetregion!(b,1)
	 facet!(b,p1,p2)
	 facetregion!(b,2)
	 facet!(b,p2,p3)
	 facetregion!(b,3)
	 facet!(b,p3,p4)
	 facetregion!(b,4)
	 facet!(b,p1,p4)

	 # Activate unsuitable callback
	 options!(b,unsuitable=unsuitable)
	
	 # Specify interior boundary
	 facetregion!(b,5)
	 facet!(b,p1,p3)
	
	 # Coarse elements in upper left region #1
	 cellregion!(b,1)
	 maxvolume!(b,0.1)
	 regionpoint!(b,0.1,0.5)
	
	 # Fine elements in lower right region #2
	 cellregion!(b,2)
	 maxvolume!(b,0.01)
	 regionpoint!(b,0.9,0.5)
	
	 # Hole
	 hp1=point!(b,0.4,0.1)
	 hp2=point!(b,0.6,0.1)
	 hp3=point!(b,0.5,0.3)
	 holepoint!(b,0.5,0.2)
	 facetregion!(b,6)
	 facet!(b,hp1,hp2)
	 facet!(b,hp2,hp3)
	 facet!(b,hp3,hp1)
	
	
	 b
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

builderplot(builder3,Plotter=PyPlot)⋅

grid2d3=simplexgrid(builder3)⋅

gridplot(grid2d3,legend=:lt, resolution=(400,400))⋅

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 6/9

Plotting of functions
Functions defined on the nodes of a triangular grid can be seen as piecewise linear functions from the
P1 finite element space defined by the triangulation.

fsin2

[0.0, 0.0, 0.841471, 0.38939, 0.420735, 0.631103, 0.603703, 0.467345, 0.720622, 0.736287, 0

 =

fsin3

[0.0, 0.0, 0.841471, 0.0, 0.0399334, 0.0599, 0.14776, 0.0, 0.122412, 0.0, 0.0, 0.38939, 0.0

 =

3D Grids

Tensor product grids
Please note that "masking" is not yet implemented. Furthermore, PyPlot visualization is slow, with
GLMakie it is way faster.

X3 0.0:1.01:10.1 =

grid3d1 ExtendableGrids.ExtendableGrid{Float64, Int32};

dim: 3 nodes: 1331 cells: 6000 bfaces: 1200

 =

func3

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0, -0.0, -0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.

 =

fsin2=map((x,y)-> sin(x)*y, grid2d2)⋅

fsin3=map((x,y)-> sin(y)*x, grid2d3)⋅

scalarplot(grid2d2, fsin2, label="grid2d2")

⋅
⋅

	 scalarplot(grid2d3, fsin3, label="grid2d3",colormap=:spring,isolines=10)

⋅
⋅

X3=range(0.,10.1,length=11)⋅

grid3d1=simplexgrid(X3,X3,X3)⋅

func3=map((x,y,z)-> sin(x/2)*cos(y/2)*z/10,grid3d1)⋅

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 7/9

p3dg

 =

p3ds

 =

f=

x=

y=

z=

-0.049773893527225145

10.1

10.1

10.1

mean (generic function with 1 method)

Unstructured grids
The SimplexGridBuilder API supports creation of three-dimensional grids in way very similar to the 2D
case. Just define points with three coordinates and planar (!) facets with at least three points to
describe the geometry.

The backend for mesh generation in this case is the TetGen mesh generator by Hang Si from WIAS
Berlin and its Julia wrapper TetGen.jl.

p3dg=GridVisualizer(dim=3,resolution=(200,200))⋅

gridplot!(p3dg,grid3d1,zplanes=[zplane],yplanes=[yplane], xplanes=[xplane],
resolution=(200,200),show=true)

⋅

p3ds=GridVisualizer(dim=3,resolution=(400,400))⋅

	 scalarplot!(p3ds,grid3d1, func3, zplanes=[zplane], yplanes=[yplane],xplanes=

[xplane],levels=[flevel],colormap=:spring,resolution=
(200,200),show=true,levelalpha=0.5,outlinealpha=0.1)

⋅
⋅
⋅

⋅

md"""
f=$(@bind flevel
Slider(range(extrema(func3)...,length=20),default=mean(func3),show_value=true))

x=$(@bind xplane Slider(X3[1]:0.1:X3[end],default=X3[end],show_value=true))

y=$(@bind yplane Slider(X3[1]:0.1:X3[end],default=X3[end],show_value=true))

z=$(@bind zplane Slider(X3[1]:0.1:X3[end],default=X3[end],show_value=true))

"""

⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

mean(x)=sum(x)/length(x)⋅

http://tetgen.org/
https://github.com/JuliaGeometry/TetGen.jl

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 8/9

grid3d2 ExtendableGrids.ExtendableGrid{Float64, Int32};

dim: 3 nodes: 4650 cells: 21311 bfaces: 4890

 =

Grid creation and visualization
1D grids

Modifying region markers
Creating locally refined grids
Plotting functions

2D grids
Tensor product grids
Unstructured grids
More complicated grids

Local refinement
Interior boundaries
Subregions
Holes

Plotting of functions
3D Grids

Tensor product grids
Unstructured grids

builder3d=let
	
 b=SimplexGridBuilder(Generator=TetGen)

 p1=point!(b,0,0,0)
 p2=point!(b,1,0,0)
 p3=point!(b,1,1,0)
 p4=point!(b,0,1,0)
 p5=point!(b,0,0,1)
 p6=point!(b,1,0,1)
 p7=point!(b,1,1,1)
 p8=point!(b,0,1,1)

 facetregion!(b,1)
 facet!(b,p1 ,p2 ,p3 ,p4)
 facetregion!(b,2)
 facet!(b,p5 ,p6 ,p7 ,p8)
 facetregion!(b,3)
 facet!(b,p1 ,p2 ,p6 ,p5)
 facetregion!(b,4)
 facet!(b,p2 ,p3 ,p7 ,p6)
 facetregion!(b,5)
 facet!(b,p3 ,p4 ,p8 ,p7)
 facetregion!(b,6)
 facet!(b,p4 ,p1 ,p5 ,p8)

	 hp1=point!(b,0.4,0.4,0.4)
 hp2=point!(b,0.6,0.4,0.4)
 hp3=point!(b,0.6,0.6,0.4)
 hp4=point!(b,0.4,0.6,0.4)
 hp5=point!(b,0.4,0.4,0.6)
 hp6=point!(b,0.6,0.4,0.6)
 hp7=point!(b,0.6,0.6,0.6)
 hp8=point!(b,0.4,0.6,0.6)

 facetregion!(b,7)
 facet!(b,hp1 ,hp2 ,hp3 ,hp4)
 facet!(b,hp5 ,hp6 ,hp7 ,hp8)
 facet!(b,hp1 ,hp2 ,hp6 ,hp5)
 facet!(b,hp2 ,hp3 ,hp7 ,hp6)
 facet!(b,hp3 ,hp4 ,hp8 ,hp7)
 facet!(b,hp4 ,hp1 ,hp5 ,hp8)
	 holepoint!(b, 0.5,0.5,0.5)
	
	 b

end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

grid3d2=simplexgrid(builder3d,maxvolume=0.0001)⋅

gridplot(grid3d2,zplane=0.1,azim=20,elev=20,linewidth=0.5,outlinealpha=0.3)⋅

Table of Contents

27.11.22, 22:19 🎈 nb11-grids.jl — Pluto.jl

localhost:1235/edit?id=a0c2961a-6e98-11ed-02d1-3303b8f6a8d9# 9/9

