Karoline Disser (née Götze)

I'm currently on leave from WIAS, working at TU Darmstadt:
E-mail Karoline.Disser-please remove this text-@wias-berlin.de kdisser@mathematik.tu-darmstadt.de
Phone +49 (0) 30 20372 415 +49 (0) 6151 16 21490
Address Weierstrass Institute
Mohrenstr. 39
10117 Berlin, Germany
FB Mathematik, TU Darmstadt
Schlossgartenstr. 7
64289 Darmstadt, Germany
Room Hausvogteiplatz 11, 3.03 S2-15 312
Karo Disser


  • K. Disser and J. Rehberg
    The 3D transient semiconductor equations with gradient-dependent and interfacial recombination.
  • K. Disser
    Global existence, uniqueness and stability for nonlinear dissipative systems of bulk-interface interaction.


  • K. Disser, M. Liero and J. Zinsl
    On the evolutionary Gamma-convergence of gradient systems modeling slow and fast chemical reactions.
    Nonlinearity, accepted (2018).
  • K. Disser, A.F.M. ter Elst and J. Rehberg
    On maximal parabolic regularity for non-autonomous parabolic operators.
    J. Differential Equations 262 (2017), no. 3, 2039-2072.
  • K. Disser, G. P. Galdi, G. Mazzone und P. Zunino
    Inertial motions of a rigid body with a cavity filled with a viscous liquid.
    Arch. Rat. Mech. Anal. 221 (2016), no. 1, 487-526.
  • K. Disser, J. Rehberg und A. F. M. ter Elst
    Hölder estimates for parabolic operators on domains with rough boundary.
    Ann. Sc. Norm. Sup. Pisa XVII (2015), no. 1, 65-79.
  • K. Disser
    Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions.
    Analysis 35 (2015), no. 4, 309-317.
  • K. Disser, M. Meyries and J. Rehberg
    A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces.
    J. Math. Anal. Appl. 430 (2015), no. 2, 1102-1123.
  • K. Disser, H.-C. Kaiser and Joachim Rehberg
    Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems.
    SIAM J. Math. Anal. 47 (2015), no. 3, 1719-1746.
  • K. Disser and M. Liero
    On gradient structures for Markov chains and the passage to Wasserstein gradient flows.
    Netw. Heterog. Media 10 (2015), no. 2, 235-253.
  • K. Götze
    Strong solutions for the free movement of a rigid body in an Oldroyd-B fluid.
    J. Math. Fluid Mech. 15 (2013), no. 4, 663-688.
  • M. Geissert, K. Götze and M. Hieber
    Lp-theory for strong solutions to fluid rigid-body interaction in Newtonian and generalized Newtonian fluids.
    Trans. Amer. Math. Soc. 365 (2013), no. 3, 1393-1439.
  • K. Götze
    Maximal Lp-regularity for a 2D fluid-solid interaction problem.
    Oper. Theory Adv. Appl. 221 (2012), 373-384.


  • K. Disser
    An entropic gradient structure for quasi-steady-state approximations of chemical reactions.
    Proceedings of the GAMM, 87th annual meeting, PAMM 16 (2016).
  • K. Disser
    Parabolic equations with mixed boundary conditions, degenerate diffusion and diffusion on interfaces.
    Proceedings of the GAMM, 85th annual meeting, PAMM 14 (2014), 993-994.
  • K. Götze
    Free fall of a rigid body in a viscoelastic fluid.
    Geophysical Fluid Dynamics, Workshop, February 18-22, 2013, 10 of Oberwolfach Reports, MFO (2013), 554-556.

Teaching material

Function Spaces manuscript
Internet Seminar: Non-Newtonian Fluids seminar 1, 2, 3, 4.