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Introduction
In my research I am interested in numerics for stochastic differential equations and
related questions. The motivation for the problems that I am trying to solve usually
comes from finance, but I have also broader interests in economics (such as matching
and saving), as well as in statistics (in particular, parameter estimation with the EM
algorithm) and physics (molecular dynamics). Regarding the mathematical methods,
I mainly use tools from stochastic analysis, but I also combine them with techniques
from analysis and numerics. In the next paragraphs, I will give a very short overview
about some recent research projects of mine, which will be followed by a more detailed
discussion.

Starting with my PhD thesis I have worked on the cubature on Wiener space method,
see [36] and, independently, [35], a higher order method for weak approximation of so-
lutions of stochastic differential equations (SDEs) based on ideas from rough path anal-
ysis, see the original article [37] and the comprehensive book [30]. As part of my PhD
thesis, I have extended the applicability of the cubature on Wiener space method to a
certain class of SPDEs together with my thesis advisor Josef Teichmann, see [16]. On
the theoretical side I have studied weak convergence of cubature methods on path-space
with Peter Friz, see [6]. Moreover, together with Ronnie Loeffen we have also tried to
further popularize the method among practitioners in financial engineering by show-
ing that very efficient implementations of cubature methods are possible for a large
class of models which are very often used in practice, provided that some additional
transformation of the problem is employed, [4]. Following this idea, I have studied the
calibration problem for the double mean reverting model in finance together with Jim
Gatheral and Morten Karlsmark, obtaining substantial boosts in computational time as
compared to classical Euler schemes, see [7]. In another research project strongly rely-
ing on rough paths notions and techniques (together with Peter Friz, Sebastian Riedel
and John Schoenmakers), we have proved strong convergence of a (computable) Mil-
stein type scheme for SDEs driven by fractional Brownian motion with Hearst index
H > 1

4 , see [5]. Moreover, we have proved rates of convergence and have analyzed
the multi-level Monte Carlo algorithm ([32]) for this algorithm. There are numerous
questions on discretization of SDEs, which I would like to proceed in the future. For
instance, I would like to combine the higher order methods constructed so far with
adaptivity based on a-posteriori error control following cf. [44] and also [14].
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A second recent pillar of my research are asymptotic methods in financial engi-
neering. In a project together with Peter Laurence, we have applied the technique of
heat kernel expansions from PDE theory to obtain asymptotic formulas for basket op-
tion prices, which are very fast to evaluate even in very high dimensions, while being
astonishingly accurate, [10, 11, 12]. Stemming from this research, we got interested in
the applicability of Laplace’s method for integrals of densities over sub-manifolds of
the space, which we have explored together with Peter Friz, see [3]. A generally open
(and difficult) problem in the area of asymptotic formulas in financial mathematics is
the treatment of the singularities naturally appearing at the boundary of the domain. A
reasonable numerical technique to deal with this problem seems to be to apply bound-
ary layer methods.

Together with John Schoenmakers, I have recently contributed to the problem of
sampling from a diffusion (or Markov) bridge, i.e., from the path of a diffusion process
being conditioned to take on a certain value both at time 0 and at time T . We use
the technique of forward-reverse processes introduced by [38, 39], generalize it to this
setting, and give a thorough numerical analysis of the corresponding algorithm, see
[13]. I think that this new algorithm can be applied for many practical problems, in
particular in the context of the EM algorithm in statistics and I would like to explore
these possibilities further in the future.

Furthermore, I am very interested in applications in other sciences. In the past, I
have contributed to successful research projects in economics and physics, see [20, 19]
and [8], collaborations which I would like to continue in the future. More recently, I
have started to become interested in applications in statistics.

Numerics for SDEs
Consider a stochastic differential equation

(1) dXt = V(Xt)dt +

d∑
i=1

Vi(Xt)dBi
t, X0 = x,

for a stochastic process X evolving in Rn with vector fields V,V1, . . . ,Vd : Rn → Rn.
Here, B typically denotes a d-dimensional Brownian motion (but more general driving
processes are also considered, such as processes with jumps or fractional Brownian
motion), and the stochastic integral is typically understood in the Ito sense. When
using techniques from rough path analysis see [37] and [30], it is often advantageous
to use the equivalent Stratonovich formulation

(2) dXt = V0(Xt)dt +

d∑
i=1

Vi(Xt) ◦ dBi
t, X0 = x.

Very often, the quantity of interest is of the form

(3) u(t, x) B E[ f (XT )|Xt = x],
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for some function f : Rn → R and some fixed time T > 0 – in finance, f would be
the payoff function and T the maturity of an option. u can be equally described as the
solution of the Cauchy problem

(4)
∂

∂t
u(t, x) + Lu(t, x) = 0, u(T, x) = f (x),

with L denoting the infinitesimal generator of X. (In finance, u is essentially the price
of a European option with payoff function f .)

Cubature on Wiener space

Cubature on Wiener space is a high order numerical method for computing (3) con-
ceptually based on rough path theory introduced by Lyons and Victoir [36] and inde-
pendently by Kusuoka [35], see also [43] and [42]. Formally, the idea is to replace
the Brownian motion B by a process W with paths of bounded variation such that the
iterated integrals of B and the iterated integrals of W (up to some level m) have the
same expected value. More precisely, W is constructed by pasting together properly
re-scaled copies of this bounded-variation process on a suitable gridD on [0,T ]. Then
one can show that∣∣∣∣E [

f (XT (B))
]
− E

[
f (XDT (W))

]∣∣∣∣ ≤ C(meshD)(m−1)/2,

where X(B) denotes the true solution of (2), whereas Xh(W) denotes the solution of (2)
with B being replaced by W. (In fact, for this to hold some regularity assumptions
either on f or on the vector fields andD are required.)

In my PhD thesis under the supervision of Josef Teichmann, see [2] and [16], I
extended the cubature on Wiener space method to a certain class of SPDEs, i.e., dif-
ferential equations of the form (1) where the state space is infinite-dimensional and (in
our case) V is an unbounded operator, assuming that the driving noise B is, in fact,
finite-dimensional. The main challenge here was that in this setting, it is well-known
that the solution to (1) is not a semi-martingale. Hence, it is not possible to formulate
the Stratonovich equation (2) for B itself. On the other hand, for W equation (2) ob-
viously does make sense, as it can be seen as a PDE with random coefficients – the
approximations XD(W) have to be chosen this way. In the end, the problem can be
solved by working in proper abstract Sobolev spaces. In my opinion, the main ad-
vantage of the use of cubature methods on Wiener space for SPDEs is that they allow
to uncouple the space-time discretization from the random noise. Indeed, as already
remarked before, the SPDE for XD(W) is a standard PDE (only with random coeffi-
cients), so standard PDE solvers (assuming they exist for the problem at hand) can be
used without worrying about the white noise dB.

Together with Peter Friz, I have analyzed the convergence of the method when the
payoff, i.e., the function f in (3) is path-dependent, i.e., depends on the whole trajectory
X, not just the terminal value XT , see [6]. In fact, we proved a Donsker-type theorem
for the cubature paths in rough path sense (i.e., enhanced with the iterated integrals),
which directly implies the convergence

E
[
f
(
(XD(W)t)0≤t≤T

)] meshD→0
−−−−−−−−→ E

[
f ((X(B)t)0≤t≤T )

]
.
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Applications of cubature on Wiener space in finance

With Peter Friz and Ronnie Loeffen, I have found that efficient implementation of the
cubature on Wiener space method are available for a large class of models used in
financial engineering with the help of an interesting transformation of the drift vector
field, see [4]. Indeed, as a natural consequence of financial modelling, the drift V in
a model in mathematical finance is often quite simple, whereas the Stratonovich drift
V0 = V − 1

2
∑d

i=1 DVi · Vi is considerably more complicated. The efficiency of cubature
methods critically depend on fast and accurate solvers for the flows of the vector fields
V0,V1, . . . ,Vd, see [43]. In many models in finance, the flows of V and V1, . . . ,Vd are
available in closed form, but this is no longer the case for V0. Due to the structure of the
Stratonovich correction, it is often possible to split the Stratonovich drift vector field

V0 = U +

d∑
i=1

γiVi,

such that the flow of the vector field U is available in closed form. Replacing the
components of the cubature path W i

t by W i
t + γit, we can then apply the cubature on

Wiener space method for the vector fields U,V1, . . . ,Vd, which allows highly efficient
implementations of the algorithm without any loss of accuracy. In the paper, we show
that such a decomposition is possible for many widely-applied models in mathematical
finance and demonstrate that the cubature method is indeed much more efficient than
classical Euler schemes.

As a by-product of the last paper, I have applied the cubature method to the prob-
lem of calibrating the double mean reverting model (a popular model among financial
engineers introduced by Jim Gatheral in [31]), showing that it can lead to drastically
reduced run-times as compared to standard Euler methods for calibration, see [7]. In
this work together with Jim Gatheral and Morten Karlsmark, we actually need to use
a further splitting of the Stratonovich drift vector field, as the splitting from [4] turned
out not to be sufficient for the double mean reverting model.

Numerics for SDEs driven by fractional Brownian motion

Together with Peter Friz, Sebastian Riedel and John Schoenmakers I have studied nu-
merical approximation of the SDE (2) when the driving noise is a fractional Brownian
motion. In this case (at least in the “rougher than Brownian motion” regime H < 1

2 ), (2)
is actually much more natural than (1), since it allows us to interpret the solution in the
rough path sense ([37, 30]), at least when the Hearst parameter satisfies H > 1

4 . In that
case, the fractional Brownian motion can be extended to an enhanced fractional Brow-
nian motion B, which is a rough path (with its iterated integrals of degree up to three).
Thus, the theory of rough paths can be used to give a canonical meaning to the solution
of (2) (as solution to a rough differential equation evaluated at the enhanced fractional
Brownian motion path). Moreover, it also directly gives approximation schemes (in
a.s. sense) together with rates, see [27] and [30]. However, this scheme depends on the
increments of the iterated increments of the noise – similar to Milstein’s scheme for
standard SDEs. Deya, Neuenkirch and Tindel [29] have given a computable version
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of the scheme, where the increments of the iterated integrals are themselves approxi-
mated by polynomials in the increments of B – which can be interpreted as the Davie
scheme applied to the Wong-Zakai approximation of (2). They prove a.s. rates when
1/3 < H, but cannot prove strong convergence. Indeed, the (random) constants in their
a.s. convergence results are not integrable. Using recent deep results of [25], we im-
prove the results from [29] to H > 1/4. More importantly, we prove strong convergence
with strong rates (being equal to 2H − 1

2 up to a logarithmic term) of the scheme. To
overcome the rather low convergence rates (which can be observed in numerical exper-
iments), we accompany the scheme with the multi-level Monte Carlo method of Giles
[32], which allows to reduce the complexity needed to achieve a mean squared error of
O(ε2) by a factor O(ε−2), thereby producing an efficient numerical scheme when H is
not too small.

Optimal choice of numerical parameters

When calculating quantities like (3) on a computer, the user has essentially two free
numerical parameters, which control both the accuracy and the run-time of the algo-
rithm, namely the grid of the discretization of the SDE and the number of samples in
the Monte Carlo or quasi Monte Carlo integration procedure. In most situations, the
user would like to minimize the computational cost given a certain, prescribed error tol-
erance – the situation might be a bit more complicated for Monte Carlo algorithms due
to their stochastic nature. An optimal choice of the grid should be based on a-posteriori
error estimates by introducing adaptive refinements of an initial grid. Building up on
the methods in [44], I have worked on this method for the Euler scheme for reflected
SDEs together with Anders Szepessy and Raul Tempone, see [14]. Moreover, in a more
recent work with Håkon Hoel, Erik von Schwerin and Raul Tempone, I have proposed
an algorithm on efficient, again adaptive choices of the number of samples for a Monte
Carlo algorithm, see [9]. In the future, I would like to extend these ideas, in particular
adaptive grid construction based on a-posteriori error estimates to cubature on Wiener
space. If successful, this would open up the possibility of very high accuracy calcu-
lations for problem of type (3) even in high dimensions and even in the presence of
singularities of the coefficients.

Approximation formulas for option prices and hedges
Consider a local volatility model in finance. This means that we are given a model of
the form (1), where d = n and (V1, . . . ,Vd) C σ has the property that σi j(x) = fi(xi)δi j.
Hence, the individual components of the stock price vector X only depend on each
other via the correlation matrix ρ of the n-dimensional Brownian motion B. These
models are very popular in finance due to their simplicity – a prominent example being
the so-called CEV models where fi(xi) = ξix

βi
i with 0 < βi ≤ 1. However, even for such

models, calculations of basket or spread option prices becomes numerically extremely
challenging when the dimension n is high. In practice, n = 100 or n = 500 are quite
common (e.g., S&P 100 and 500 indices), and then basically only Monte Carlo methods
can be used any more. Together with Peter Laurence I have used the technique of
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heat kernel expansions, see for instance [40, 46, 41, 34, 45, 26, 21, 1] to derive an
asymptotic expansion for the density of the process XT (asymptotic in the sense of
T → 0). Then we applied Laplace’s expansion (again for T → 0) together with a
Carr-Jarrow (see [24]) formula for baskets to obtain highly accurate, but yet essentially
explicit formulas, which allows for almost instant evaluation [10, 11]. Moreover, we
have also applied this method to calculate the greeks for the option ([12]). Together
with Peter Friz we have discussed problems arising from the Laplace’s expansion when
integrating over a sub-manifold of the space, see [3].

There are a number of exciting future research problems in the context of this
project. A very hot topic in financial engineering at the moment is the so-called “cor-
relation skew”, i.e., the dependence of the correlation between different stocks on the
overall dynamics of the whole basket of stocks (or more generally on the vector of all
individual stocks). Hence, I would like to try to extend the above asymptotic formula
to the case of correlation skew. On a larger scale, a big open problem in the field of
asymptotic formulas in finance is how to handle the singularities that naturally appear
at the boundary of the domain – in the above basket case: when one of the individual
stock prices vanishes. Special, low-dimensional cases have been dealt with in a rigor-
ous manner, but in general one relies on “the principle of not feeling the boundary”,
i.e., one assumes that the initial price vector is far enough away from the boundary
and that the boundary is (consequently) only hit with extremely low probability during
the life-time of the option. A rigorous treatment of the singularities is not only desir-
able from a theoretical point of view, but also from a practical point of view as many
asymptotic formulas will loose accuracy when the initial price vector is, in fact, close
to the boundary, a quite common situation in interest rate model, for instance. More-
over, asymptotic methods as discussed above are promising as a building block for the
numerical treatment of American options (or other stochastic control problems) in high
dimensions.

Simulation of diffusion bridges
In a recent research project with John Schoenmakers, we have considered the problem
of computing quantities of the form

(5) E
[
g
(
Xt1 , . . . , Xtn

)∣∣∣ X0 = x, XT = y
]
,

where X is a diffusion process given by (1). This is a classical problem, for which
many different methods have been proposed [22, 28, 33, 23]. Many methods work
well in dimension 1, but have difficulties in higher dimensions. We have extended the
forward-reverse method of Milstein et al. [38, 39] for the problem at hand and show that
this method can, in fact, avoid the curse of dimensionality and is efficient in the sense
that it achieves the optimal Monte Carlo rate of convergence with complexity only
logarithmically larger than usual, see [13]. This method has many applications, which
I plan to study further in the future, for instance for maximum likelihood estimation of
parameters of the dynamics of the process X when X is observed at a discrete time grid,
and is actually not restricted to diffusion processes, but can be applied to more general
classes of Markov processes, such as discrete and continuous time Markov chains.
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[20] Christian Bayer and Klaus Wälde. Optimal saving in frictional labour markets.
Preprint, 2012.
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[41] S. A. Molčanov. Diffusion processes, and Riemannian geometry. Uspehi Mat.
Nauk, 30(1(181)):3–59, 1975.

[42] Mariko Ninomiya and Syoiti Ninomiya. A new higher-order weak approxima-
tion scheme for stochastic differential equations and the Runge-Kutta method.
Finance Stoch., 13(3):415–443, 2009.

[43] Syoiti Ninomiya and Nicolas Victoir. Weak approximation of stochastic differen-
tial equations and application to derivative pricing. Appl. Math. Finance, 15(1-
2):107–121, 2008.
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