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Abstract. We consider a basket of options with both positive and negative weights, in the
case where each asset has a smile, e.g. evolves according to its own local volatility and the
driving Brownian motions are correlated. In the case of positive weights, the model has
been considered in a previous work by Avellaneda, Boyer-Olson, Busca and Friz [3]. We
derive highly accurate analytic formulas for the prices and the implied volatilities of such
baskets. The relative errors are of order 10−4 (or better) for T = 1

2 , 10−3 for T = 2, and
10−2 for T = 10. The computational time required to implement these formulas is under
two seconds even in the case of a basket on 100 assets. The combination of accuracy and
speed makes these formulas potentially attractive both for calibration and for pricing. In
comparison, simulation based techniques are prohibitively slow in achieving a comparable
degree of accuracy. Thus the present work opens up a new paradigm in which asymptotics
may arguably be used for pricing as well as for calibration.

1. Introduction

1.1. Setting. In a multivariate model for the evolution of forward prices of the form,

dFi(t) = σi(Fi(t)) dWi(t), i = 1, . . . , n,(1.1a)
〈dWi(t), dW j(t)〉 = ρi jdt,(1.1b)

where ρi j, i, j = 1, . . . , n, are constants, consider the problem of pricing a generalized
spread option with a payoff of the form

P(w) =

 n∑
i=1

wiFi − K

+

,

where the coefficients wi may be positive or negative (generalized spread options), but
where we assume that at least one coefficient is positive. (We generally denote by bold
face letters like w or F vectors of the corresponding scalars (w1, . . . ,wn) and (F1, . . . , Fn),
respectively.) In this paper we will devote special attention, especially on the implementa-
tion side, to the case of a multivariate CEV model, which corresponds to the choice

σi(Fi) = ξiF
βi
i ,

where βi and ξi are positive constants, the most popular choice among practitioners being to
choose 0 < βi ≤ 1, which ensures that Fi(T ) are local martingales. However all asymptotic
formulas are valid and stated for the full family of models described by (1.1).
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Institute.
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The family of models represented by (1.1) includes a host of models that are very pop-
ular in finance. A discussion of the history of this problem and a detailed discussion of our
contribution will be given in the following sections. But as a warm-up, let us discuss the
use of asymptotics for pricing in such models against the backdrop of a few notable exam-
ples. These examples are meant to illustrate two special cases of (1.1), which allow special
analytical and numerical pricing methodologies in that they admit closed form solutions.

The case n = 1 and σ(F) = ξFβ, is the famous constant elasticity of variance (CEV)
model, which is closely related to Bessel processes. The elasticity parameter β controls the
steepness of the implied volatility skew. The transition density in such a model admits a
closed form solution in terms of Bessel functions [28]

p(F0, FT ,T ) =
F

1
2
0 F

1
2−2β
T

ξ2|β − 1|T
I|ν|

 F1−β
0 F1−β

T

ξ2(1 − β2)T

 e−
F−2(β−1)

0 +F−2(β−1)
T

2ξ2(1−β)2T

where Iν is the modified Bessel function of the first kind of order ν and where ν = 1
2(β−1) .

Although there is an exact solution in this case, a series expansion thereof converges quite
slowly and a more computationally efficient way to calculate a call option price of an
implied volatility, even in this one dimensional setting, is arguably to use an asymptotic
expansion. Indeed, thanks to the work of Hagan and Woodward [22], practitioners have
long preferred to use such asymptotic expansions for calibration. These expansions were
extended by Gatheral, Hsu, Laurence, Ouyang and Wang [17], to first order asymptotic ex-
pansion of the implied volatility that yields prices with a relative accuracy 10−5 in typical
volatility environments, for up to 2 years. Since the CEV diffusion has a positive probabil-
ity of reaching the boundary, this accuracy decreases when the initial point F0 gets close
to the boundary. But for short times to maturity, it was proven rigorously in [17] that the
”principle of not feeling the boundary” holds in this case.

A second special case of the family of models considered is the case where n is large
(say ≥ 5) and where σi(Fi) = ξiFi. This is the historically important “Black-Scholes”
setting, of a (here) multidimensional lognormal distribution. The transition density can be
expressed in closed form and basket call option prices can, in principle, be obtained by
integrating the basket call option payoff against this lognormal density. So, once more, in
this particular case, a closed form solution is well known, but, when the number of assets
is large, it is very difficult to take advantage of it in the time frames needed in a trading
desk. Indeed all known Monte-Carlo based evaluations of the multidimensional integral
are very slow. By contrast, the asymptotic expansions provided in this paper are very
accurate and yield a call option price in less than 2 seconds, even in the case of 100 assets.
Moreover, when βi , 1, the situation is further complicated by the absence, to the best
of our knowledge, of a closed form representation for the transition densities. Whereas
this has no effect on the accuracy or speed of the asymptotic expansions. After these
preliminary remarks let us discuss in more detail the various notions of implied volatility
that we will make use of in this paper.

The Black-Scholes implied volatility,

σBS = IV(F0,K,T ),

corresponding to an observed call option price is the value of the volatility σBS having
the property that the Black-Scholes price of an asset with strike K, price F0, and time to
maturity T and volatility σBS matches the quoted price. In the case of generalized spread
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options, for which some of the weights can be negative, the basket,
n∑

i=1

wiFi,

may have a negative value at time zero or can start out positive and become negative at a
later time. On the other hand the spot price in the Black-Scholes setting always remains
positive. It does not make much sense to quote an equivalent Black-Scholes price on an
asset that is initially, or can at a later time become negative. It seems more natural in
such cases to define a Bachelier dynamics for the underlying and then to seek a Bachelier,
sometimes also called “normal”, implied volatility. In any case, as mentioned in the in-
troduction, an asymptotic value of implied volatility, whether Black-Scholes or Bachelier,
can be viewed in the present context as a tool to determine quickly, efficiently and ana-
lytically, the price of the generalized spread option. Moreover, once one has determined
a Bachelier implied volatility, it is straightforward to determine its Black-Scholes implied
volatility equivalent. In fact the latter follows immediately from the results in [17]. Thus
in this paper, our approach will be:

• For baskets with positive weights, i.e. index options, we will determine an asymp-
totic formula for the Black-Scholes implied volatility.

• For baskets in which one or more weights are negative, we will make use of a
Bachelier implied volatility, for which we now give a precise definition.

The Bachelier model is a model in which the underlying follows the process

dF(t) = F0σdW(t),
F(0) = F0.

It is usually (implicitly) assumed in the literature that F0 is positive. In that case, the follow-
ing formula whose properties are discussed in depth in a recent paper by Schachermayer
and Teichmann [39], holds

CB(F0,K, σ,T ) = (F0 − K)Φ(dBach) + F0σ
√

Tφ(dBach),

where dBach =
F0−K
σF0

√
T

, Φ is the cumulative standard normal distribution and φ its density.
Note that if F0 is negative, the above formula cannot be correct as it stands, since it would
imply a negative call price. In the Bachelier model, even if the asset’s price is initially
negative it has a positive probability of attaining a positive value and therefore the call
price should be positive. A simple adjustment of the above pricing formula restores this
property. This was pointed out in a earlier note [2], which treats a very special case of the
present paper, i.e. the geometric lognormal case for three assets. Since −W(t) has the same
distribution as W(t) and is thus still a standard Brownian motion, letting W̃(t) = −W(t), we
have

dF(t) = |F0|σdW̃(t),
F(0) = F0.

It follows that the formula below is a universally valid version of the Bachelier pricing
formula that holds both in the case where F0 is negative and when it is positive:

CB(F0,K, σ,T ) = (F0 − K)Φ(dB) + |F0|σ
√

Tφ(dBach),(1.2a)

dBach =
F0 − K

|F0|σ
√

T
.(1.2b)
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We will use (1.2) in pricing baskets when one or more of the weights are negative. The
exact contributions will be detailed below. But we begin with a literature review to gain a
broader perspective and to better put our contribution in context.

1.2. Literature Review.

1.2.1. Lognormal case. Our treatment contains the very popular lognormal case as a spe-
cial case, corresponding to the choice βi = 1, i = 1 . . . n. As the present work applies both
to the case of positive and negative weights, we review some of the contributions of which
we are aware, but since the literature is quite vast, we cannot claim to give an exhaustive
list.

In the lognormal setting with positive weights there is a significant literature to which
various authors have made important contributions. It is difficult to give an exhaustive
review. We mention here the papers by Milevski and Posner [30], [31] who use an approx-
imation based on the Gamma function, the paper by Ju [25] who makes use of an asymp-
totic approach based on the expansion of the characteristic function for small volatilities
and a recent paper by Duck and Widdicks [14]. The paper by Carmona and Durlemann
provides upper and lower bounds that are quite tight [11].

In the case of one negative weight and n = 2, still in the lognormal setting, the case
K = 0, i.e. the so-called exchange option, has received special attention, as it allows for an
exact pricing formula. This is the famous Margrabe formula. In the case K , 0, still for
n = 2, Kirk’s formula is a favorite among practitioners. This is a very compact formula that
provides good accuracy for a formula of its simplicity. Carmona and Durlemann in their
review paper [10] also provide approximations for the two asset spread option. Among
the various approximations for two-asset spread options, still in the lognormal setting, one
stands out from the rest in that it’s accuracy is so good that it is “difficult to beat” using
Monte-Carlo simulation in the sense that “beating” its accuracy may require millions of
paths. This is the formula of Bjerkstund and Stensland [9].

Next, we have multi-asset (n ≥ 3) spread options in the lognormal setting. In a recent
paper Alos, Eydeland and Laurence [2] show that Kirk’s formula can be derived from
a decomposition formula that allows one to view Kirk’s approximation as the first in a
hierarchy of ever better (but increasingly complicated) approximations. In the multi-asset
lognormal setting we also note the recent contributions by Li et al. [27] and by Alexander
et al. [1].

1.2.2. Correlated local volatility processes. The first contribution dealing with multivari-
ate local volatility pricing models such as (1.1) was, to our knowledge, the paper by Avel-
laneda, Boyer-Olson, Busca and Friz [3]. This paper is devoted to a family of models that
constitutes a special case of the ones considered in the present paper, i.e. to the case of
baskets with positive weights, i.e. to index options. The authors provide an approach to
determining the zero-th order Black-Scholes implied volatility for this family of models.
For this purpose, after determining the geodesics corresponding to the family of models, in
order to produce tractable formulas, they introduce a linearization procedure, that provides
approximations to the zero-th order implied volatility1 and corresponding price, when the
basket is “close to the money”. To determine the sought for implied volatility, the authors
first determine the local volatility function for the index itself and then apply the well-
known half-slope rule.

1The first in a hierarchy of approximations of the form σBS = σBS
0 +

N∑
i=1
σBS

i T i,N ≥ 1, as explained in the

body of the present paper.
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This leads to nice, compact formulas for the implied volatility. The zero-th order for-
mula of Avellaneda, Boyer-Olson, Busca, and Friz depends on an approximation of the
point of minimum distance from the initial point to a hyperplane, the so-called “optimal”
(or minimizing) configuration. As mentioned above, the authors linearization procedure
fares quite well only “close to the money”, i.e., when∣∣∣∣∣∣∣

n∑
i=1

wiFi(0) − K

∣∣∣∣∣∣∣
is sufficiently small. In addition to providing, in the correlated and uncorrelated CEV case,
a quick, simple and efficient way to determining the true minimizer in all regimes including
far from the money, in this paper we go further to derive a first order correction σ1. It is
this new first order correction that allows us achieve a surprising level of accuracy, as we
will see in the numerical experiments.

Another contribution in the direction of asymptotics for baskets with positive weights
appears in the book of Henry-Labordère [23]. As we will do here, Henry-Labordère makes
use of a heat kernel expansion. He also provides a first order correction to the zero-th order
implied volatility, which is however quite different from ours, and is not optimal, since
it makes use of a formula for the implied volatility in one factor local volatility models
which is not the optimal one, as given in [17]. Also Henry-Labordère does not discuss the
crucial issue of efficiently and accurately determining the minimizing configuration and
does not discuss baskets with negative weights. The approach by Piterbarg [37], using
Markovian projection, yields a fairly good approximation in the multi-asset local volatil-
ity setting, by replacing conditional expectations with Gaussian approximations thereof.
Lastly, Takahashi et al. have very recently extended their powerful asymptotic approxima-
tion techniques using Malliavin calculus to the basket option pricing setting, [40]. They
consider multi-asset Sabr models, of which our multi-dimensional local volatility model
is a special case (corresponding to zero vol of vol). A comparison of the accuracy of our
results with those of Takahashi is in progress. However as described below, our approxi-
mations are highly accurate.

Although this paper is written in the spirit of classical asymptotics, i.e., with the ob-
jective of providing expansions that are useful, quick and accurate, we show in Section 4,
thanks to the work by Varadhan [41], Azencott [5] and Ben Arous [7], the theory required
to fully justify these expansions and provide error bounds already exists, under certain
not too stringent technical conditions, even in the setting of degenerate diffusions and we
sketch how to put this theory to work in our context.

1.3. Our contribution. In this paper we will show that the exact (ie., highly accurate)
value of the minimizing configuration, and the corresponding minimal value, can be easily
determined. This improved approximation of the zero-th order price often captures more
than 95 − 99% of the actual price. To this zero-th order approximation we add a first order
one, which leads to additional significant improvements in the accuracy. The accuracy of
the resulting approximations is, in some cases, so good that it leads us to coin the phrase
“asymptotics beats Monte-Carlo”. Indeed, in many cases more than 99.9% of the price
is captured by its first order approximation. This seems to open the way for a new role
for such asymptotics. In the past the main role of asymptotic results has arguably been as
a calibration rather than as a pricing tool. A case in point, the ground breaking asymp-
totic results of Hagan et al. [21], and Henry-Labordère [23], for the implied volatility in
the SABR model have been used by practitioners primarily as a method to calibrate the
implied volatility surface, rather than as a means to price an option. For accurate pricing
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of an option in a local volatility setting, practitioners tend to use finite difference meth-
ods or sophisticated higher order stochastic numerical methods such as Ninomiya-Victoir
[35] or innovative multi-level techniques introduced by Giles [19]. But in the context of
baskets with a large number of assets and state dependent driving diffusions, Monte-Carlo
methods are extremely slow and the trade-off between speed and accuracy rapidly becomes
quite poor as the number of assets increases, even more so when finite difference methods
are used. In this context, since the asymptotics produces prices with high accuracy, almost
instantaneously, it can be argued that asymptotic formulas for the prices can also be viewed
as a pricing and hedging tool. The application of the present techniques to calculate the
greeks is straightforward but lengthy and will be presented elsewhere. In our numerical
results, we focus on the special case in which the local volatilities are powers of the un-
derlying assets, i.e., CEV processes. All our main asymptotic formulas (2.19) and (2.17)
as well as the ingredients needed to calculate these are available in closed form for any
prescription of the local volatilities – possibly up to one-dimensional line-integrals, which
can be easily calculated numerically.

1.4. Basket Carr-Jarrow formula. Consider a basket option with payoffB =
∑

wiFi and
weights wi ∈ R. Take the Itô derivative of the basket’s price:

d
n∑

i=1

wiFi(t) =

n∑
i=1

wiσi(Fi(t))dWi(t)

=

√√√√√√√√√√√ n∑
i, j=1

wiw jσi(Fi(t)σ j(F j(t))ρi j︸                               ︷︷                               ︸
σ2
N ,B

dW(t),

for a new Brownian motion W. Here we have used the notation σN ,B to indicate the
“normal volatility” of the basket which must not be confused with the lognormal (Black)
volatility σB =

σN ,B
n∑

i=1
wiFi

used in reference [3]. Therefore, by the Itô-Tanaka formula we have

d

 n∑
i=1

wiFi(t) − K

+

=

n∑
i=1

wi1∑
wiFi(t)>K dFi(t) +

1
2
δ{F(t):

∑
wiFi(t)=K} σ

2
N ,B(F(t))dt.

Integrating we obtain n∑
i=1

wiFi(T ) − K

+

=

 n∑
i=1

wiFi(0) − K

+

+

+

n∑
i=1

wi

∫ T

0
1∑

wiFi(u)>K dFi(u) +
1
2

∫ T

0
δ{F(u):

∑
wiFi(u)=K} σ

2
N ,B(F(u))du.

Letting EK = {F ∈ Rn
+ :

∑
wiFi = K} and taking conditional expectations with respect to

the filtration Ft at time t, we obtain, assuming Fi(t) is a martingale for each i2:

CB(Ft,K,T ) =

 n∑
i=1

wiFi(t) − K

+

+
1
2

∫ T

t
E

[
σ2
N ,B δE(K)(Bt) | Ft

]
dt.

2 In many cases of interest, Fi(t) is only a local martingale and not a martingale. But the discrepancy is not
“felt” for short times, since the set of paths that can reach the boundary have small probability, in this limit. This
is known as the principle of “not feeling the boundary” for small times and is born out by our numerical results.
More surprisingly the boundary is not felt, even for quite large times.
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Letting |w| =
√

n∑
i=1

w2
i , and denoting by Hn−1 the Hausdorff measure, which on the hyper-

plane EK coincides with the Lebesgue measure, a simple use of the co-area formula (see

[15]), and using that

∣∣∣∣∣∣∇(
n∑

i=1
wiFi)

∣∣∣∣∣∣ = |w|, we see that the expectation, when expressed in

terms of the joint transition density, is given by:

CB(F0,K,T ) =

 n∑
i=1

wiFi(0) − K

+

+
1
2

∫ T

0

1
|w|

∫
E(K)

σ2
N ,B(F)p(F0,F, u)dHn−1(F)du.

Therefore, we arrive at the proposition:

Proposition 1.1. The value of a call option on a basket B is given by

(1.3) CB(F0,K,T ) =

 n∑
i=1

wiFi(0) − K

+

+

+
1
2

∫ T

0

1
|w|

∫
E(K)

n∑
i, j=1

wiw jσi(Fi)σ j(F j)ρi j p(F0,F, u)dHn−1(F)du.

2. A general asymptotic expansion procedure

The starting point is the basket Carr-Jarrow formula derived above. The key step in the
approach is to plug into this formula a good approximation for the transition density, for
small, dimensionless times to maturity (i.e., a typical volatility times the square root of
the time to maturity). The approximation technique we use in this paper is the heat kernel
expansion, whose main features we recall in the appendix. The heat kernel expansion is an
expansion with an exponential, Gaussian looking term, that multiples a series in ascending
integral powers of time to maturity.

We will see that to derive a first order expansion for the implied volatility for a basket
option, i.e., an expansion of the form

σBS(K,T ) = σBS,0 + TσBS,1,

it will only be necessary to use a heat kernel expansion up to the zero-th order,

p(F0,F,T ) '
√

g(F)

(2πT )
n
2

e−
d2(F0 ,F)

2T u0(F0,F),(2.1)

where we denote by
√

g the square root of the determinant of the Riemannian metric as-
sociated to the diffusion whose entries are gi j = {σi(Fi)σ j(F j)ρi j}

n
i, j=1. Recall that the

metric’s components are gi j where {gi j} is the inverse of {gi j}. Also, in (2.1), the term d
in the exponent of the exponential is the Riemannian distance in the metric g. In all local
volatility models with constant correlations, it is easy to see by simple changes of variables
that the Riemannian distance is given by

d2(F0,F) =

n∑
i, j=1

qiΛi, jq j,(2.2)

where

qi B

∫ Fi

F0,i

1
σi(u)

du
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and where Λ is inverse of the correlation matrix. In case the integral above diverges, one
can use a different lower limit of integration. To conclude our discussion of the ingredients
in (2.1), u0 is the zero-th order heat kernel coefficient. As explained in the appendix, for
the class of local volatility models with constant correlations, that we explore in this paper,
u0 can be given in closed form.

After this preliminary discussion, we can begin our derivation of the asymptotics. In
the rest of this section the specific form of the metric g, local volatility functions σi, i =

1, . . . , n, and Riemannian distance function d and zero-order heat kernel coefficient u0 does
not come into play. This means that most of this section, in particular the final formula
(2.12), derived here, would still apply (with certain simple adjustments) for a more general
class of local volatility models, such as the models with non-constant correlations.

Recalling the notation σ2
N,B(F) = wiw jσi(Fi)σ j(F j)ρi j, and also denoting

α0 B
√

g(F)σ2
N ,B(F)(2.3)

C B − log(α0(F)u0(F0,F)),(2.4)

we may re-write the integral appearing in (1.3) in the form

(2.5)
∫ T

0

1
|w|

∫
F∈E(K)∩Rn

+

n∑
i, j=1

wiw jσi(Fi)σ j(F j)ρi j p(F0,F, t)dHn−1dt

�

∫ T

0

dt
(2πt)

n
2

1
|w|

∫
F∈E(K)∩Rn

+

e−
d2(F0 ,F)

2t −C(F0,F)dHn−1,

where we have approximated the heat kernel by its zero-th order approximation. The first
step is to transform the integral on the n−1 dimensional subspace EK of Rn into an integral
over Rn−1, by eliminating one of the variables, say the n-th one, using the relation

Fn(F1, . . . , Fn−1,K) =
1

wn

K −
n−1∑
i=1

wiFi

 .(2.6)

Let us denote

G B (F1, . . . , Fn−1) ∈ Rn−1
+ ,

GK B

G ∈ Rn−1

∣∣∣∣∣∣∣
n−1∑
i=1

wiFi < K

 ,
so that for our hyperplane’s intersection

EK ∩ Rn
+ =

F ∈ Rn
+

∣∣∣∣∣∣∣ F =

G, 1
wn

K −
n−1∑
i=1

wiFi


 ,G ∈ GK

 .
Note that the set GK is introduced in order to ensure that Fn in (2.6) is non-negative, as it
needs to be. The set EK is an n − 1 dimensional hyperplane in Rn

+.
Consider now the inner integral. Note that, when we parametrize the hyperplane EK

using (F1, . . . , Fn−1), as in (2.6)

FK(F1, . . . , Fn−1) = (F1, . . . , Fn−1, Fn(F1, . . . , Fn−1,K)),

we will assume that the weight multiplying Fn is positive. This can always be achieved by
choosing as the n-th asset one of the assets with a positive weight. Then for the surface
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measure, we have

dHn−1 =
√

1 + |∇Fn|
2dF1 . . . dFn−1 =

|w|
|wn|

dF1 . . . dFn−1.

In this notation, the inner integral reads
|w|
|wn|

∫
GK

e−
d2(F0 ,FK )

2t −C(F0,FK )dF1 . . . dFn−1.

We now approximate the value of this integral using standard Laplace asymptotics for mul-
tiple integrals. Under certain conditions, whose validity in the present setting is discussed
in Section 4, and which in all the examples considered in this paper were indeed verified
by the numerical results, we may approximate the value of the above integral by a series in
inverse powers of T , with coefficients determined by the behavior of the integrand close to
the point where the exponent d2 reaches its minimizing value. In particular, assuming that
the distance function d has, for each initial point F0, only one point realizing the minimum
of d2 on GK , and assuming that this minimum is achieved in the interior of GK , denoting
this minimum point by G∗, and

G∗ = argminG∈GK
d2(F0, (G, Fn(G,K)),

= d2(F0,EK).(2.7)

Setting also F∗K = (G∗, Fn(G∗,K)), we see that the integral can be approximated by

(2.8) t
n−1

2 e−
d2(F0 ,F

∗
K )

2t −C(F0,F∗K ) ×

∫
Rn−1

e−
zt Qz

2 dz1 . . . dzn−1 = t
n−1

2 e−
−d2(F0 ,F

∗
K )

2t −C(F0,F∗K ) (2π)
n−1

2

|Q|
1
2

,

with

Q B D2Φ(G∗), Φ(G) B
1
2

d(F0, (G, Fn(G,K)),(2.9)

where D2Φ denotes the hessian matrix of Φ and |Q| the determinant of Q (assumed different
from zero), and z B G∗−(F0,1,...,F0,n−1)

√
t

. Thus, bringing back the missing factor, the integrand
of (2.5) can therefore be approximated by

1

|wn|
√

2πt
e−

−d2(F0 ,F
∗
K )

2t −C(F0,FK)|Q|−
1
2 ,

which, if we let

Ĉ B C +
1
2

log(|Q|),(2.10)

can be written as
1

|wn|
√

2πt
e−

−d2(F0 ,F
∗
K )

2t −Ĉ(F0,F∗K ).

Now, integrating this result with respect to t, for t between 0 and T , we obtain:

(2.11)
1

√
2π|wn|

∫ T

0

1
√

t
e
−d2(F0 ,F

∗
K )

2t −Ĉ(F0,F∗K )dt =
1

√
2π|wn|

e−Ĉ(F0,F∗K )
∫ T

0

1
√

t
e
−d2(F0 ,EK )

2t dt.

The asymptotics of the integral in (2.11) has already been determined in several places
(eg.,Henry-Labordère [23] and [17]) (see bottom of page 16), and to leading order it gives

1
|wn|

∫ T

0

e−
d2
2t

√
t

dt ∼
2
d2
∗

e−
−d2(F0 ,F

∗
K )

2T T
3
2 , T → 0,(2.12)
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where d∗ = d(F0,F∗K). So that plugging (2.12) into (2.11), we get for (2.5) the approxima-
tion

1

|wn|
√

2πd2
∗

e−Ĉ(F0,F∗K )e−
−d2(F0 ,F

∗
K )

2T T
3
2 .

Note that we do not express the factor d2
∗ via a (new) exponential expression for reasons

that will be clear later on, during the matching phase. Thus

Proposition 2.1. The expansion of the call prices in drift-less local volatility models is
asymptotically equivalent to

(2.13) CB(F0,K,T ) =

 n∑
i=1

wiFi(0) − K

+

+
1

2
√

2π|wn|d2
∗

e−Ĉ(F0,F∗K )e−
−d2(F0 ,F

∗
K )

2T T
3
2

as T → 0, where F∗K , is the point on the hyperplane
n∑

i=1
wiFi = K, at minimum (Riemann-

ian) distance from the initial point F0 and where Ĉ is defined by (2.10).

2.1. Matching to Bachelier model when one or more of the weights is negative. Recall
that Bachelier’s model is described by

dF(t) = σB |F0| dW(t), F(0) = F0 ∈ R, 0 ≤ t ≤ T.

In this case, assuming zero interest rates, the Bachelier price of a call option was given
in (1.2).

From the results in [17], applied to the case where the local volatility σL is given by
σB|F0|, the difference between the call price and its intrinsic value is given, to order T 3/2

by

1
√

2π
e−dB(F0,K)2/2T 1

dB(F0,K)2σL(K, t)u0(F0,K, t)T 3/2,(2.14)

where the one dimensional signed distance function is given by

d(F,K) =

∫ F0

K

1
σL(u)

du,

which, in the Bachelier case, becomes

dB(F0,K) =
F0 − K
σB|F0|

.

Also, the one dimensional heat kernel coefficient u0 is in the time homogeneous case given
simply by

u(1d)
0 (F,K, t) =

√
σL(F, t)
σL(K, t)

,

which is identically equal to 1 in the Bachelier case. Therefore, keeping terms up to order
T 3/2 we have for the difference between the call price and its intrinsic value,

1

2
√

2πd2
B

e
−

(F0−K)2

2σ2
BF2

0 T σB|F0|T 3/2.

Now we try to determine the coefficients in the expansion of

σB = σB,0 + σB,1T + O(T 2).
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Since we are assuming a Bachelier dependence for the basket, we let

F0 =

n∑
i=1

wiF0,i.

We set the Bachelier price equal to the basket option price and cancel like terms to get

1
d2

B

e
−

(F0−K)2

σ2
BF2

0T σB|F0| =
1
d2
∗

e−
Φ
T −Ĉ−log(|wn |).

Denoting by dB,0 the corresponding expansion of dB, the expansion of the exponent on the
left hand side up to zero-th order yields

1
d2

B,0

e
−

(F0−K)2

2σ2
B,0 F2

0T e
(F0−K)2σB,1

F2
0σ

3
B,0

+log(|F0 |σB,0)
.

Matching the exponential terms we get

d2
B,0 =

(F0 − K)2

σ2
B,0F

2
0

= d2
∗ ,(2.15)

or equivalently

σB,0 =
|F0 − K|

d∗|F0|
.(2.16)

Using (2.15) and equating the terms of order zero in the exponent, we find

Ĉ = −

 (F0 − K)2σB,1

F
2
0σ

3
B,0

+ log(|wn|σB,0|F0|)

 ,
so that we get:

Proposition 2.2. The first order normal (Bachelier) implied volatility, for a basket option
on n assets evolving according to the dynamics (1.1), is given by

σB,1 = −
F

2
0σ

3
B,0

(F0 − K)2

(
Ĉ + log(σB,0|F0||wn|)

)
(2.17)

where F0 is the initial value of the basket, σB,0 is given by (2.16), and Ĉ is defined by
(2.10).

2.2. Matching to Black-Scholes in positive weights case. As demonstrated in Gatheral
et.al. [17], setting ξ = log

(
F0
K

)
the asymptotics of the Black-Scholes call prices is given up

to order T
3
2 by

√
F0K
√

2π
e
−

ξ2

2σ2
BS,0T

σ3
BST

3
2

ξ2 =

√
F0K
√

2π

1
d2

BS

e
−

ξ2

2σ2
BS,0T σBS ,

which we hereby apply with F0 = F0. Expanding again, up to the first order

σBS ∼ σBS,0 + TσBS,1, T → 0,

and canceling the term 1
√

2π
T

3
2 , we have

e
−

ξ2

2Tσ2
BS,0

+
ξ2σBS,1
σ3

BS ,0

√
F0KσBS ,0.
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Matching the exponential terms gives

σBS,0 =
|ξ|

d
.(2.18)

At the zero-th order we get

e−Ĉ−log(|wn |) = e
ξ2σBS,1
σ3

BS ,0

√
F0KσBS ,0,

so that we have the following

Proposition 2.3. The first order Black-Scholes implied volatility, for a basket option, with
all positive, weights on n assets, evolving according to the dynamics (1.1) is given by

(2.19) σBS,1 = −
σ3

BS,0

ξ2

(
Ĉ + log

(
σBS ,0|wn|

√
F0K

))
.

where F0 is the initial value of the basket, σBS,0 is given by (2.18), and where Ĉ is defined
by (2.10).

3. Determining the minimum value

The key step in applying the method in this paper is to calculate accurately and quickly
the minimum value of the squared distance function of a point to a hyperplane. It turns
out that this can be done with a device as simple as multidimensional Newton’s iteration.
Of course in the presence of local minimizers, it is possible that Newton’s method does
not converge. Thus, it is necessary to start Newton’s iteration with a good initial guess. In
seeking good initial points we are concerned with:

• Identifying the only ansatz known heretofore for such a minimizer and for the
corresponding minimum, in the (special) positive weight case, due to Avellaneda,
Boyer-Olson, Busca and Friz, as a linearization of the optimization problem in log
moneyness coordinates.

• Providing alternative linearizations which are found to be at least as accurate.
• Deriving a family of higher order, i.e., quadratic approximations to the minimizing

configuration.

Concerning the first point, note that the Avellaneda, Boyer-Olson, Busca, Friz [3] for-
mulate the problem of determining the distance of a point to the hyperplane EK in terms
of the underlying geodesics, rather than directly in terms of the distance function as we do
here. Although the approach using geodesics is equivalent to ours, this equivalence is at
first sight not all transparent when comparing their nonlinear system to ours. It turns out,
however, that if one uses an appropriate linearization of the problem, re-formulated as here
(more simply we think) directly in terms of the distance function, one easily recovers their
approximation for the minimizing configuration. We review their ansatz in the next section
and rederive it in our framework in Section 3.3 .

3.1. The approximation due to Avellaneda et al. Avellaneda et al. in [3] find the follow-
ing approximation for the optimal configuration. We translate it into our notation. Denote
by F∗ the (sought for) optimizing configuration. It is important to note that the local volatil-
ity problem in the above authors’ approach is denoted

dFi(t) = σi(Fi(t))Fi(t)dWi(t)
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whereas, in our notation, we use dFi(t) = σi(Fi(t))dWt. Let

x∗i B log
(

F∗i
F0,i

)
,

B0 B
n∑

i=1

wiF0,i,

σB(0)2 B
1
B2

0

∑
σi(F0,i)σ j(F0, j)F0,iF0, jρi jwiw j,

where, for instance, in the CEV case in their notation, we have

σi(Fi) = ξiF
βi−1
i ,

and define

p j = wi
F0,i

B0
.

Let x∗ = (x∗1, . . . , x
∗
n), then

xi∗ =
log( K

B0
)

σ2
B(0)

n∑
j=1

ρi jσi(F0,i)σ j(F0, j)p j.(3.1)

3.2. A linearization in the q variables. We introduce the qi-s as the fundamental inde-
pendent variables. Forward prices Fi are expressed in terms of these. Here

qi(Fi) =

∫ Fi

F0,i

1
σi(u)

du.

For the sake of concreteness, we are only treating the CEV case in the following. In that
case we abuse notation by setting

qi(Fi) B
∫ Fi

F0,i

1
uβi

du =
1

1 − βi
(F1−βi

i − F1−βi
0,i ).

Setting q = (q1, . . . , qn) and letting Λ = Σ−1 be the inverse of the variance-covariance
matrix with entries Σi, j = ξiξ jρi, j, 1 ≤ i, j ≤ n, and noting that d2(F0,F) = qtΛq, the
minimization problem in these variables reads

min qtΛq :
n∑

i=1

wiFi(qi) = K.

Since
∂d2

∂q
= 2Λq,

the constrained problem with Lagrange multiplier λ, using that

Fi(qi) =
(
F1−βi

0,i + (1 − βi)qi

) 1
1−βi = F0,i + Fβi

0,iqi +
1
2
βiF

2βi−1
0,i q2

i + O(q3
i ),

then gives rise to the condition

(Λq)i =
1
2
λwi

∂Fi

∂qi

=
1
2
λwi

(
Fβi

0,i + βiF
2βi−1
0,i qi

)
+ O(q2

i )(3.2)
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The constraint can be expressed as∑
wi ·

(
F i

0 + Fβi
0 qi +

1
2
βiF

2βi−1
0,i q2

i

)
= K + O

(
|q|3

)
.(3.3)

To lowest order we drop the term multiplying q on the RHS of (3.2) and obtain, letting
(F̃0)i = wiF

βi
0,i,

q =
1
2
λΛ−1F̃0.(3.4)

We then apply a linearized version of the constraint
∑

wiFi(qi) = K, i.e.,∑
wi(F0,i + Fβi

0,iqi) = K

or

(3.5)
∑

wiF
βi
0,iqi = K − B0.

Now multiplying both sides of (3.4) by F̃t
0 and solving for λ we find

λ =
2(K − B0)

F̃t
0Λ−1F̃0

.(3.6)

Inserting this into (3.4) gives

q =

 (K − B0)

F̃t
0Λ−1F̃0

 Λ−1F̃0.(3.7)

Once q is known, we can use the exact relation Fi(qi) =
(
F1−βi

0,i + (1 − βi)qi

) 1
1−βi to deter-

mine F or alternatively one can use the Taylor expansion thereof.

3.3. New derivation of the formulas of Avellaneda et al. In this section we show how
to recover the Avellaneda et. al. approximation introduced in Subsection 3.1 in the present
framework. Thus we use xi = log

(
Fi

F0,i

)
and X = log

(
K
B0

)
as the main variables, so that

Fi = F0,iexi . From the relation
n∑

i=1

wiFi = K,

which can be written
n∑

i=1

wiF0,iexi = K = B0e
log

(
K
B0

)
,

we obtain the approximate relation
n∑

i=1

wiF0,i(1 + xi) = B0eX = B0(1 + X).

So the linearized constraint can be written
n∑

i=1

wi
F0,i

B0
xi = X.

Since

xi =
1

1 − βi
log

1 + (1 − βi)
qi

F1−βi
0,i

 ,
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we have

xi ∼ qiF
βi−1
0,i ,(3.8)

∂xi

∂qi
∼ Fβi−1

0,i ,

∂wiFi

∂qi
∼ Fβi

0,i,

so we get

2(Λq)i = λwiF
βi
0,i,

(as before), subject to

n∑
i=1

wi
Fβi

0,i

B0
qi = log

(
K
B0

)
.(3.9)

Notice that, if we linearize the right hand side we obtain again the constraint (3.5).
Now once again solving (3.4), q = 1

2λΛ−1F̃0, but this time subject to the constraint
(3.9), we find

λ =
2B0 log

(
K
B0

)
F̃t

0Λ−1F̃0
,

which plugged into (3.4) and using (3.8) yields

xi =
B0 log

(
K
B0

)
F̃t

0Λ−1F̃0

(
Λ−1F̃0

)
i
Fβi−1

0,i ,

and this is easily seen to be identical to (3.1).

3.4. Higher order approximations for the initial value. We set

q = q0 + q1,(3.10)
λ = λ0 + λ1,(3.11)

where q0 is given by (3.7) and λ0 is given by (3.6). Inserting this into the expression (3.2),
i.e.

(Λq)i =
1
2
λwi(F

βi
0,i + βiF

2βi−1
0,i qi),

we get

(Λ(q0 + q1))i =
1
2

(λ0 + λ1)
(
wiF

βi
0,i + wiβiF

2βi−1
0,i (q0,i + q1,i)

)
.

Letting, as before, F̃ and introducing the notation (F̂)i B wiβiF
2βi−1
0,i , this may be written

Λ(q0 + q1) =
1
2

(λ0 + λ1)
(
(F̃ + Diag(F̂)(q0 + q1)

)
,

where “Diag” stands for a diagonal matrix. Since Λq0 = 1
2λ0F̃, we may drop two terms

and this may be written

Λq1 =
1
2
λ0(Diag(F̂)(q0 + q1)) +

1
2
λ1(Diag(F̂)(q0 + q1)) +

1
2
λ1F̃
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Dropping the term involving λ1 Diag((F̂q1) we get:(
Λ −

1
2
λ0 Diag(F̂)

)
q1 =

1
2
λ1 Diag(F̂)q0 +

1
2
λ0 Diag(F̂)q0 +

1
2
λ1F̃,

which can be solved for

q1 =
1
2
λ1

(
Λ −

1
2
λ0 Diag(F̂)

)−1

Diag(F̂)q0

+
1
2
λ1

(
Λ −

1
2
λ0 Diag(F̂)

)−1

F̃

+
1
2
λ0

(
Λ −

1
2
λ0 Diag(F̂)

)−1

Diag(F̂)q0

C λ1G0 + H0.

Similarly we rewrite the constraint∑
wi ·

(
F i

0 + Fβi
0,iqi +

1
2
βiF

2βi−1
0,i q2

i

)
= K

as ∑
wi

(
F i

0,i + Fβi
0,i(q0,i + q1,i) +

1
2
βiF

2βi−1
0,i (q2

0,i + 2q0,iq1,i + q2
1,i)

)
= K.

After using that by definition ∑
wi

(
F i

0,i + Fβi
0,iq0,i

)
= K

to cancel some terms, we get

0 =
∑

wiF
βi
0,i(λ1G0 + H0))i+

1
2

wiβiF
2βi−1
0,i

(
q2

0,i + 2q0,i(λ1G0 + H0))i +
1
2

(H2
0,i + 2λ1H0,iG0,i + λ2

1G2
0,i)

)
.

This may be rewritten as:

1
2

wiβiF
2βi−1
0,i G2

0,iλ
2
1 +

(∑
wiF

βi
0,iG0,i + wiβiF

2βi−1
0,i

[
q0,iG0,i + H0,iG0,i

])
λ1

+
∑

wiF
βi
0,iH0,i +

1
2

wiβiF
2βi−1
0,i

(
2q0,iH0,i +

1
2

H2
0,i

)
= 0.

Here we have two choices, we can drop the quadratic term in λ1 or keep it, the first case
leading to a linear equation and a corresponding λL

1 and the second to a quadratic equation
for the determination of λq

1.

4. The existence of the heat kernel expansion

When the diffusion matrix is non-degenerate and the domain is a compact manifold
without a boundary, Yoshida [42], building on work of Minakshisundaram and Pleijel [32], [33],
has shown how to use the so-called geometric series, which we recall in the appendix (A.2),
as a starting point to obtain the exact fundamental solution to the backward Kolmogorov
equation. The approach used by these authors has the drawback of being limited to com-
pact domains and to non-degenerate diffusions. A probabilistic approach to the leading
order behavior of a non-degenerate diffusion in small time was initiated by Varadhan [41].
This work was extended in several directions by Molchanov [34] and by Azencott and
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collaborators [4] who also discuss the extension to the full zero-th order heat kernel coeffi-
cient for which a geometric interpretation in terms of Jacobi fields is given. In [5] the full
heat kernel expansion is obtained on a domain of Rn using a stochastic Taylor expansion
approach, under only the assumption of “local ellipticity” and C∞ coefficients in the inte-
rior of the domain U. If the underlying Riemannian manifold is complete no additional
assumptions need to be made. If on the other hand the underlying Riemannian manifold is
incomplete it suffices that points x and y be sufficiently close compared with their distance
to “infinity”. More precisely when the underlying Riemannian manifold is incomplete, the
heat kernel expansion still holds provided the condition

d(x, y) ≤ d(x, ∂U) + d(y, ∂U)(4.1)

is met (see [5], page 409, equation (6)). In the context of diffusions that degenerate on
the boundary of the domain, the boundary may be at a finite distance from points in the
interior, if the diffusions degenerate slowly at the boundary. This is the case for CEV
diffusions, when βi < 1, i = 1, . . . , n. It is not assumed in Azencott’s version that the
domain is compact, but since the domain has a boundary, to insure uniqueness, he states
his asymptotic results in reference to the so-called minimal positive fundamental solution,
which at the boundary satisfies Dirichlet boundary conditions. The latter are indeed the
mathematically correct boundary conditions for instance in the CEV case, when βi < 1.

Ben Arous extended Azencott’s results in [7] where he considers the hypoelliptic case
on all of Rn. Deuschel, Friz, Jacquier and Violante [13] have shown recently how Ben
Arous’s work can be extended in several directions thereby accommodating several finan-
cially interesting examples of hypoelliptic diffusions such as the Stein-Stein model. The
multidimensional CEV model is however not hypoelliptic, so in our setting, the results of
Azencott are the most directly relevant and indeed the Dirichlet boundary conditions are
very reasonable from a financial point of view, since they correspond to bankruptcy, in case
an asset’s price reaches.

The main use of the above theoretical results in justifying the asymptotics in this paper,
is in showing that the remainder in the heat kernel expansion, after the zero-th order term,
is indeed o(T ) as T → 0 on compact subsets of Rn

+ × Rn
+. A crucial observation is that

for the family of diffusions considered in this paper the cut locus is empty. This is due to
the fact that, as shown at the beginning of Section A.2 in the Appendix, a diffeomorphism
exists that maps the associated metric to flat metric (and hence establishes an isometry
between the two).

We also can make use of the explicit form of the distance function (2.2), which shows,
(since Λ is positive definite), that the latter grows quadratically in q, so that, introducing
the qi’s as new variables in (1.3), the exponential factor involving −d2

2T turns into a standard
Gaussian. Moreover, as can be see from its explicit form (A.8), the u0 heat kernel coef-
ficient, in our setting, is the exponential of an at most linearly growing factor at infinity,
provided that ∂σi(Fi)

∂Fi
grows at most linearly at infinity. Although we do not carry out a

complete proof here these elements are important building blocks in justifying the Laplace
asymptotics used in deriving (2.8).

Remark 4.1. Since our multidimensional local volatility model is the image under a dif-
feomorphism of the x variables in which the metric is Euclidean, see Appendix A.2, and
since sectional curvatures are invariant under a isometry and since the sectional curvatures
in the Euclidean metric are all zero, the sectional curvatures of the image metric are still
zero and therefore the cut locus in the new metric is empty as it was in the Euclidean case.
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5. Numerical Results

In this section we present the numerical results. As mentioned in the introduction, one
significant difference between the present work and most of the literature on asymptotics
is the development and use of a highly accurate benchmark by which to gauge the accu-
racy of asymptotic expansions. In the past, most authors have used Monte Carlo or quasi
Monte Carlo methods. Our finding, is however, that the accuracy in Monte Carlo, perhaps
surprisingly, is not high enough.

Here we make use of the following techniques:
For computing the values of European options in the CEV model we are using the

Ninomiya-Victoir method [35], a variant of the Kusuoka-Lyons-Victoir scheme (also known
as cubature on Wiener space, see [26] and [29]). The Ninomiya-Victoir scheme is a second
order weak approximation scheme for stochastic differential equations. We should men-
tion here that the scheme requires smoothness of the driving vector fields of the stochastic
differential equation. In the case of the CEV model, the vector fields are not differentiable
at the boundary, i.e. when the underlying – or one component of the underlying – takes
the value 0. Thus, when applying the Ninomiya-Victoir scheme to CEV or SABR type
models, one should be aware of problems when the paths of the underlying frequently hit
the boundary. When the underlying is, for instance, a portfolio of stocks, then the bound-
ary behavior typically does not matter and one often empirically observes second order
convergence, even though the exact regularity conditions are not satisfied, see [6]. On
the other hand, for instance in SABR-LIBOR models, the boundary behavior will matter
and one should not expect second order convergence any more. On a more technical side,
we would like to remark that the Ninomiya-Victoir scheme requires us to solve the ODEs
along the driving diffusion and Stratonovich-drift vector fields. In the case of a CEV or
even a SABR model, [6] show that those ODEs can be solved explicitly, implying that
these models are favorable for the Ninomiya-Victoir scheme in terms of efficiency.

As in the usual Euler scheme, the output of the Ninomiya-Victoir scheme is an n-
dimensional random variable, X, which is a weak approximation to the underlying at the
expiration date of the option – recall that n was the number of assets. Therefore, the
Ninomiya-Victoir scheme needs to be coupled with an integration scheme in order to com-
pute E[ f (X)]. We chose quasi Monte Carlo simulation (QMC) as integration scheme,
based on Sobol numbers.

In addition, we were also using a variance reduction technique, known as Mean Monte
Carlo, see [36], which is especially well suited for option pricing in multi-dimensional
diffusion models. It is a variant of the control variate technique. In our case, for any single
asset 1 ≤ i ≤ n, we consider the n-dimensional random variable Xi, which is defined by
choosing all components Xi,l constant except for Xi,i which has a log-normal distribution
with mean and variance chosen according to the corresponding CEV-parameters. Thus, the
option price E[ f (Xi)] is given explicitly by the Black-Scholes formula. Moreover, when
the driving Brownian motion is equal to the driving Brownian motion of the ith component
in the CEV model, then we can expect X and Xi to be rather highly correlated. The control
variate for f (X) is then a linear combination of the random variables f (X1), . . . , f (Xn) with
coefficients chosen during the calculation so as to maximize the correlation.

In our empirical tests, we found that the Mean Monte Carlo method reduces the standard
deviation by approximately 50%, thereby increasing the speed of calculation by a factor
of four in a Monte Carlo setting. In our QMC framework, where the computational error
is not governed by the standard deviation, it is not clear at the outset, whether a variance
reduction technique can contribute to the efficiency of the integration scheme. In this
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particular case, the numerical experiments seem to suggest that there is indeed a smaller
integration error when combining QMC with the control variate described above, at the
cost of negligible additional work.

Summing up, the reference “exact” values of the option prices were computed by dis-
cretization of the CEV stochastic differential equation using the Ninomiya-Victoir scheme
together with quasi Monte-Carlo simulation with Mean Monte-Carlo simulation based on
geometrical Brownian motion.

5.1. Calculation of the optimal configuration (2.7). Usually only three or four iterations
are necessary for the optimal configuration to be obtained with a high degree of accuracy.
For this reason, the optimal configuration can be viewed as given in closed form.

In order to deal with the constraint that the optimal configuration needs to lie on the
hyperplane

∑
wiFi = K, we can either eliminate one of the Fis and thus eliminate this con-

straint, or one can apply Newton’s method to the augmented Lagrangian with a Lagrange
multiplier to accommodate the constraint. One also needs to ensure that all components of
the solution are non-negative.

In either case, it is desirable to provide Newton’s method with a good starting point and
so we have tested the various “warm start” points in section 3.1 both for their accuracy in
providing a good approximation for the zero-th order implied volatility (2.16) and (2.18)
and as a good starting point for Newton’s method.

Note that in [3] the approximation (3.1) is used for the optimal configuration in the
positive weight case. No attempt was reported to compute the optimal configuration with
high precision. We find that (3.1) performs fairly well in the positive weight case and less
so in the case with negative weights. Indeed it may even be undefined since it involves
log

(
K
B0

)
, when B0 < 0.

In practice, we recommend using the crude choice F = F0 given in (3.7) together
with the value λ of the Lagrange multiplier given in (3.6). This choice seems to combine
robustness with fast convergence of Newton’s iteration.

5.2. Numerical results for first (and zero-th) order approximations. As explained in
the introduction to the numerics, highly accurate numerical simulation schemes with an
estimated absolute statistical error of at most 10−4 were used to benchmark our asymptotic
results. Such accuracy comes at a price, with certain computations running for more than
a day, when the number of assets was greater than or equal to 5, and as long as a week, in
the case of one hundred assets.

Somewhat surprisingly, although from a theoretical point of view the heat kernel method
is only expected to provide a high degree of accuracy for relatively short maturities, here
it performs well even for much longer times, but this accuracy does decrease with longer
maturities, as illustrated in the examples presented below. Of course, the key quantities
that need to be small are the dimensionless representative volatilities squared times the
time to maturity σ2

i T . In our experiments we take volatilities of order .1 − .9, so that the
dimensionless parameters, for instance for T = 5, are in the range [.05, 4.05], in this case
and in the range [.01, .81] when T = 1.
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T K = 16 K = 30 K = 32.1 K = 32.5 K = 39 K = 48
0.5 16.0000 2.68949 1.48796 1.31129 0.09644 0.000770
1 16.0000 3.23769 2.11917 1.94345 0.38145 0.025389
2 16.0025 4.04471 3.00214 2.83018 1.00490 0.208926
5 16.0961 5.64629 4.70486 4.54272 2.54881 1.150898
10 16.4681 7.37418 6.51669 6.36644 4.38511 2.699937

Table 1. Quasi Monte Carlo prices for Example 5.1.

T K = 16 K = 30 K = 32.1 K = 32.5 K = 39 K = 48
0.5 16.00000 2.06231 1.49089 1.31424 0.09737 0.000791
1 16.00001 2.67123 2.12746 1.95180 0.38645 0.026177
2 16.00265 3.54074 3.02542 2.85366 1.02440 0.217173
5 16.10517 5.26576 4.79485 4.63350 2.64063 1.220872

10 16.52356 7.18799 6.76048 6.61202 4.64883 2.945708
Table 2. Zero-order asymptotic prices for Example 5.1.

Example 5.1. The first numerical example concerns a basket option based on five assets.
The correlation matrix used below is

ρ =


1 0.778051 0.154111 0.4783847 0.846901

0.778051 1 −0.0835081 0.438172 0.483974
0.154111 −0.0835081 1 0.778543 0.186014
0.478384 0.438172 0.778543 1 0.508852
0.846901 0.483974 0.186014 0.508852 1

 ,
while the other parameters are given by

F0 = (5, 6, 7, 6, 8)t,

β = (0.5, 0.6, 0.2, 0.3, 0.9)t,

ξ = (0.43969, 0.45080, 0.3837, 0.50290, 0.46548)t.

Thus, the basket option is at-the-money when K = 32. Here, we compare the prices
obtained from quasi Monte Carlo simulation with the zero order and first order asymptotic
prices for strikes K = 16, 30, 31.5, 32.1, 32.5, 39, 48 and times to maturity of T =

0.5, 1, 2, 5, 10 years, see Tables 1, 2 and 3 below. We note that the simulation error for
the “exact” prices given in Table 1 is at most of order 5 × 10−5 for T = 0.5, 7 × 10−5 for
T = 1 and then increases in T . At T = 10, the error estimate is of order 1 × 10−3. We
see that the first order asymptotic prices are extremely precise, with errors not larger than
2 × 10−5 for our range of strike prices at T = 0.5 years and at T = 1 the error remains
bounded by 1×10−4. Even at T = 5 years, the errors of the first order asymptotic prices do
not get larger than 2 × 10−3. Even the zero-order prices are remarkably precise with errors
of about 3 × 10−3 at T = 0.5 and 3 × 10−2 at T = 2, corresponding to a relative error of
about 1%.

Figure 1 shows the “true” option prices in this example together with the first order
approximation prices. As expected from the tables, the two lines for each maturity are
visually indistinguishable, so that one can (almost) only see one line for each maturity T .
In Figure 2 we show (on a logarithmic scale) the relative errors of the zeroth and first order
approximate price formulas. For the zeroth order prices, the relative errors increase as the
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T K = 16 K = 30 K = 32.1 K = 32.5 K = 39 K = 48
0.5 16.00000 2.05953 1.48794 1.31127 0.09644 0.000771
1 16.00001 2.66325 2.11913 1.94338 0.38141 0.025387
2 16.00248 3.51803 3.00194 2.82989 1.00475 0.208924
5 16.09647 5.17648 4.70301 4.54045 2.54724 1.150153

10 16.46664 6.93932 6.50513 6.35319 4.37188 2.690597
Table 3. First order asymptotic prices for Example 5.1.
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Figure 1. Exact and first order prices for Example 5.1. (Two lines are
plotted for each maturity, corresponding to “exact” and first order prices,
but they are visually indistinguishable.)

basket gets out of money, which is a simple consequence of dividing the absolute errors
by smaller and smaller values (the corresponding exact option prices). For the first order
prices, the same effect can be seen, but it is somewhat blurred by the erratic behaviour for
small maturities, which is due to the Quasi Monte Carlo error, which is approximately of
order 10−5 in this example – again subject to amplification far out of the money in relative
terms. Comparing the first and zeroth order prices, we again see that the first order prices
are roughly two orders of magnitude more exact.
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Figure 2. Relative errors for zeroth and first order approximate prices in
Example 5.1. (For full legend compare with Figure 1.)

Example 5.2. Here we consider a generalized spread option based on 10 assets. The pa-
rameters are given by

β =



0.7
0.2
0.8
0.3
0.5
0.5
0.6
0.6
0.3
0.3



, ξ =



0.8
0.6
0.9
0.6
0.8
0.4
0.9
0.9
0.3
0.8



, F0 =



10
13
11
18
9
10
17
16
13
17



, w =



−1
−1
1
1
1
−1
−1
1
1
1



.
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The entries of the correlation matrix

ρ =



1.00 −0.22 −0.10 0.02 0.01 0.00 −0.00 0.00 −0.00 0.00
−0.22 1.00 0.47 −0.08 −0.06 −0.01 0.01 −0.00 0.00 −0.00
−0.10 0.47 1.00 −0.18 −0.14 −0.02 0.01 −0.00 0.00 −0.00
0.02 −0.08 −0.18 1.00 0.77 0.14 −0.08 0.03 −0.00 0.00
0.01 −0.06 −0.14 0.77 1.00 0.18 −0.10 0.03 −0.00 0.00
0.00 −0.01 −0.02 0.14 0.18 1.00 −0.58 0.18 −0.02 0.02
−0.00 0.01 0.01 −0.08 −0.10 −0.58 1.00 −0.32 0.03 −0.03
0.00 −0.00 −0.00 0.03 0.03 0.18 −0.32 1.00 −0.10 0.10
−0.00 0.00 0.00 −0.00 −0.00 −0.02 0.03 −0.10 1.00 −0.96
0.00 −0.00 −0.00 0.00 0.00 0.02 −0.03 0.10 −0.96 1.00


are rounded to two digits for better readability. The full correlation matrix is, of course,
available from the authors upon request. The parameters have been generated in a random
way. In this case, the option is at-the-money at a strike of K = 34. We computed the
option prices for strikes K = 32.9, 33.5, 33.8, 34.1, 34.4, 34.7, 35.3 and maturities of
T = 0.5, 1, 2, 5, 10 years. The reference prices obtained by Monte-Carlo simulation are
presented in Table 4. We note that the simulation error is smaller than 6× 10−4 for T = 0.5
and smaller than 1 × 10−3 for T = 1 and increases to around 1 × 10−2 for T = 10. The
first order asymptotic prices shown in Table 6 are of remarkable precision. At maturity
T = 0.5 years the error is bounded by 1× 10−4 throughout the whole range of strike prices.
At maturity T = 1 years, the accuracy is still of the order 1.5 × 10−3. Clearly, the accuracy
decreases when the time to maturity increases. For the extremely large maturity of T = 10
years, the accuracy is around 4 × 10−1. But even in this case, the relative error is only
around 3%. The comparison to the zero order prices given in Table 5 show that the first
order prices are substantially more accurate for maturities smaller than T = 5 years.

T K = 32.9 K = 33.5 K = 33.8 K = 34.1 K = 34.4 K = 34.7 K = 35.3
0.5 3.6352 3.3143 3.1609 3.0123 2.8684 2.7292 2.4649
1 4.8959 4.5841 4.4332 4.2857 4.1416 4.0008 3.7292
2 6.6912 6.3870 6.2385 6.0924 5.9487 5.8074 5.5322
5 10.2656 9.9710 9.8261 9.6825 9.5408 9.4000 9.1251

10 14.2385 13.9482 13.8122 13.6726 13.5298 13.3877 13.1204
Table 4. Quasi Monte Carlo prices for Example 5.2.

T K = 32.9 K = 33.5 K = 33.8 K = 34.1 K = 34.4 K = 34.7 K = 35.3
0.5 3.6306 3.3096 3.1562 3.0076 2.8637 2.7245 2.4601
1 4.8844 4.5724 4.4214 4.2739 4.1297 3.9890 3.7174
2 6.6640 6.3595 6.2109 6.0648 5.9211 5.7798 5.5046
5 10.2020 9.9069 9.7617 9.6182 9.4763 9.3361 9.0604

10 14.1930 13.9054 13.7635 13.6229 13.4835 13.3454 13.0728
Table 5. Zero order asymptotic prices for Example 5.2.
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T K = 32.9 K = 33.5 K = 33.8 K = 34.1 K = 34.4 K = 34.7 K = 35.3
0.5 3.6353 3.3143 3.1610 3.0123 2.8684 2.7292 2.4648
1 4.8976 4.5857 4.4348 4.2873 4.1431 4.0023 3.7307
2 6.7015 6.3972 6.2487 6.1027 5.9590 5.8177 5.5423
5 10.3507 10.0561 9.9112 9.7678 9.6260 9.4858 9.2100

10 14.6137 14.3277 14.1863 14.0461 13.9069 13.7689 13.4960
Table 6. First order asymptotic prices for Example 5.2.

Example 5.3. The next example is a basket based on 15 risky assets, with

β = (0.7, 0.8, 0.9, 0.2, 0.4, 0.3, 0.3, 0.4, 0.4, 0.4, 0.1, 0.6, 0.5, 0.1, 0.2)t,

ξ = (0.6, 0.8, 0.1, 0.4, 0.4, 0.5, 0.4, 0.6, 0.9, 0.3, 0.3, 0.4, 0.5, 0.5, 0.5)t,

F0 = (12, 11, 19, 15, 9, 13, 10, 12, 19, 12, 9, 9, 9, 10, 13)t,

and weights wi ≡ 1. Lack of space prevents us from giving the correlation matrix, which,
as the other parameters, has been generated at random. Of course, it is available from the
authors upon request. In contrast to the situation in Example 5.2, where the different assets
were only lightly correlated, here, the average correlation between two assets is high at
68%. The option is at the money when the strike price satisfies K = 182. We present
the “true” (Monte Carlo) prices (see Table 7) and the zero-order and first-order asymptotic
prices (see Table 8 and 9, respectively) for times T = 0.5, T = 1 and T = 2 years and
for strike prices K = 178.5, 179.7, 180.9, 182.1, 183.3, 184.5, 185.7. The simulation error
is of order 5 × 10−4 for T = 0.5, 1 × 10−3 for T = 1 and 1.5 × 10−3 for T = 2. Again
we see that, throughout a wide range of strike prices, the first-order asymptotic prices are
almost exact up to order 10−4 for T = 0.5 years and still up to order 10−3 for T = 1 year.
Even for T = 2, the first order asymptotic price has a surprising accuracy with errors of
no more than 2 × 10−3 observed in our data. As no weight is negative, we are using the
Black-Scholes version of the asymptotic prices.

T K = 178.5 179.7 180.9 182.1 183.3 184.5 185.7
0.5 7.3631 6.6826 6.0442 5.4480 4.8935 4.3799 3.9063
1 9.5456 8.9029 8.2903 7.7078 7.1549 6.6310 6.1357
2 12.6380 12.0280 11.4395 10.8724 10.3264 9.8011 9.2963

Table 7. Quasi Monte Carlo prices for Example 5.3.

T K = 178.5 179.7 180.9 182.1 183.3 184.5 185.7
0.5 7.3738 6.6937 6.0555 5.4593 4.9047 4.3909 3.9172
1 9.5760 8.9339 8.3218 7.7394 7.1864 6.6625 6.1672
2 12.7233 12.1144 11.5269 10.9605 10.4149 9.8900 9.3854

Table 8. Zero-order asymptotic prices for Example 5.3.
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T K = 178.5 179.7 180.9 182.1 183.3 184.5 185.7
0.5 7.3633 6.6829 6.0445 5.4481 4.8934 4.3797 3.9061
1 9.5456 8.9030 8.2904 7.7077 7.1545 6.6305 6.1352
2 12.6369 12.0269 11.4383 10.8710 10.3247 9.7993 9.2943

Table 9. First-order asymptotic prices for Example 5.3.

Example 5.4. In a second 15-dimensional example, we present the case of a high-dimensional
generalized spread option. The parameters are this time given by

β = (0.3, 0.1, 0.1, 0.8, 0.8, 0.5, 0.6, 0.4, 0.8, 0.4, 0.9, 0.2, 0.1, 0.8, 0.4)t,

ξ = (0.7, 0.7, 0.4, 0.4, 0.8, 0.5, 0.1, 0.5, 0.4, 0.9, 0.6, 0.4, 0.5, 0.5, 0.5)t,

F0 = (10, 8, 15, 13, 13, 9, 18, 15, 13, 9, 12, 19, 11, 11, 13)t,

w = (1, 1, 1, −1, −1, −1, 1, 1, −1, 1, −1, −1, 1, 1, 1)t.

Again, we stress that the parameters have been chosen at random, and lack of space pre-
vents us from giving the correlation matrix ρ, which is naturally available from the authors
upon request. Similarly to Example 5.3, the assets are on average highly correlated with
an average correlation of 60%. This time, the option is at the money when K = 31. We
give the “exact” prices of the spread options for time to maturity T = 0.5, T = 1 and T = 2
years and for strike prices K = 27.5, 28.7, 29.9, 31.1, 32.3, 33.5, 34.7. The simulation error
in Table 10 is at T = 1 bounded by 5 × 10−4, by 3 × 10−4 at T = 0.5 and by 7 × 10−4 at
T = 2. The zero order prices are reported in Table 11 and the first order prices in Table 12.
In this case, some weights are negative, so we use the Bachelier version of the asymptotic
pricing formulas. We again observe extremely good fit for the first order prices, of order
10−4 for T = 0.5 years and 5 × 10−4 at T = 1. At T = 2, the fit is still satisfactory with
3 × 10−3. Surprisingly, this time the zero-order prices are of similar quality, at least for
in-the-money strike prices K. In fact, at T = 2 they seem to be convincingly closer to the
exact prices than the first order asymptotic prices in the money.

T K = 27.5 K = 28.7 K = 29.9 K = 31.1 K = 32.3 K = 33.5 K = 34.7
0.5 4.8596 4.0101 3.2333 2.5373 1.9293 1.4137 0.9919
1 5.9055 5.0862 4.3191 3.6092 2.9608 2.3781 1.8641
2 7.4510 6.6379 5.8614 5.1247 4.4308 3.7828 3.1839

Table 10. Quasi Monte Carlo prices for Example 5.4

T K = 27.5 K = 28.7 K = 29.9 K = 31.1 K = 32.3 K = 33.5 K = 34.7
0.5 4.8598 4.0101 3.2331 2.5369 1.9286 1.4128 0.9909
1 5.9062 5.0864 4.3188 3.6082 2.9592 2.3759 1.8613
2 7.4543 6.6397 5.8617 5.1233 4.4277 3.7778 3.1769

Table 11. Zero order prices for Example 5.4.

Example 5.5. As an especially challenging example, we also computed prices of a 100-
dimensional basket option, i.e. of a European call option on an index based on 100 stocks.
We cannot present the precise parameters in this paper any more, but clearly they are
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T K = 27.5 K = 28.7 K = 29.9 K = 31.1 K = 32.3 K = 33.5 K = 34.7
0.5 4.8597 4.0103 3.2334 2.5374 1.9293 1.4137 0.9919
1 5.9061 5.0867 4.3197 3.6097 2.9613 2.3785 1.8645
2 7.4539 6.6407 5.8642 5.1274 4.4335 3.7854 3.1863

Table 12. First order prices for Example 5.4.

available from the authors upon request. As before, the parameters have been generated
in a random way. The “volatilities” ξi range between 0.48 and 0.59, with mean volatility
0.52. The correlation between different assets are very high, their mean value being 76%.
The βi vary between a minimum value of 0.12 and a maximum value of 0.99 with a mean
value of 0.52. The initial forward prices take values between 3.03 and 6.99 with a mean
value of 5.05, implying that the option is at-the-money at a strike K = 504.6. We report
the different prices for strikes K = 502, 503.2, 503.6, 504, 504.4, 504.8, 505.2. Due to the
prohibitive running time of the simulation algorithm, the simulation error is at most of order
10−2 in Table 13. We note that the error of the first order asymptotic formula, see Table 15,
is mostly smaller than 10−2, i.e., the first order asymptotic error is within the accuracy
bounds obtained from the simulation algorithm. The zero-order asymptotic formula, see
Table 14, however, can be quite far away from the true price.

T K = 502 503.2 503.6 504 504.4 504.8 505.2
0.5 34.018 33.433 33.245 33.057 32.869 32.678 32.483
1 47.390 46.834 46.650 46.466 46.280 46.101 45.924

Table 13. Quasi Monte Carlo prices for Example 5.5.

T K = 502 503.2 503.6 504 504.4 504.8 505.2
0.5 34.090 33.513 33.323 33.133 32.944 32.756 32.568
1 47.614 47.056 46.871 46.686 46.502 46.319 46.136

Table 14. Zero order prices in Example 5.5.

T K = 502 503.2 503.6 504 504.4 504.8 505.2
0.5 34.013 33.437 33.246 33.057 32.868 32.680 32.492
1 47.399 46.841 46.656 46.471 46.288 46.104 45.921

Table 15. First order prices in Example 5.5.

5.3. Summary of numerical results. We conclude the section on numerical experiments
by two summarizing tables, in which we report the ratio between the relative errors for
the zero-order prices and the first order prices, respectively, to the dimension-free time
to maturity “σ2T”. In the case of a basket-option, we clearly have to choose some ap-
propriate average volatility σ for σ. We think that the most appropriate choice in our
multi-dimensional CEV framework is

σ =
σN ,B(F0)∑n

i=1 wiF0,i
,
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T Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4
0.5 0.1555 −0.0293 0.3085 −0.0143
1 0.1481 −0.0261 0.3162 −0.0105
2 0.1429 −0.0218 0.3222 −0.0075
5 0.1376 −0.0129 0.3252
10 0.1328 −0.0035 0.3198
σ 0.1704 0.3187 0.1073 0.2964

Table 16. Normalized error of the zero-order asymptotic prices.

T Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4
0.5 −4.02 × 10−4 1.76 × 10−4 8.76 × 10−3 5.06 × 10−5

1 −9.47 × 10−4 3.58 × 10−3 1.53 × 10−3 2.08 × 10−3

2 −1.63 × 10−3 8.09 × 10−3 −3.92 × 10−3 3.89 × 10−3

5 −3.41 × 10−3 1.71 × 10−2 −1.33 × 10−2

10 −7.15 × 10−3 2.67 × 10−2 −2.82 × 10−2

σ 0.1704 0.3187 0.1073 0.2964
Table 17. Normalized error of the first order asymptotic prices.

where we normalize in order to obtain a log-normal volatility. For each of the Exam-
ples 5.1, 5.2, 5.3 and 5.4 we report that ratio over all times of maturity T , but only for
one representative strike price K. In the case of Example 5.1, we choose K = 32.5, for
Example 5.2 we choose K = 33.8, for Example 5.3 we take K = 180.3 and, finally, for
Example 5.4 we consider K = 33.5.

Apart from the general observation, that the normalized errors of the zero-order prices
are generally much larger than the normalized errors of the first order prices, we see that
the normalized errors for the zero-order prices are more-or-less constant in T , implying
that the zero-order prices converge with rate T to the true prices as T → 0. On the other
hand, the normalized relative errors of the first order prices seem to roughly double when
T doubles. Consequently, the first order prices seem to converge to the true prices with rate
T 2, convincingly so for Examples 5.1, 5.2 and, to some extent, 5.4. Thus, the numerical
example convincingly reconfirm the results of the asymptotic analysis. Even more, in some
cases it seems that T = 10 is already in the asymptotic regime.

Finally, we would also like to compare our results to the classical results by Avellaneda
et al. [3], who are using a slightly different approach. Indeed, they use a heat kernel
expansion to derive a local volatility for the basket from the local volatilities of the in-
dividual components, and then obtain the implied volatility by the “1/2-slope rule”, see
Gatheral [16], i.e. as the average local volatility at the initial and the minimizing configu-
ration. In Table 18, we report the relative errors of our zero-order price – denoted by σ0

K = 178.5 179.7 182.1 183.3 184.5 185.7
σ0 0.00146 0.00166 0.00208 0.00229 0.00253 0.00279
σAV 0.00147 0.00167 0.00208 0.00229 0.00254 0.00281
σ0,AV 0.00639 0.00535 0.00188 −0.00071 −0.00392 −0.00784

Table 18. Comparison of 0 order prices with prices obtained in [3]. Rel-
ative errors in Example 5.3 for T = 0.5.
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in the table – and the price obtained from the implied volatility of [3] – denoted by σAV in
the table. Finally, we also present the results that we would obtain if we directly used their
approximation of the minimizing configuration for our zero order formula, instead of just
as a starting value for a Newton iteration – denoted by σ0,AV in the table. The degree of
agreement between our zero order prices and the prices of Avellaneda et al. is quite aston-
ishing, whereas the quality is certainly considerably worse if we replace the minimizing
configuration by its approximation. So it seems that the “1/2-slope trick” effectively allows
one to avoid the (completely unproblematic) Newton iteration, at no cost of precision. The
first order approximation is, in this case, by almost two orders of magnitude better in terms
of the relative error than either our zero order price or the price obtained by Avellaneda et
al.

6. FutureWork

A big challenge is to devise models which consistently price both the basket option and
its components, in the presence of a skew, such as the one found in equity markets. The
model considered does allow a reasonable level of skew in both components and in the
basket, as illustrated by an example in Figure 3. An additional feature, as was pointed
out by the referee, to incorporate into the local vol basket model, is time inhomogeneous
volatilities and correlations. This is quite straightforward to do, following the approach
in [17], where the time dependent coefficients are expanded in a Taylor series around the
initial time t. However, since Taylor expansions are used, such expansions can only be
expected to be effective for relatively short dated options. An interesting alternative is to
combine the present approach with one of the more sophisticated “global” approaches to
time dependent coefficients, such as the approaches of Reghai [38], Guyon and Henry-
Labordère [20], or that of Gatheral and Wang [18]. It is also desirable to extend the present
work to local volatility models in which the correlations exhibit state-dependence. These
have been termed “local correlation models”.

Appendix A. Heat kernel expansions for local volatility models

A.1. Heat kernel expansion. Given a linear variable coefficient parabolic partial differ-
ential equation

ut +
1
2

ai juxi x j + biuxi = 0.(A.1)

In the time homogeneous case, we may without loss of generality assume the initial time is
0. It is well-studied in differential geometry and stochastic analysis that under certain tech-
nical conditions (see e.g. [42], [12]) the transition density has, in the time homogeneous
case, the following family of N-th order approximations pN ,

(A.2) pN(x0; x,T ) =
√

g(x)UN(x0; x,T )
e−

d2(x0 , x)
2T

(2πT )
n
2

where,
• g is the volume form associated with the Riemannian metric determined by g, the

inverse of the diffusion matrix ai j. The inner product, denoted 〈., .〉, of two tangent
vectors A and B is, in local coordinates given by

〈A,B〉 = gi jAiB j,

where the Einstein summation is used to sum over repeated indices.
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Figure 3. Implied volas of a basket of three assets and the implied volas
of the individual components. In the top plot, the implied vola for the
basket option is plotted together with the implied volas of the individual
components at the optimal configuration, i.e., at strikes F?. In the bottom
plot, the optimal configuration F? is plotted against the strike of the bas-
ket. Parameters: F0 = (10, 11, 17), β = (0.3, 0.2, 0.2), ξ = (0.9, 0.7, 0.9),
ρ12 = 0.8, ρ13 = 0.7, ρ23 = 0.6.
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• d(x0, x) is the geodesic (Riemannian) distance between x0 and x, in the above
mentioned metric gi j corresponding to the inverse of the diffusion matrix.

• UN is given by the series expansion:

UN(x0; x,T ) =

N∑
k=0

uk(x0; x)T k.(A.3)

The uk’s are called the heat kernel coefficients. In particular, u0(x0; x) =
√

∆(x0, x)e
∫
γ
〈V,γ̇〉,

where ∆ and V are defined below.
• ∆ is the Van Vleck-DeWitt determinant:

∆(x0, x) =
1√

g(x0)g(x)
det

(
−

1
2
∂2d2

∂x0∂x

)
.

• P = e
∫
γ
〈V,γ̇〉 is the exponential of the work done by the vector field V along the

geodesic γ, joining x0 to x, with V = V i∂i and

V i = bi −
1

2
√

g
∂

∂x j

[√
ggi j

]
,(A.4)

where b is the drift in PDE (A.1).
We refer to the expansion (A.2) of order N as the geometric expansion of order N. This

terminology is motivated by the fact that the expansion contains terms that are obtained
using geometric information such as the geodesics. It is important to note that the geomet-
ric expansion is an asymptotic one and not a convergent one. In the classical treatment, pN

in [42], pN is multiplied by a test function that localizes the expansion sufficiently close to
the diagonal.In this paper what is needed to justify the asymptotics is that p̂N provides an
asymptotic expansion of order N, i.e., if we denote by p the exact transition density, then
we have

lim
T→0

p̂N(x, y,T ) − p(x, y,T )
T N = 0, ∀N ∈ N

uniformly on compact sets, away from the cut locus. Since our metric is flat, the cut locus
in in fact empty. Using the asymptotics equivalence relation ∼ we have

p(x, y,T ) − p̂N(x, y,T ) ∼ o(T N), as T → 0

These estimates are indeed availables, in a variety of contexts, as illustrated by equation
(4) in Theorems 1.2 and 1.3 in [5] and Theorem (3.1) in [7].

Remark A.1. Care needs to be taken to adhere to the following convention when integrating
along the geodesic: The starting point is the backward point x0 and the endpoint is x. Some
authors prefer to integrate from the endpoint to the starting point, in which case V must be
replaced by −V .

By adding and subtracting first order terms, (A.1) can then be re-expressed in the form

ut +
1
2

∆Bu + V · ∇u = 0,(A.5)

where ∆B is the second order Laplace Beltrami operator 1
√

g
∂
∂xi

(
√

ggi j ∂
∂x j

).
Note that the zeroth order heat kernel coefficient is known in closed form provided we

have available in closed form both the distance function and the geodesics. The higher
order on diagonal heat kernel coefficients ui(x, x) have been calculated up to order 4 in
very general settings. On the other hand the efficient calculation of the off diagonal heat
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kernel coefficients ui, for i ≥ 1, is still an active field of research. We refer to Hsu [24] for
an in-depth introduction to heat kernel expansion from a stochastic analysis perspective.

Given the heat kernel expansion in (A.2) for the transition density p, the call price C as
T → 0+ has an expansion obtained by inserting the geometric series into (1.3).

A.2. Action Integral. In order to isolate the covariant form of the drift to be used in the
action integral, one can proceed directly in the original coordinates as in [8] or alternatively
by making changes of variables and exploiting the invariance of the form

∫
A · dl under

changes of variables. Here we do the latter. i.e., beginning with

ut +
1
2
ρi jσi(Fi)σ j(F j)uFiF j = 0,

we set

yi =

∫ Fi

0

1
σi(u)

du.(A.6)

Then with v(y1, . . . , yn, t) = u(F1(y1), . . . , Fn(yn), t), using

uFi = vyi

1
σi(Fi)

,

uFiF j = vyiy j

1
σi(Fi)σ j(F j)

− δi jvyi

(σi)′(Fi)
(σi)2 ,

we see that v satisfies the pde

vt +
1
2
ρi jvyiy j −

1
2

(σi)′vyi = 0.

Last we let L be a matrix that conjugates ρ to the identity, i.e. LρLt = Id,3

xi = Lipyp,

v(y1, . . . , yn, t) = w(x1, . . . , xn, t),
vyi = wxk Lki, vyiy j = wxk xl LkiLl j,

ρi jvyiy j = Lkiρi jLl jwxk xl = Trace(LρLt Hessian(w)) = wxi xi .

So the final equation is

wt +
1
2

wxi xi −
1
2

Lik(σk)′(Fk)wxi = 0.

The transformation from F to x is xi = Lik
∫ Fi

0
1

σi(u) du. So, we see that the covariant drift
that we need to integrate along the geodesics which are straight lines is − 1

2 Lik(σk)′(Fk).
The 1-form is thus given by

−
1
2

Lik(σk)′(Fk)dxi =: Ax
i dxi.(A.7)

Alternatively, this term may also be expressed in the original variables in the form

AF
i dF i = −

1
2

Λ

∂σ j(F j)
∂F j

σi(Fi)
dFi(A.8)

3Cholesky decomposition furnishes one approach to get L and diagonalization another.
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A.2.1. Geometric Brownian motion case. In the case of a geometric Brownian motion, we
have

(σk)′(Fk) = σk,

yk =
1
σk

log(Fk).

Now in the x plane, geodesics are straight lines joining the points x0 and x1 which are
the images under the transformations above of the points F0 and F1 respectively. So,
parametrizing an arbitrary point x0 + λ(x1 − x0) on this line segment by λ, we note that
arc length is given by |x1 − x0|dλ = cx0,x1 dλ. Therefore, letting σ be the vector with entries
σk, we have ∫

Aidxi = −
1
2

∫
γ(x0,x1)

Likσkdxi

= −
1
2

∫ 1

0
σkLik(x1 − x0)idλ

= σkLikLip
1
σp

log
(

Fp

F0,p

)
= −

1
2
σ log

(
F
F0

)t

ρ−1 1
σ
,(A.9)

which has to be interpreted liberally in the sense of the previous term. In the above ex-
pression we clearly recognize the constant (in T ) part of the exponent of the lognormal
distribution (with arbitrary volatilities)

1

(2πT )
n
2σ1F1 . . . σnFn|ρ|

1
2

e−
(log( F

F0
)+ 1

2 σ2T )tΣ−1(log( F
F0

)+ 1
2 σ2T )

2T dF1 . . . dFn.

A.2.2. CEV case. Let us suppose σk(Fk) = ξkFβk
k so σ′k(Fk) = ξkβkFβk−1

k . Notice that in
this case we have, since yk = 1

(1−βk)ξk
F1−βk

k ,

σ′k(Fk) =
βk

1 − βk

1
yk

=
βk

1 − βk

1
(L−1)k jx j

.

Therefore by simple manipulations we get

(A.10)
∫
γ(x0,x1)

Aidxi = −
1
2

log(
ak + bk

ak
)

βkξk

bk(1 − βk)
(ρ−1)kp

1
ξp(1 − βp)

(F1−βp
p − F1−βp

0,p ),

where we have set

a = L−1x0 = L−1L
1

1 − β
1
ξ

F1−β
0 =

1
ξ(1 − β)

F1−β
0 ,

b = L−1(x1 − x0) = L−1L
1

ξ(1 − β)
(F1−β − F1−β

0 ) =
1

ξ(1 − β)
(F1−β − F1−β

0 ),

a + b =
1

ξ(1 − β)
F1−β,

so that (A.10) can be written

−
1
2

(1 − βk) log(
Fk

F0,k
)

βkξk

F1−βk
k − F1−βk

0,k

(ρ−1)kp
1

ξp(1 − βp)
(F1−βp

p − F1−βp

0,p ).
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Note that in the limit βk → 1,∀k, we have by L’Hospital’s rule that 1
1−βk

(F1−βk
k − F1−βk

0,k )→
log( Fk

F0,k
). Hence it is easily seen that we recover the lognormal result (A.9) in this limit.
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Sci. École Norm. Sup. (4) 21 (1988), no. 3, 307–331. Available at: http://www.numdam.org/item?id=
ASENS_1988_4_21_3_307_0

[8] Ben Arous, G.; Laurence, P. Second order expansion for implied volatility in two factor local-stochastiv
volatility models and applications to the dynamic λ-sabr model. 2010. Preprint.

[9] Bjerksund, P.; Stensland, G. Closed form spread option valuation. Quantitative Finance 0 (0), no. 0, 1–10.
Available at: http://www.tandfonline.com/doi/abs/10.1080/14697688.2011.617775

[10] Carmona, R.; Durrleman, V.: Pricing and hedging basket options in a log-normal model, Tech. rep., Depart-
ment of Operations Research and Financial Engineering, Princeton University. 2003.

[11] Carmona, R.; Durrleman, V. Pricing and hedging spread options. SIAM Review 45 (2003), no. 4, pp. 627–
685.

[12] Chavel, I. Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press
Inc., Orlando, FL, 1984.

[13] Deuschel, J.-D.; Friz, P.; Jacquier, A.; Violante, S. Marginal density expansions for diffusions and stochastic
volatility. February, 2012. Preprint.

[14] Duck, P. W.; Yang, C.; Newton, D. P.; Widdicks, M. Singular perturbation techniques applied to multiasset
option pricing. Math. Finance 19 (2009), no. 3, 457–486. Available at: http://dx.doi.org/10.1111/
j.1467-9965.2009.00373.x

[15] Evans, L. C.; Gariepy, R. F. Measure theory and fine properties of functions, Studies in Advanced Mathe-
matics, CRC Press, Boca Raton, FL, 1992.

[16] Gatheral, J. The Volatility Surface: A Practitioner’s Guide, Wiley Finance, John Wiley & Sons, 2006.
Available at: http://books.google.de/books?id=9Y8rWE6mLOEC

[17] Gatheral, J.; Hsu, E. P.; Laurence, P.; Ouyang, C.; Wang, T.-H. Asymptotics of implied volatility in local
volatility models. Mathematical Finance (2010), no–no. Available at: http://dx.doi.org/10.1111/j.
1467-9965.2010.00472.x

[18] Gatheral, J.; Wang, T.-H. The heat kernel most likely path approximation. International Journal of Theoret-
ical and Applied Finance 15 (2012), no. 1.

[19] Giles, M. B. Multilevel Monte Carlo path simulation. Oper. Res. 56 (2008), no. 3, 607–617. Available at:
http://dx.doi.org/10.1287/opre.1070.0496

[20] Guyon, J.; Henry-Labordère, P. From local to implied volatilities. Risk Magazine (2011), no. May.
[21] Hagan, P.; Kumar, D.; Lesniewski, A.; Woodward, D. Managing smile risk. Wilmott Magazine (2002).
[22] Hagan, P.; Woodward, D. Equivalent Black volatilties. Applied Mathematical Finance 6 (2002), 147–157.
[23] Henry-Labordère, P. Analysis, geometry, and modeling in finance, Chapman & Hall/CRC Financial Mathe-

matics Series, CRC Press, Boca Raton, FL, 2009.
[24] Hsu, P. Heat kernel on noncomplete manifolds. Indiana Univ. Math. J. 39 (1990), no. 2, 431–442. Available

at: http://dx.doi.org/10.1512/iumj.1990.39.39023
[25] Ju, N. Pricing Asian and basket options via Taylor expansion. Journal of Computational finance (2002).
[26] Kusuoka, S. Approximation of expectation of diffusion processes based on Lie algebra and Malliavin cal-

culus. pp. 69–83, Springer, Tokyo, 2004.

http://dx.doi.org/10.1111/j.1467-9965.2011.00481.x
http://dx.doi.org/10.1016/S1631-073X(03)00032-3
http://dx.doi.org/10.1016/S1631-073X(03)00032-3
http://dx.doi.org/10.1007/BFb0100057
http://www.numdam.org/item?id=ASENS_1988_4_21_3_307_0
http://www.numdam.org/item?id=ASENS_1988_4_21_3_307_0
http://www.tandfonline.com/doi/abs/10.1080/14697688.2011.617775
http://dx.doi.org/10.1111/j.1467-9965.2009.00373.x
http://dx.doi.org/10.1111/j.1467-9965.2009.00373.x
http://books.google.de/books?id=9Y8rWE6mLOEC
http://dx.doi.org/10.1111/j.1467-9965.2010.00472.x
http://dx.doi.org/10.1111/j.1467-9965.2010.00472.x
http://dx.doi.org/10.1287/opre.1070.0496
http://dx.doi.org/10.1512/iumj.1990.39.39023


34 CH. BAYER AND P. LAURENCE

[27] Li, M.; Zhou, J.; Deng, S.-J. Multi-asset spread option pricing and hedging. Quant. Finance 10 (2010),
no. 3, 305–324. Available at: http://dx.doi.org/10.1080/14697680802626323

[28] Linetsky, V.; Mendoza, R. Constant elasticity of variance (cev) diffusion model. in Encyclopedia of Quanti-
tative Finance, edited by R. Cont, John Wiley & Sons, Ltd, 2010. Available at: http://dx.doi.org/10.
1002/9780470061602.eqf08015

[29] Lyons, T.; Victoir, N. Cubature on Wiener space. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460
(2004), no. 2041, 169–198.

[30] Milevsky, M. A.; Posner, S. E. Asian options, the sum of lognormals, and the reciprocal gamma
distribution. Journal of Financial and Quantitative Analysis 33 (1998), no. 03, 409–422. http://
journals.cambridge.org/article_S0022109000001009. Available at: http://dx.doi.org/10.
1017/S0022109000001009

[31] Milevsky, M. A.; Posner, S. E. A closed-form approximation for valuing basket options. The Journal of
Derivatives (1998).

[32] Minakshisundaram, S. Eigenfunctions on Riemannian manifolds. J. Indian Math. Soc. (N.S.) 17 (1953),
159–165 (1954).

[33] Minakshisundaram, S.; Pleijel, Å. Some properties of the eigenfunctions of the Laplace-operator on Rie-
mannian manifolds. Canadian J. Math. 1 (1949), 242–256.
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