Grid creation and visualization

This notebook shows how to perform grid creation and visualization with the assistance of the packages ExtendableGrids.jl and SimplexGridFactory:j!. Visualization in this notebook is done using the GridVisualize.j package

```
begin
    using SimplexGridFactory
    using ExtendableGrids
    using Triangulate
    using TetGen
    using GridVisualize
    sing PlutoVist
    using PlutoUI
    default_plotter!(PlutoVista)
    using PyPlot
end
```


1D grids

1D grids are created just from arrays of montonically increasing coordinates using the simplexgrid method.
x 1 = 0.0:0.1:1.0
X1=range(0,1; length=11)
g1 = ExtendableGrids.ExtendableGrid\{Float64, Int32\}
dim: 1 nodes: 11 cells: 10 bfaces: 2
g1=simplexgrid(X1)
We can plot a grid with a method from GridVisualize.jl

gridplot(g1; resolution=(500,150), legend=:rt)

We see some additional information:

- cellregion : each grid cell (interval, triangle, tetrahedron) as an integer region marker attached
- bfaceregion : boundary faces (points, lines, triangles) have an interger boundary region marker attached

We can also have a look into the grid structure:

Components can be accessed via []. In fact the keys in the dictionary of components are types.

```
0.0 Matrix{Float64}:
    g1[Coordinates]
2\times10 Matrix{Int32}
1
    g1[CellNodes]
```


Modifying region markers

The simplexgrid method provides a default distribution of markers, but we would like to be able to change them. This can be done by putting masks on cells or faces (points in 1D):

```
g2 = ExtendableGrids.ExtendableGrid{Float64, Int32}
dim: 1 nodes: 11 cells: 10 bfaces: 2
```

g2=deepcopy (g1)
cellmask!(g2, [0.0], [0.5], 2);
bfacemask!(g2, [0.5],[0.5], 3);

gridplot(g2; resolution=(500, 150),legend=:rt)

Creating locally refined grids

For this purpose, we just need to create arrays with the corresponding coordinate values. This can be done programmatically.

Two support metods are provided for this purpose.
0.1
hmin=0.01 ; hmax=0.1

The geomspace method creates an array such that the smallest interval size is hmin and the largest interval size is not larger but close to hmax , and the interval sizes constitute a geometric sequence. X2L $=$
[0.0, $0.0931551,0.170501,0.234722,0.288044,0.332316,0.369076,0.399597,0.424939,0.4$ 4

X2L=geomspace(0,0.5,hmax,hmin)
DX2 =
[0.0931551, $0.0773463,0.0642203,0.0533218,0.0442729,0.0367596,0.0305213,0.0253417,0$
4. DX2=X2L[2: end] -X2L[1 : end-1]
[1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439, 1.20439,
. DX2[1:end-1]./DX2[2:end]
$\mathrm{X} 2 \mathrm{R}=$
$[0.5,0.51,0.522044,0.536549,0.55402,0.575061,0.600403,0.630924,0.667684,0.711956$, 4 X2R=geomspace (0.5,1,hmin, hmax $)$

We can glue these arrays together and create a grid from them:
[0.0, $0.0931551,0.170501,0.234722,0.288044,0.332316,0.369076,0.399597,0.424939,0.4$
 X2=glue (X2L, X2R)

gridplot(simplexgrid(X2); resolution=(500,150),legend=:rt)

Plotting functions

We assume that functions can be represented by their node values an plotted via their piecewise linear interpolants. E.g. they could come from some simulation.

```
g1d2 = ExtendableGrids.ExtendableGrid{Float64, Int32};
    g1d2=simplexgrid(range(-10,10,length=201))
fsin =
    [0.544021, 0.457536, 0.366479, 0.271761, 0.174327, 0.0751511, -0.0247754, -0.124454, -0.22
4.fsin=map(sin,g1d2)
fcos
    -0.839072, -0.889191, -0.930426, -0.962365, -0.984688, -0.997172, -0.999693, -0.992225,
4 fcos=map(cos,g1d2)
fsinh =
    -3.62686, -3.55234, -3.47923, -3.40752, -3.33718, -3.26816, -3.20046, -3.13403, -3.06886,
. fsinh=map(x->sinh(0.2*x),g1d2)
```


let
vis=GridVisualizer (; resolution=(600,300), legend=:lt)
scalarplot!(vis, g1d2, fsinh, label="sinh", markershape=:dtriangle, color=: red, markevery $=5$,clear=false)
scalarplot!(vis, g1d2, fcos, label="cos", markershape=:xcross, color=:green, linestyle=:dash, clear=false, markevery=20)
scalarplot!(vis, g1d2, fsin, label="sin", markershape=:none, color=:blue, linestyle=:dot, clear=false, markevery=20)
reveal(vis)
end

2D grids

Tensor product grids

For 2D tensor product grids, we can again use the simplexgrid method and apply the mask methods for modifying cell and boundary region markers.

ExtendableGrids.ExtendableGrid\{Float64, Int32\};
ExtendableGrids.ExtendableGrid\{Float64,
dim: 2 nodes: 297 cells: 520 bfaces: 72
begin
g2d1=simplexgrid(x1, x2)
g2d1=simplexgrid $(\underline{x 1}, \underline{\mathrm{X} 2})$
cellmask! $(g 2 d 1,[0.0,0.0],[0.5,0.5], 2)$
cellmask!(g2d1, [0.5,0.5], [1.0, 1.0], 3) bfacemask!(g2d1, [0.0, 0.0], [0.0, 0.5],5)
end

gridplot(g2d1, resolution=(600,400), linewidth=0.5,legend=:lt)
To interact with the plot, you can use the mouse wheel or double toch to zoom, "shift-mouse-left" to pan, and "alt-mouse-left" or "ctrl-mouse-left" to reset.

We can also have a look into the components of a 2D grid:

Dict(CellRegions $\Rightarrow[2,2,2,2,2,2,2,2,2$, more ,3], NumBFaceRegions $\Rightarrow 5$, CellNode

Unstructured grids

For the triangulation of unstructured grids, we use the mesh generator Triangle via the Triangulate.j! and SimplexGridFactory.jl packages

The later package exports the SimplexGridBuilder which shall help to simplify the creation of the input for Triangulate
builder2 $=$
SimplexGridBuilder(Triangulate, 3, 1, 1.0, 1.0e-12, [1, 2, 3], [[1, 2], [2, 3], [3, 1]], Bi
builder2=let
b=SimplexGridBuilder(Generator=Triangulate)
p1=point! (b, 0,0)
p2=point! (b,1,0)
p3=point! (b,1,1)
\# Specify outer boundary
facetregion!(b,1)
facet!(b, p1, p2)
facetregion! (b,2
facet!(b, p2, p3)
facetregion! (b, 3)
facet! (b, p3, p1)
cellregion! (b,1)
regionpoint!(b,0.75,0.25)
options! (b,maxvolume=0.01)
end ${ }^{\text {b }}$

We can plot the current state of the builder (in the moment this works only with PyPlot):
In

builderplot(builder2,Plotter=PyPlot)
grid2d2 $=$ ExtendableGrids.ExtendableGrid\{Float64, Int32\};
dim: 2 nodes: 449 cells: 793 bfaces: 103
grid2d2=simplexgrid(builder2;maxvolume=0.001)

gridplot(grid2d2, resolution=(400,300),linewidth=0.5)

More complicated grids

More complicated grids include:

- local refinement
- interior boundaries
different region markers
- holes

The particular way to describe these things is due to Jonathan Shewchuk and his mesh generator Triangle via its Julia wrapper package Triangulate.jl.

Local refinement

refinement_center $=[0.8,0.2]$
refinement_center=[0.8,0.2]

For local refimenent, we define a function, which is able to tell if a triangle is to be refined ("unsuitable") or can be kept as it is.

The function measures the distance between the refinement center and the triangle barycenter. We require that the area increases with the distance from the refinement center.

```
function unsuitable(x1,y1, x2, y2, x3, y3,area)
    bary_x=(x1+x2+x3)/3.0
    bary_y=(y1+y2+y3)/3.0
    dx=bary_x-refinement_center[1]
    dy=bary_y-refinement_center [2]
    qdist=dx^2+dy^2
    area>0.1*max(1.0e-2,qdist)
end;
```


Interior boundaries

Subregions

Subregions are defined as regions surrounded by interior boundaries. By placing a "region point" into such a region and specifying a "region number", we can set the cell region marker for all triangles created in the subregion

Holes

Holes are defined in a similar way as subregions, but a "hole point" is places into the place which shall become the hole.
builder3=let
b=SimplexGridBuilder (Generator=Triangulate; tol=1.0e-10)
\# Specify point
p1=point!(b,0,0)
p2=point! (b,1,0)
p3=point! (b,1,1
p4=point! (b,0,0.7)
\# Specify outer boundary
facetregion! (b,1)
facet! (b,p1,p2)
acetregion!(b,2)
acet!(b,p2,p3)
facetregion!(b,3)
facet!(b,p3,p4)
facetregion!(b,4
facet!(b,p1,p4)
\# Activate unsuitable callback
options!(b,unsuitable=unsuitable)
Specify interior boundary
facetregion!(b,5)
facet!(b,p1,p3)
\# Coarse elements in upper left region \#1
cellregion! (b,1)
regionpoint!(b,0.1,0.5)
\# Fine elements in lower right region \#2
cellregion! (b,2)
maxvolume!(b,0.01)
regionpoint!(b, 0.9,0.5)
\# Hole
hp1=point!(b, 0.4,0.1)
hp2=point! (b, , $6,0.1$)
hp3=point! (b, $0.5,0.3$)
plepoint! (b, 0.5, 0.2)
olepoint!(b,0.5,0.2)
acetregion! (b,6)
acet! (b,hp1,hp2)
facet!(b,hp2,hp3)
facet!(b,hp3,hp1)

- end; ${ }^{\text {b }}$

builderplot(builder3,Plotter=PyPlot)

Create a simplex grid from the builder
grid2d3 = ExtendableGrids.ExtendableGrid\{Float64, Int32\}; dim: 2 nodes: 117 cells: 199 bfaces: 4
grid2d3=simplexgrid(builder3)

Plotting of functions

Functions defined on the nodes of a triangular grid can be seen as piecewise linear functions from the P_{1} finite element space defined by the triangulation.
$\mathrm{f} \sin 2=$
[0.0, 0.0, $0.841471,0.38939,0.420735,0.631103,0.603703,0.467345,0.720622,0.736287,1$
. $f \sin 2=\operatorname{map}((x, y)->\sin (x) * y, \operatorname{grid} 2 d 2)$
fsin3 $=$
[0.0, 0.0, $0.841471,0.0,0.0399334,0.0599,0.14776,0.0,0.122412,0.0,0.0,0.38939,0.6$
. $\mathrm{f} \sin 3=\operatorname{map}((x, y)->\sin (y) * x, \operatorname{grid} 2 d 3)$

scalarplot(grid2d2, fsin2, label="grid2d2")

scalarplot(grid2d3, fsin3, label="grid2d3",colormap=:spring,isolines=10)

3D Grids

Tensor product grids

Please note that "masking" is not yet implemented. Furthermore, PyPlot visualization is slow, with GLMakie it is way faster.
x3 $=0.0: 1.01: 10$
X3=range(0.,10.1, length=11)
grid3d1 $=$ ExtendableGrids.ExtendableGrid\{Float64, Int32\};
dim: 3 nodes: 1331 cells: 6000 bfaces: 1200
grid3d1=simplexgrid(x3, x3, x3)
func3 =
$[0.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.0,-0.0,-0.0,-0.0,0.0,0.0,0.0,0.0,0.0,0.0,0$
func3 $=\operatorname{map}((x, y, z)->\sin (x / 2) * \cos (y / 2) * z / 10$, grid3d1 $)$
p3dg $=$

p3dg=GridVisualizer(dim=3,resolution=(200,200))
gridplot!(p3dg,grid3d1,zplanes=[zplane],yplanes=[yplane], xplanes=[xplane], resolution $=(200,200)$, show=true)
p3ds $=$

p3ds=GridVisualizer (dim=3, resolution $=(400,400)$)
scalarplot!(p3ds,grid3d1, func3, zplanes=[zplane], yplanes=[yplane],xplanes= [xplane],levels=[flevel],colormap=:spring, resolution= $(200,200)$, show $=$ true, levelalpha $=0.5$, outlinealpha=0.1)

-0.049773893527225145											
$x=10.1$											
$y=\longrightarrow 10.1$											
$\mathrm{z}=\longrightarrow 10.1$											
md"""											
- $\mathrm{f}=\$(\mathrm{Qbind}$ flevel											
Slider(range(extrema(func3)..., length=20), default=mean(func3), show_value=true)											
$\mathrm{x}=\$(@ b i n d$ xplane Slider(x3[1]:0.1: X [end], default=x3[end], show_value=true))											
$\mathrm{y}=\$$ (@bind yplane Slider(X3[1]:0.1:X3[end], default=X3[end], show_value=true))											
z=\$(@bind zplane Slider(X3[1]:0.1: X 3 [end], default=x3[end], show_value=true))											

mean (generic function with 1 method)
mean $(x)=\operatorname{sum}(x) /$ length (x)

Unstructured grids

The SimplexGridBuilder API supports creation of three-dimensional grids in way very similar to the 2D case. Just define points with three coordinates and planar (!) facets with at least three points to describe the geometry

The backend for mesh generation in this case is the TetGen mesh generator by Hang Si from WIAS Berlin and its Julia wrapper TetCen.jI.
b=SimplexGridBuilder (Generator=TetGen)
p1=point! (b, 0, 0, 0)
p2=point! (b,1,0,0)
p3=point! (b,1,1,0)
p4=point!(b, $0,1,0)$
p5=point! (b, $0,0,1$)
p6=point! (b, 1,0,1)
p7=point! (b, 1,1,1)
p8=point! (b, $0,1,1$)
facetregion! (b,1)
facet!(b,p1 ,p2 ,p3 ,p4)
facetregion!(b,2)
facet!(b,p5 ,p6 ,p7 ,p8
facetregion! (b,3)
facet!(b,p1 ,p2 ,p6 ,p5)
facetregion! (b,4)
facet!(b,p2 ,p3 ,p7 ,p6)
facetregion!(b,5)
facet!(b,p3 ,p4 ,p8 ,p7)
facetregion! (b,6)
facet! (b,p4 ,p1 ,p5 ,p8)
hp1=point! (b,0.4,0.4,0.4)
hp2=point! (b, 0. 6, 0., , 0.4)
hp3=point! (b,0.6,0.6,0.4)
hp4=point!(b, $0.4,0.6,0.4)$
hp5=point! (b,0.4,0.4,0.6)
hp5=point! (b, $0.4,0.4,0.6)$
hp6=point! (b, $0.6,0.4,0.6)$
hp6=point! (b, 0.6,0.4,0.6)
hp8=point! (b, $0.4,0.6,0.6$)
facetregion!(b,7)
facet!(b,hp1 ,hp2 ,hp3 ,hp4)
acet (b,hp5 hp2 ,hp3 ,hp4)
acet!(b,hp5 ,hp6 ,hp7 ,hp8)
acet!(b,hp1 ,hp2 ,hp6 ,hp5)
acet! (b,hp2 ,hp3 ,hp7 ,hp6)
acet! (b,hp3 ,hp4 ,hp8 ,hp7)
holepoint!(b, 0.5,0.5,0.5)
b
end;
grid3d2 $=\begin{aligned} \text { ExtendableGrids. ExtendableGrid\{Float64, } \\ \text { dim: } 3 \text { nodes: } 4650 \text { cells: } 21311 \text { bfaces: } 4890\end{aligned}$
grid3d2=simplexgrid(builder3d, maxvolume=0.0001)

gridplot(grid3d2, zplane=0.1, azim=20, elev=20, linewidth=0.5, outlinealpha=0.3)

Table of Contents

Grid creation and visualization

1D grids
Modifying region markers
Creating locally refined grids
Plotting functions
2D grids
Tensor product grids
Unstructured grids
More complicated grids
Local refinement
Interior boundaries
Subregions
Holes
Plotting of functions
3D Grids
Tensor product grids
Unstructured grids

