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Abstract. A numerical method for the fully adaptive sampling and interpo-

lation of linear PDEs with random data is presented. It is based on the idea

that the solution of the PDE with stochastic data can be represented as con-
ditional expectation of a functional of a corresponding stochastic differential

equation (SDE). The spatial domain is decomposed by a non-uniform grid and

a classical Euler scheme is employed to approximately solve the SDE at grid
vertices. Interpolation with a conforming finite element basis is employed to

reconstruct a global solution of the problem. An a posteriori error estimator is

introduced which provides a measure of the different error contributions. This
facilitates the formulation of an adaptive algorithm to control the overall error

by either reducing the stochastic error by locally evaluating more samples, or

the approximation error by locally refining the underlying mesh. Numerical
examples illustrate the performance of the presented novel method.

1. Introduction

It becomes increasingly common that problems in the applied sciences, e.g. in
engineering and computational biology, involve uncertainties of model parameters.
These can for instance be related to coefficients of random media, i.e. material
properties, inexact domains and stochastic boundary data. The uncertainties may
result from heterogeneities and incomplete knowledge or inherent stochasticity of
parameters. With steadily increasing computing power, the research field of uncer-
tainty quantification (UQ) has become a rapidly growing and vividly active area of
research which covers many aspects of dealing with such uncertainties for problems
of practical interest.

In this work, we derive a novel adaptive numerical approach for the solution of
linear PDEs with stochastic data. The proposed method is based on the presenta-
tion in [1] where a similar idea was described in combination with a global regression
and without adaptivity (except for the step width in the Euler scheme). The im-
portant topic of adaptivity is picked up in this work where a unique feature of the
method is exploited, namely the completely decoupled and localized parametrization
(and thus control) of approximation and stochastic errors. This becomes feasible
since

• the pointwise solution in the spatial domain is determined by an appropriate
SDE and solved by an adaptive Euler scheme as in [1],
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• the global solution on the spatial domain is reconstructed based on a tri-
angulation and interpolation in between vertices (i.e. on a discrete finite
element space).

Consequently, the overall error is determined by

(i) the accuracy of the single SDE solutions dictated by the step width of the
scheme,

(ii) the stochastic error for the pointwise expected value determined by the
number of solutions computed on each vertex,

(iii) the number of solution points in the spatial domain determined by the
refinement level of the employed mesh.

Hence, the second item related to the stochastic error enables a localized adaptivity
for the sampling while the first and third items are related to the approximation
quality in the spatial domain. In comparison to other common methods such as the
Monte Carlo FEM for stochastic PDEs [2], the proposed method provides means
to adjust the number of samples locally while also reconstructing global solutions.
Moreover, it is also highly parallelizable and thus well suited for modern distributed
multi-core architectures.

While the derivation of the method in the next section is rather general, a specific
motivation is given by a model relevant in practical problems, namely the Darcy
equation related to the modeling of groundwater flow. It reads as

−∇ · (κ(x)∇u(x)) = f(x), x ∈ D,(1a)

u(x) = g(x), x ∈ ∂D,(1b)

where the solution u is the hydraulic head, κ denotes the conductivity coefficient de-
scribing the porosity of the medium, f is a source term and the Dirichlet boundary
data is defined by g. The computational domain in d dimensions is denoted D ⊂ Rd
and we suppose that D is a convex polygon. Moreover, all data are supposed to be
sufficiently smooth such that the problem always exhibits a unique solution which
then is also smooth. A detailed regularity analysis is not in the scope of this paper.
In principle, although we restrict our investigations to a stochastic coefficient κ,
any data of the PDE can be modeled as being stochastic. The model (1) is quite
popular for analytical and numerical examinations since it is one of the simplest
models which reveals some major difficulties that also arise in more complex sto-
chastic models. Moreover, the deterministic linear second order elliptic PDE is a
well-studied model problem and it is of practical relevance, e.g. in the context of
groundwater contamination.

The random data used in the PDE model is a stochastic field given with an
adequate representation. This can for instance be based on actual measurements,
expert-knowledge or simplifying assumptions regarding the statistics. For numeri-
cal computations, the representation has to be amenable for the employed method.
However, the derived method does not rely on a specific representation of the ran-
dom fields. In particular, only the generation of realizations is required to carry
out numerical computations.

A variety of numerical methods is available to obtain approximate solutions of
the model problem (1) with random data and we only refer to [3, 4, 5] for an
overview in the context of uncertainty quantification (UQ). These methods often
rely on the separation of the deterministic and the stochastic space and introduce
separate discretizations [6]. Common methods are based on sampling of the sto-
chastic space, the projection onto an appropriate stochastic basis or a perturbation
analysis. The most popular sampling approach is the Monte Carlo (MC) method
which is very robust and easy to implement. Recent developments include the quite
successful application of multilevel ideas for variance reduction and advances with
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structured point sequences (Quasi-MC), cf. [2, 7, 8, 9, 10]. (Pseudo-)Spectral meth-
ods represent a popular class of projection techniques which can e.g. be based on
interpolation (Stochastic Collocation) [11, 12, 13] or orthogonal projections with
respect to the energy norm induced by the differential operator of the random PDE
(Stochastic Galerkin FEM) [14, 15, 16, 17, 18, 19, 20]. These methods are more
involved to analyze and implement but offer the benefit of possibly drastically im-
proved convergence rates when compared to standard Monte Carlo sampling. The
deterministic discretization often relies on the finite element method (FEM) which
also is employed with MC.

The aim of this paper is the description of a novel highly adaptive numerical ap-
proach which is founded on the (classical) observation (see [21, 1]) that the random
PDE (1) is directly related to an SDE driven by a stochastic process, namely

(2) dXt = b(Xt) dt+ σ(Xt) dWt,

with appropriate coefficients b and σ, Brownian motion W and additional boundary
conditions. For deterministic data κ, f, g, for any x ∈ D, the Feynman-Kac formula
leads to a collection of random variables ϕx = ϕx(κ, f, g) such that u(x) = E[ϕx],
i.e. the deterministic solution at x is equivalent to the expectation of the random
variable. When the data are stochastic, the solution u(x) of the random PDE at
x ∈ D can be expressed as the conditional expectation of u given data κ, f, g, i.e.,
u(x) = E[ϕx |κ, f, g], and the variance of u(x) can be bounded by the variance of
ϕx. To determine ϕx at points x ∈ D, a classical Euler method can be employed. In
order to recover a global solution in the spatial domain D, opposite to the previous
work [1] where global regression was utilized, we here rely on a mesh T which is a
regular triangulation of D. Sampled approximations of ϕx are then computed at
the nodes of the mesh and the values are used for an interpolation in a discrete finite
element space. This yields the approximate expectation of the solution E[u(ω, ·)]
defined on the entire domain D.

A distinct advantage of this approach is the separation of all error components
as mentioned above, which in the case of the discrete interpolation allows for the
application of simple finite element (FE) a posteriori error estimates to refine the
spatial mesh, i.e. the location of sample points in the domain guided by the global
approximation error.

One can regard the proposed method as a combination of sampling and interpo-
lation methods, that make use of classical stochastic solution techniques pointwise
and a global interpolation with FE basis functions. When compared to MC which
samples a stochastic space (Ω,F , P ) by (typically) determining a FE solution at
every point and subsequently averaging the solutions, our method determines real-
izations of stochastic solutions at points in the spatial domain D and determines an
approximation of the expectation by a global interpolation in the physical space.
Thus, the method does not require any type of global deterministic solver and can
be parallelized extremely well.

To the best of our knowledge, the regression/interpolation approach based on
the Feynman-Kac representation proposed in [1] and the present paper is new for
the field of PDEs with stochastic coefficients. Of course, similar methods have
a long history for deterministic PDEs, and we refer to the monograph [21] for a
thorough overview. There have also been some works on numerics for SPDEs in the
sense of time-dependent PDEs driven by temporal (Brownian) noise. In particular,
we refer to [22] for applications to stochastic Navier-Stokes equations. Due to the
non-linearity, the Feynman-Kac representation cannot be directly applied in that
problem, but a layer method based on linearized problems is constructed.

The structure of the paper is as follows: In Section 2, we elaborate on the rep-
resentation of deterministic and stochastic PDEs in terms of stochastic differential
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equations (SDEs). Moreover, we recall the employed numerical methods to deter-
mine pointwise stochastic solutions, namely the Euler method and Monte Carlo
sampling. Additionally, based on a deterministically chosen set of stochastic solu-
tions in the spatial domain, the reconstruction of a global approximation by means
of an interpolation in a discrete FE basis is described. This allows for a fully adap-
tive algorithm which is derived in Section 3. There, the different error components
are identified and a practical approach for the determination of the discretization
parameters is explained. The paper is concluded with several numerical examples
in Section 4 where the performance of the new method is demonstrated.

2. Stochastic Sampling and Interpolation

In this section we provide a brief overview of the method presented in [1]. As a
motivation to the approach, we want to construct an SDE such that the solution
u(ω, x) of the SPDE at some point x ∈ D can be expressed as conditional expecta-
tion of some functional of the solution of an appropriate SDE. This forms the basis
of the method which is then extended to a fully adaptive scheme.

For the sake of concreteness, we present the method specifically in the case of
Darcy’s law and refer once more to [1] for the general form. For a more compre-
hensive treatment of the well-known basic stochastic theory, we refer the reader for
instance to [21].

2.1. Stochastic representations of PDEs. The starting point is the following
SDE

dXt = ∇κ(Xt) dt+
√

2κ(Xt) dWt, X0 = x,(3a)

where x ∈ D ⊂ Rd is a deterministic point, W is a d-dimensional standard Brownian
motion defined on some probability space (Ω,F , P ) and κ : Ω × D → R is the
stochastic field of conductivity coefficients associated to the medium. Furthermore,
it is important to require the stochastic field κ and the Brownian motion W to be
independent.1 Additionally, we shall sometimes consider the derived process

Zt :=

∫ t

0

f(Xs) ds,(3b)

for the (again, possibly random, but independent from W ) source term f : Ω×D →
R. If we want to stress the dependence on the initial value, we write Xx

t := Xt.
The process Z depends on x as well and we shall write Zxt if we want to stress
this dependence. Notice that existence and uniqueness of solutions to the SDE can
be obtained simply by applying standard theory after conditioning on the random
fields κ and f , provided that the fields are regular enough. In particular, we need
to require that ∇κ exists and is Lipschitz continuous in x a.s. For more details on
convenient regularity assumptions we again refer to [1].

The (random) Dirichlet problem (1) now admits the following representation in
terms of the solutions of the above SDE: Let τ = τx denote the first hitting time
of the solution X = Xx (started at x ∈ D) at the boundary ∂D. Then the random
solution u(x) and its expectation E[u(x)] satisfy the Feynman-Kac theorem:

(4) u(x) = E
[
g
(
Xx
τx

)
+ Zxτx

∣∣ κ, f] , E[u(x)] = E
[
g
(
Xx
τx

)
+ Zxτx

]
.

This means that the random solution u(x) is obtained from the random variable
g
(
Xx
τx

)
+ Zxτx by taking expectations only w.r.t. the Brownian motion W . On the

other hand, for E [u(x)], we simply take the total expectation as there is no need
for iterating the expectations.

1This may require to enhance the original probability space Ω, on which κ is defined. See [1]
for details.
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For a better understanding of (4), let us note that the result is classical2 in the
special case of deterministic coefficients κ and f , see, for instance, [21]. Of course,
in that case the conditioning is trivial. As the coefficients κ and f are assumed to
be independent from the Brownian motion W driving the SDE (3), the stochastic
representation easily extends from the deterministic to the random case in the
sense of (4), provided that the regularity conditions for the deterministic case hold
“uniformly in the randomness induced by κ, f”. Specifically, if we are interested in
the solution u = u(ω) at a fixed realization κ(·, ω) and f(·, ω) of the random field, we
can simply apply the Feynman-Kac formula for the case of deterministic coefficients
κ(·, ω) and f(·, ω). Hence, (4) is an immediate consequence of the Feynman-Kac
formula for deterministic coefficients.

Equation (4) can also be used to estimate the variance of the random solution
u, since

Var [u(x)] ≤ Var
[
g
(
Xx
τx

)
+ Zxτx

]
.

This inequality is a simple consequence of the law of total variance. Note, however,
that the inequality is usually strict. Intuitively, the difference of the right-hand side
and the left-hand side corresponds to the variance induced by the Brownian motion
W .

Hence, for any x ∈ D for which we want to obtain the solution E[u(x)] of (1), we
have to compute a solution of the SDE (3). We thus have to solve two problems,

(i) Find an approximation XN of Xt, which is actually computable.
(ii) Given such an approximation, the sought solution E

[
g
(
Xτ

)
+ Zτ

]
is com-

puted by a (quasi) Monte Carlo method, where over-lined expressions de-
note computable approximations.

Remark 2.1. As indicated above for the variance, higher moments of the stochastic
representation g

(
Xx
τx

)
+Zxτx generally only give upper bounds for the corresponding

moments of the solution u as a simple consequence of Jensen’s inequality. Hence,
the method presented in this work can only be used to compute upper bounds of
higher moments of u.

2.2. Discretization of the SDE. Clearly the most popular approximation method
for SDEs is a straight-forward generalization of the Euler scheme for ODEs. Indeed,
let 0 = t0 < · · · < tN = t be a time grid, set

∆ti := ti − ti−1, ∆Wi := Wti −Wti−1
, ∆tmax := max

i
∆ti, X0 := x,

and iteratively define as a discretization of (2)

(5) Xi := Xi−1 + b
(
Xi−1

)
∆ti + σ

(
Xi−1

)
∆Wi, i = 1, . . . , N.

Under weak assumptions we have strong convergence with rate 1/2, i.e.,

E
[∣∣Xt −XN

∣∣] ≤ C√∆tmax

for some constant C independent of ∆tmax. More relevant in most applications
is the concept of weak approximation. Fortunately, the Euler scheme typically
exhibits first order weak convergence, i.e., for any suitable test function F : Rd → R,
it holds that

(6)
∣∣E[F (Xt)]− E

[
F
(
XN

)]∣∣ ≤ C∆tmax

with a constant C independent of ∆tmax for fixed times t. However, the stochas-
tic representation (4) involves the process stopped at the first hitting time of the
boundary ∂D of the domain. This stopping time is approximated by the first exit
time τ of the discrete time process Xi, i = 0, . . . , N .

2For instance, when κ,∇κ, f are Lipschitz, κ is strictly positive and D is a convex polygon,
but these conditions can certainly be relaxed.
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Note that there are two sources of errors in the approximation Xτ of Xτ :

(i) the error in the approximation of X by X
(ii) the possibility that exit of X occurs between two grid points ti and ti+1

while X does not exit–or vice versa.

Indeed, even if two paths X and X are close in, say, infinity norm, their exit times
can be substantially different. Hence, the second source of error reduces the weak
error rate, i.e., the approximation error for E[u(x)] decreases to the rate 1/2. For
adaptive time-step refinements which can recover the order of convergence to an
observed order 1 again, we refer to the references given in [1].

2.3. Monte Carlo approximation of the expectation. Another step in the
discretization is the approximation of the expected value as in (4) with a Monte
Carlo estimator. Multilevel Monte Carlo methods are also possible but require the
construction of two related realizations of XM for each sample on the individual
levels as described in [23]. Here, we restrict ourselves to the classical Monte Carlo
estimator which is defined as

EMS
M,N [u(x)] :=

1

N

N∑
i=1

g
(
X
x

τ (ωi)
)

+ Z
x

τ (ωi),(7)

where (ωi)
N
i=1 is a set of N ∈ N samples drawn from the probability space (Ω,F , P )

and M describes the number of steps for the discrete diffusion process. Note that
this random space represents both the Brownian motion W and the stochastic field
κ from the initial Darcy problem (1). Recall that

Z
x

τ =

∫ τ

0

f(Xs) ds,

which we approximate by a simple left-point rule Zτ . Hence,

X0 = x,

Xm = Xm−1 +∇κ(Xm−1)∆tm +

√
2κ(Xm−1)∆tm Ξ,

(8)

where M is the last index with Xm ∈ D for m = 0, . . . ,M , XM+1 6∈ D, and Ξ is
a standard normal distributed random variable. Here, N0,1 denotes the standard
normal distribution in d dimensions. The stopping position and the stopping time
tτ of the diffusion process is now approximated by the projection

Xτ := arg min
{∣∣∣∣x−XM

∣∣∣∣ ∣∣ x ∈ ∂D, x = XM + s(XM+1 −XM ), s ≥ 0
}

(9)

of XM onto the boundary ∂D in direction of XM+1. The stopping time τ is
approximated by τ := tM . Equation (7) provides the estimator with a simple one-
point integration rule via

EMS
M,N [u(x)] :=

1

N

N∑
i=1

g(Xτ (ωi)
)

+
∑

m∈(0,...,M,τ)

f
(
Xm(ωi)

)
∆tm

 .

Elementary time adaptivity is applied by choosing ∆tj = dist(∂D,Xj−1)∆t0 where
dist(∂D, x) := min {||xd − x|| | xd ∈ ∂D} is the Euclidean distance to the boundary
of the domain. The entire process is depicted in Algorithm 1 where a simple rectan-
gle integration method is used. Moreover, Figure 1 sketches the described process.
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Alongside the approximate expectation we can also estimate the sample variance
of this approach at the location x ∈ D, since

VarMS
M,N [u(x)] :=

1

N

N∑
i=1

g(Xτ (ωi)) +
∑

m∈(0,...,M,τ)

f
(
Xm (ωi)

)
∆tm − EMS

M,N [u(x)]

2

.

Note that this estimated variance has contributions from both the random field of
the PDE and the SDE.

D

X0

X1

X2

XM

XM+1

Xτ

(∆t0)

(∆t1)

Figure 1. Sketch of a discrete diffusion process realization with
endpoint projection and indicated step width.

In : point x ∈ D, number of samples N , initial time step ∆t0
Out: EMS

M,N [u(x)], VarMS
M,N [u(x)]

for i = 1, . . . , N do
X0 = x

F = 0

m = 1

sample κi = κ(ωi) with ωi ∈ Ω

while Xm ∈ D do
F = F + f(Xm−1)∆tm−1
∆tm = min

{
dist(∂D,X), 1

}
∆t0

sample Ξ from N0,1

Xm = Xm−1 +∇κi(Xm−1)∆tm +
√

2κi(Xm−1)∆tmΞ

m = m+ 1

compute Xτ and tτ according to (9)

F = F + f(Xτ )∆tτ
ui = g(Xτ ) + F

return N−1
∑N
i=1 u

i and N−1
∑N
i=1

(
ui −N−1

∑N
i=1 u

i
)2

Algorithm 1. Point estimate algorithm to compute the estima-
tors EMS

M,N [u(x)] and VarMS
M,N [u(x)] using the simple one-point rec-

tangle method for integration.



8 F. ANKER, C. BAYER, M. EIGEL, J. NEUMANN, AND J. SCHOENMAKERS

2.4. Extension to the whole domain. In the following, the pointwise approxi-
mation of the solution at some x ∈ D obtained by some Monte Carlo estimator is
extended to the whole domain D using interpolation techniques on a mesh. This
allows applying finite element a posteriori error control with respect to a global (in
D) approximation of the solution which we define as follows: Consider some given

mesh Th as a triangulation of the spatial domain D with vertices Nh = (νih)
|Nh|
i=1

and edges Eh = {Ei}|Eh|i=1 . Note that the coefficients of a Courant P1 function corre-
spond to the function values at the vertices (nodes) of the mesh and that the nodal
interpolation operator denoted by Ih is defined by these values. Hence, let the

discrete solution EMS
M,N [uh] with M = (Mi)

|Nh|
i=1 and N = (Ni)

|Nh|
i=1 be a Courant

P1 function on this mesh determined by setting the nodal values,

EMS
M,N [uh] (νih) := EMS

Mi,Ni

[
u(νih)

]
for i = 1, . . . , |Nh| .

This introduces three types of errors into the global approximation of u. The first
is the stochastic approximation error originating from the Monte Carlo estimators.
It can be controlled by means of the Central Limit Theorem (CLT) subject to the
number of samples Ni for each nodal point. The second error arises from the ap-
proximation of the diffusion process and is controlled by the step widths ∆tm. The
third error contribution results from the P1 interpolation which is approximated
based on the Monte Carlo estimators and determined by the interpolation mesh
parameter h.

We shall consider two error representations. The first describes a decomposition
of the mean square error into three parts resulting from the interpolation error, the
discretization of the ordinary differential equation (8), and the sampling error in
the Monte Carlo method. For the stochastic solution uMh of the discretized ordinary

differential equation it holds E
[
uMh
]

= E
[
EMS
M,N [uh]

]
, i.e., the estimator is unbiased.

Then, for the pointwise mean square error in the approximation, we derive

E
[(

EMS
M,N [uh]− E[u]

)2]
= E

[
EMS
M,N [uh]

2
]
− 2 E

[(
EMS
M,N [uh]

)]
E[u] + E[u]

2

= E
[
EMS
M,N [uh]

2
]
− E

[
EMS
M,N [uh]

]2
+
(
E
[
EMS
M,N [uh]

]
− E[u]

)2
= Var

[
EMS
M,N [uh]

]
+
(
E
[
uMh
]
− E[u]

)2
=

1

N
Var
[
uMh
]

+
(
E
[
uMh
]
− E[u]

)2
,

(10)

since Var
[
EMS
M,N [uh]

]
= Var

[
1
N

∑N
i=1 u

M
h (ωi)

]
= 1

N Var
[
uMh
]

for the uncorrelated

samples of uMh .
The second decomposition seeks to represent the error locally in the L2 norm. We

assume some convexD ⊆ R2 for the sake of a simpler presentation andH2 regularity
of the solution u. Higher dimensions are possible with different inequalities for the
norms. Consider the element T ∈ Th and the pointwise P1 interpolation operator
Ih on the mesh Th. By a triangle inequality and interpolation error estimates, for
the approximation error it holds that∣∣∣∣E[u]− EMS

M,N [uh]
∣∣∣∣
L2(T )

≤ ||E[u]− Ih E[u]||L2(T ) +
∣∣∣∣Ih E[u]− EMS

M,N [uh]
∣∣∣∣
L2(T )

≤ ||E[u]− E[uh]||L2(T ) + ||E[uh]− Ih E[u]||L2(T )

+
∣∣∣∣Ih E[u]− E

[
uMh
]∣∣∣∣
L2(T )

+
∣∣∣∣E[uMh ]− EMS

M,N [uh]
∣∣∣∣
L2(T )

. hT ηT + h2T ‖∆u‖L2(T ) + |T |∆t0 + |T | max
K∈N (T )

{
Var
[
uMh
]1/2

N
−1/2
K

}
.

(11)
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The element-wise error indicator ηT which controls the FE approximation error is
described in Section 3. While the first two terms are both governed by properties
of the mesh Th and can be controlled through refinement as well as the adaptive
algorithms described in Section 3, the third term represents the Monte Carlo es-
timation error. It solely depends on the number of samples used for each node in
the element as the variance converges to the variance of the continuous solution
Var[u] for M → ∞ and h → 0. The last term represents the error in the approx-
imation of the diffusion process in the Euler scheme for the stochastic differential
equation. Numerical experiments show that ∆t0 ' hmin is a reasonable choice in
the two-dimensional case. The second term is of higher order with respect to h and
is therefore omitted in the further calculations as it vanishes with a higher rate of
convergence for h→ 0.

3. Adaptivity

To achieve convergence of the method presented in Section 2 by means of an
adaptive algorithm, all error components in the decomposition (11) have to converge
separately. For optimal convergence, for all contributing parts the same rate should
be achieved with respect to the computational effort that has to be invested to gain
the error reduction. The main idea of an adaptive algorithm is therefore to base
the parameter choices in some way on the underlying mesh. Hence, in the following
it is the goal to define some optimal sequence of meshes T0 ⊂ . . . ⊂ TL for the
interpolation and then to choose appropriate values for the other discretization
parameters.

We use the convenience notation a . b (or a ≈ b) to state that a ≤ Cb (or C−1b =
a = Cb) with a constant C > 0 independent of the discretization parameters.

Our starting point is an initial quasi-uniform triangulation T0 of the spatial
domain D. The first step is to calculate a discrete solution EMS

M0,N0
[u0]. The

parameters M0 and N0 have to be guessed as not enough information is available
on the initial level3. The next step involves the calculation of some finite element
error indicator η0 which we briefly describe.

One of the most common and simple a posteriori FE error estimation techniques
is given by the residual error estimator. We define the local error indicator ηh,T on
some element T ∈ Th of size hT subject to an approximation uh of the true solution
u by

η2h,T = h2T ||f ||
2
L2(T ) +

∑
E∈E(T )

hT ||∇uh · nE ||2L2(E) .(12)

Recall that the set of edges of Th is denoted Eh and the edges of some element T
are denoted E(T ). More details and a proper derivation can e.g. be found in [24]
and the references therein.

Once a local error indicator ηh,T is readily available, a mesh refinement strategy
can be chosen which selects a set of elementsMh ⊂ Th such that an error reduction
is achieved for the approximate solution on the finer mesh. A common choice is the
so-called bulk or Dörfler marking defined for some fraction parameter 0 < θ ≤ 1 by∑

T∈Mh

E[ηh,T ]
2 ≥ θ

∑
T∈Th

E[ηh,T ]
2
.(13)

We also employ this marking and refer to [25] for further details, in particular with
regard to error reduction properties.

3the subscript denotes the refinement level for which the parameters or functions are considered
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As can be seen in (11), the estimator only covers the first term ||E[u]− E[u0]||L2(T )

and thus the parameters M0 and N0 have to be chosen such that

hT η0,T �
∣∣∣∣Ih E[u]− E

[
uMh
]∣∣∣∣
L2(T )

+ |T | max
K∈N (T )

{
Var
[
uMh
]1/2

N
−1/2
K

}
.

The reason for this is that the finite element solution is bounded by the interpola-
tor but the stochastic properties of the discrete solutions introduce oscillations of
length h and amplitudes as seen above. These can be unbounded in principle and
artificially increase the finite element error estimator. As refinement would not re-
duce these oscillations, we have to limit them by means of the central limit theorem
such that we can get reliable mesh refinements. In fact, the stochastic error term
from (11) for each element has to be smaller than the smallest error estimator η`,T
chosen for the refinement set M` (on refinement levels ` = 1, . . . , L) given by

min
T∈M`

η0,T > |T | max
K∈N`(T )

{
Var
[
uMh
]1/2

N
−1/2
K

}
+
∣∣∣∣Ih E[u]− E

[
uMh
]∣∣∣∣
L2(T )

.(14)

This constraint also includes the error of the approximation in the Euler scheme
but it is deterministic, smooth, and global with respect to the spatial domain D.
As a result, it alters the error estimator only to some minor extent.

The derived refinement T1 of the initial mesh T0 is the basis for the next level
and the process is repeated. Heuristics based on educated guesses of the error
components allow to balance the parameters in actual computations. This however
is only possible if there are at least three meshes, that is L ≥ 3. Section 3.1 covers
some approaches to this topic in more detail.

3.1. A practical parameter selection strategy. The error decomposition in
(11) results in three components that need to be balanced for guaranteed and opti-
mal convergence. We hence aim at finding good estimates for the convergence rates
with respect to the relevant parameters and then extrapolate the error estimates
to the next level. With these, we can approximate parameters that fulfill the bal-
ancing requirements. The first task is the approximation of the convergence rate of
the interpolation error subject to the current mesh and controlled through the pa-
rameter α. Let h be the minimal inradius over all the triangles of the triangulation
Th and suppose we have some α > 0 such that

||E[u]− E[Ihu]||L2(D) . hα.

Standard finite element theory gives

||E[u]− E[Ihu]||L2(D) ∼ ||E[u]− E[uh]||L2(D) .

Thus, with some efficient and reliable error estimate hηh ∼ ||E[u]− E[uh]||L2(D),

we get hηh ∼ hα. We exploit this property to gauge the parameter α as error
estimators have smoothing properties and thus in practice exhibit a behavior closer
to a monotonic convergence. For the estimation αL of α, we carry out a linear
regression over data points (log(h`), log(hη`))`=1,...,L.

Next, we estimate the expected spatial error on the next level L + 1. For this,
the triangle inequality for ` = 1, . . . , L yields

||E[u]− E[u`]||L2(D) ≤ ||E[u]− E[uL]||L2(D) + ||E[uL]− E[u`]||L2(D) .

The last term on the right-hand side is computable and it remains to estimate the
error on level L. We assume ||E[u]− E[uL]||L2(D) � ||E[uL]− E[u`]||L2(D) for the

coarser levels ` < L since, for a sufficiently high convergence rate α and a fine mesh
TL, it holds hα` /h

α
L � 1 and we can conclude that

||E[u]− E[u`]||L2(D) ≈ ||E[uL]− E[u`]||L2(D)

for each level ` = 1, . . . , L− 1.
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As we already have a good approximation of the expected convergence rate αL,
for brevity of notation denoted hereafter by α, we can now find approximations of
the error ||E[u]− E[uL]||L2(D) with the help of the errors on the coarser levels by

||E[u]− E[u`]||L2(D) ∼ h
α
` and ||E[u]− E[uL]||L2(D) ∼ h

α
L.

To improve the readability we write α instead of αL for the numerical approxima-
tions hereafter. For each ` = 1, . . . , L− 1, this asymptotically yields the identity

||E[u]− E[uL]||L2(D)

||E[u]− E[u`]||L2(D)

=
hαL
hα`
.

Hence, we can construct the approximation

||E[u]− E[uL]||L2(D) ≈
hαL
hα`
||E[uL]− E[u`]||L2(D) .

We subsequently define the estimate ẽL for the error ||E[u]− E[uL]||L2(D) on level

L as the arithmetic mean of the different extrapolations from the coarser levels
` = 1, . . . , L− 1, by

ẽL :=
1

L− 1

L−1∑
`=1

hαL
hα`
||E[uL]− E[u`]||L2(D) .(15)

The same technique is used to gauge the expected error on level L + 1. The finer
mesh TL+1 on level ` = L + 1 is obtained from a local refinement (13). Thus,
the parameter hL+1 can be used to generate the extrapolation êL+1 with the same
levels L = 1, . . . , L− 1,

êL+1 :=
1

L− 1

L−1∑
`=1

hαL+1

hα`
||E[uL]− E[u`]||L2(D) .

Remark 3.1. The derived estimate ẽL for the error in the L2(D) norm is also
suitable as a stopping criterion eTOL to determine the convergence of the adaptive
method. This estimate is with respect to the last level L for which a numerical so-
lution has been computed. If it is smaller than the criterion eTOL, the computation
is stopped.

The next step is to balance the expected Monte Carlo error with the extrapolated
spatial error. For the refinement scheme (13), it is crucial to keep the Monte
Carlo error well below the spatial error as otherwise this error gets picked up by
the estimator which results in wrong refinement and thus unstable behavior and
suboptimal convergence or even in no convergence at all. Hence, we introduce
the balancing factor δ which describes the desired relation between the two errors
in (10) by

δ2 =

(
E[u]− E

[
uMh
])2

N−1 Var
[
uMh
] .(16)

A choice of δ = 1 would lead to equality. For some constant c`N for each level

` = 1, . . . , L, we set the numbers of samples in the vertices N` = (νi`)
|N`|
i=1 as

N i
` := c`N Var

[
uM` (νi`)

]
for i = 1, . . . , |N`| .(17)

The next task is to choose cL+1
N appropriately so that (16) will be fulfilled for

h = hL+1. In fact, applying (17) to (16) results in

E[u]− E
[
uML
]

= δ
(
cLN Var

[
uML
])−1/2

Var
[
uML
]1/2

= δ(cLN )−1/2.
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We assume, with uM = limh→0 u
M
h , that Var

[
uM`
]
≈ Var

[
uM
]

for ` = 1, . . . , L is
a sufficient approximation since only a rough estimate of the variance is needed.
Taking the L2 norm of the last equation and applying the variance approximation
yields

cLN = δ2 |D|2
∣∣∣∣E[uML ]− E[u]

∣∣∣∣−2
L2(D)

.

With the extrapolated estimate êL+1 ≈
∣∣∣∣E[u]− E

[
uML+1

]∣∣∣∣, we get an estimate for

the constant cL+1
N as ĉL+1

N = |D|2
δ2 ê−2L+1. The numbers of samples for level L+ 1 are

now set according to (17) by

N i
L+1 := ĉL+1

N Var
[
uML (νiL+1)

]
for i = 1, . . . , |NL+1| .(18)

Remark 3.2. It is imperative to ensure a minimum number of samples for each
N i
L in (18) since on each level a sufficient approximation of the variance Var

[
uM`
]

has to be available. This is important since otherwise the algorithm might become
unstable due to severe undersampling in single points. This would result in a bad
spatial error estimation in (14) and thus suboptimal mesh refinement with reduced
convergence rate or even lack of convergence.

To alleviate this issue, a simple solution is to choose some Nmin independent of
all parameters and especially independent of the level `. The practical application
requires some rough estimate of the variance which can be computed alongside the
expected value and thus set the numbers of samples on level L+ 1 as

N̂ i
L+1 := max

{
ĉL+1
N VarMC

M,N

[
uML (νiL+1)

]
, Nmin

}
for i = 1, . . . , |NL+1| .(19)

Finally, it remains to choose the parameter ∆t on each level. The influence of this
factor on the error is given in the last term of (11). Since we assume linear pointwise
convergence with respect to ∆t, we choose the relation h ∼ ∆t. In Algorithm 2, the
overall adaptive algorithm is sketched. The computation of the employed pointwise
solution estimator EMS

M,N [u`] is depicted in Algorithm 1.
Note that instead of the variance based adaptive local number of samples for each

vertex, one could also choose a common number of samples based on the variance
Var
[
uML
]
.

Remark 3.3. In the numerical calculations one has to impose (14) well enough,
such that the algorithm becomes stable. This can be achieved by choosing δ < 1. In
the experiments in Section 4, we choose δ = 0.2. This allows for a stable algorithm
and only imposes a slight impact on performance.

3.2. Adaptation to a goal functional. In addition to the computation of the
global solution u, we also consider a derived quantity of interest Q depending on
the solution of the form

Q(u) = E

[∫
D

qu dx

]
,(20)

with a non-negative weight function q ∈ L2(D), i.e. q ≥ 0 on D. For such function-
als, an adaptive procedure can result in different refinements than what one gets
when solving for the global solution. This is particularly true if q has a smaller
support than D. In the case of goal-oriented adaptive FE algorithms [26], an adap-
tive error indicator usually is based on the solution of some dual problem in order
to identify the area of influence of the goal. However, the localized nature of the
presented approach allows to quantify the error contribution directly, i.e. without
any global dual solutions. Therefore, we quantify the error in the goal evaluation
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with the help of the weighted norm

‖v‖q :=

(∫
D

(vq)2 dx

)1/2

.

In this norm, we can perform the same residual error estimation approach as in
the global case described in the preceding section. With the local norms ‖v‖2q,T :=∫
T

(vq)2 dx on T ∈ T and ‖v‖2q,E :=
∫
E

(vq)2 ds on E ∈ E , we define the local error
contributions estimator by

η2h,t,g := h2T ||f ||
2
q,T +

∑
E∈E(T )

hT ||∇uh · nE ||2q,E

for the local mesh refinement indicator. A similar approach is used for the local
number of samples such that instead of N̂ i

L+1 in (19) we apply

N̂ i
L+1 := max

{
q(xi)q̂

−1ĉL+1
N VarMC

M,N

[
uML (νiL+1)

]
, Nmin

}
for i = 1, . . . , |NL+1| ,

where q̂ is the maximum of q in the domain D and xi is the location of vertex i.

Remark 3.4. The proposed refinement with respect to Q is merely a heuristical
approach without a proper analytical derivation. A common case for a goal func-
tional is the point evaluation of the solution u. In the finite element approach, this
requires an approximation by some mollifier with a small support since evaluations
on a null set are not well-defined for H1 functions, see [26]. With our approach,
this can be computed directly by the solution of the SDE at the single point instead
of the global evaluation in (20).

In : T0, N init, ∆t0, eTOL

Out: solution EMS
M,N [uL]

for ` = 1, 2, . . . do
if ` ≥ 2 then

compute N ` according to (19)

else
set N ` to N0

set ∆t according to h

compute EMS
M,N`

[u`] and VarMS
M,N`

[u`] at x ∈ N` with Algorithm 1

if ẽL ≤ eTOL then
break

compute η`
refine T` with η` to get T`+1

return EMS
M,N [uL]

Algorithm 2. Adaptive algorithm for the stochastic representa-
tion with stopping criterion based on ẽL from (15).

4. Numerical Experiments

This section is concerned with the illustration of the presented adaptive sampling
method based on some numerical benchmark problems. The visualizations show
properties of the unique feature of this approach, namely its proper separation of the
spatial and stochastic domain. This allows to choose the number of samples locally
based on the variance in any part of the spatial domain as well as to exploit sparsity
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Figure 2. The mean (left) and the variance (right) of the solution
for the numerical example.

with respect to the sampling locations. For comparison purposes we compute the
solution for the experiments with a fixed number of samples for all the nodal points
in the domain using uniform and adaptive meshes and we use different numbers of
samples for the same meshes.

Consider the input data for the problem in (1) with f = ∆u∗ and

u∗ = 5x21(1− x1)2(e10x
2
1 − 1)x22(1− x2)2(e10x

2
2 − 1),

together with homogeneous Dirichlet boundary data u ≡ 0 on ∂D.
A common representation of (Gaussian) random fields is the Karhunen-Loeève

expansion, see e.g. [14, 3]. In general, given the covariance function of a random
field, it is an L2 converging expansion in the eigenfunctions of the covariance integral
operator weighted by the square roots of the eigenvalues of this operator. For the
experiments, we assume an expansion of this type4, which then reads as

κ(x, ϕ) :=
ca
αmin

(
ta∑
m=1

am(x)ϕm + αmin

)
+ εa.

Here, the ϕm are standard uniformly distributed uncorrelated random variables in
[-1,1]. The parameters ca, εa > 0 and the truncation length ta ∈ N control the
properties of the random field. The coefficients am are defined for m = 1, 2, ... for
the parameters σα > 1 and 0 < Aα < 1/ζ(σα) with the Riemann zeta function ζ
by

am(x) = αm cos(2πβ1(m)x1) cos(2πβ2(m)x2), αm = Aαm
−σα ,

β1(m) = m− k(m)(k(m) + 1)/2, β2(m) = k(m)− β1(m),

k(m) = b−1/2 +
√

1/4 + 2mc.

In our experiment we choose the setting σα = 2, Aα = 0.6, cκ = 1, εα = 0.5·10−3 and
tα = 5, which ensures uniform ellipticity of the PDE. Together with the prescribed
right-hand side f this results in strong oscillations in the corner (1, 1) of the unit
square together with a high variance of the solution in the same region. The
resulting mean E[u] and variance Var[u] are depicted in Figure 2 as computed by a
standard Monte Carlo finite element method.

The algorithm automatically chooses the number of samples locally and applies
mesh adaptivity at the same time. Plotting the numbers of samples for each vertex
of the mesh as a P1 projection thus gives a false impression of the distribution of
the computational effort in the spatial domain. Hence, we define the additional

4Note that any other approach to generate random field realizations could be employed
similarly.
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quantity CT piecewise on each element T ∈ T as the mean over the elements three
nodes as

CT =
1

3 |T |

3∑
i=1

Ni(21)

which gives the average number of samples used for each element weighted by the
size of that element as a measure for the computational effort per area.

In the experiments we set the minimum number of samples Nmin for each vertex
as 100. We continue the algorithm until our error heuristic drops below the pre-
scribed value

∣∣∣∣eMS
∣∣∣∣
H1(D)

=
∣∣∣∣E[u]− EMS

M,N [uh]
∣∣∣∣
H1(D)

≤ 2 · 103. We consider four

experiments. The first uses a fixed number of samples for each level and uniform
meshes, the second one applies adaptive meshes, the third experiment combines uni-
form meshes with locally chosen numbers of samples, and the fourths experiment
uses both adaptive meshes and local sample adaptivity.

All computations have been carried out in parallel on fourteen core Intel Xeon E5-
2697 v3 shared memory systems with 2.6 GHz clock frequencies running OpenSUSE
using a combination of C++ programs for the solution of the SDE and Python with
the FEniCS toolbox for the finite element related computations and the overall
control.
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Figure 3. The number of samples for each vertex for different methods.

The resulting numbers of samples are plotted in Figure 3. The differences in the
number of samples between two uniform samples approaches is due to the variance
in the approximation of the error contributions in the heuristics. The weighting
parameter δ in (16) has to be chosen such that this estimate is sufficiently stable.
Note that already a computational advantage is visible for the adaptive sampling
variants whereas both uniform sampling experiments falsely appear to be similar in
effort. This changes if one considers the plots of CT shown in Figure 4. The adaptive
mesh reduces the amount of vertices in the smooth regions of the solution whereas
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the local sample number reduces the amount of samples for vertices with a small
variance. In the optimal case of the combined method, the adaptivity eliminates
a lot of expensive vertices with a high number of samples and the local sampling
reduces the amount of samples needed in areas with a highly oscillating mean.

The maximum computational effort is in the same order of magnitude for all
four experiments but the computational effort CT drops dramatically away from
the (1, 1)-corner in all but the first experiment. This effect is more pronounced for
the two experiments with mesh adaptivity. The last experiment improves this even
further as fewer samples are used for the small triangles which are closer to (0.5, 1)
and (1, 0.5).

The above observations correspond with the convergence in the H1 norm with
respect to the measured processor time as presented in Figure 5. The slowest
method uses uniform meshes and applies a constant number of samples for all
vertices in the domain. Local numbers of samples reduce the time almost nine-fold
whereas the mesh adaptivity gives an improvement factor of 80. The combination
of the two methods gives the fastest algorithm with an increase in speed of almost
two orders of magnitude.

In Figure 6 the convergence of the error in the L2(D) norm is plotted with
respect to the same computational effort. Here again, a uniform mesh with constant
sample numbers results in the slowest method. Contrary to the last graph, all other
methods perform very similarly to each other with an approximate improvement of
8-10 compared to the slowest approach.

In the final example we consider the weight for the goal functional in (20)

q =

{
Cgε

−2
g exp

(
−1

1−||x0−x||2ε−2
g

)
if ||x0 − x||L2(D) ≤ ε,

0 else.

We choose the location x0 = (0.6, 0.8), radius εg = 0.1, and weight Cg = 2.14. In
Figure 7 the effect of the different adaptive methods is shown. The greatest benefit
stems from the goal-weighted adaptive finite element method by comparing uniform
methods with global adaptivity as in the previous example and the goal-weighted
adaptive methods. Compared to uniform refinements it is up to two orders of
magnitude faster in achieving the same error level. Local adaptive variance and
its goal-weighted variant add upon this improvement. With global finite element
adaptivity no convergence with respect to the goal is observed.
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Figure 4. The weighted computational effort CT from (21) for
each element T ∈ T for different methods.
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Figure 5. Convergence in the H1 norm for the different methods.
The abbreviations are aFEM for finite element adaptivity and aV

for the localized adaptive number of samples.
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Figure 6. Convergence in the L2 norm for the different methods.
The abbreviations are aFEM for finite element adaptivity and aV

for the localized adaptive number of samples.
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Figure 7. Convergence for the goal error for the different meth-
ods. The abbreviations are aFEM for finite element adaptivity,
aFEMg for goal-weighted finite element adaptivity, aV for the lo-
calized adaptive number of samples and aVg for the goal-weighted
localized adaptive number of samples.
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