Obstacle Problems and Optimal Control
 Exercise sheet 6

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

1. Let U and H be Hilbert spaces. Suppose there is a bounded linear map $S: U \rightarrow H$ and let $y_{d} \in H$ be given. Fix $\nu \in \mathbb{R}_{+}$and define the objective function

$$
J(u):=\frac{1}{2}\left\|S(u)-y_{d}\right\|_{H}^{2}+\frac{\nu}{2}\|u\|_{U}^{2}
$$

Prove that if $\nu>0$ or S is injective, then J is strictly convex.
By Theorem 6.3 from the lectures, this gives uniqueness to the optimal control problem (6.1).
2. Let $J: X \rightarrow \mathbb{R}$ be Gateaux differentiable and convex, and let $K \subset X$ be a non-empty convex subset. If $x^{*} \in K$ satisfies

$$
J^{\prime}\left(x^{*}\right)\left(x^{*}-x\right) \leq 0 \quad \text { for all } x \in K
$$

prove that

$$
J\left(x^{*}\right) \leq J(x) \text { for all } x \in K
$$

3. Let $V \stackrel{d}{\hookrightarrow} H \stackrel{c}{\hookrightarrow} V^{*}$ be a Gelfand triple and define $S: V^{*} \rightarrow V$ as the VI solution mapping: $y=S(u)$ solves

$$
y \in K:\langle A y-u, y-v\rangle \leq 0 \quad \forall v \in K
$$

under all the usual assumptions guaranteeing well posedness. Suppose that
(a) $J: V \times H \rightarrow \mathbb{R}$ is bounded from below.
(b) If $y_{n} \rightarrow y$ in $V \times V$ and $u_{n} \rightharpoonup u$ in H, then

$$
J(y, u) \leq \liminf _{n \rightarrow \infty} J\left(y_{n}, u_{n}\right)
$$

(c) If $\left\{J\left(y_{n}, u_{n}\right)\right\}$ is bounded for a sequence $\left\{\left(y_{n}, u_{n}\right)\right\} \subset V \times U_{a d}$, then $\left\{u_{n}\right\}$ is bounded in H.

Consider the problem

$$
\begin{equation*}
\min _{u \in U_{a d}} J(y, u) \quad \text { where } \quad y=S(u) \tag{1}
\end{equation*}
$$

where $U_{a d} \subset H$ is closed, convex and bounded.
Prove that there exists an optimal pair $\left(y^{*}, u^{*}\right)$ of 1 .
4. Take the setting of the previous question and let K be polyhedric.

We proved the following in the last lecture before time ran out: given a local minimiser $\left(y^{*}, u^{*}\right)$ of 11 , there exist multipliers $\left(p^{*}, \xi^{*}\right) \in V \times V^{*}$ satisfying

$$
\begin{align*}
A y^{*}-u^{*}+\xi^{*} & =0 \tag{2}\\
\xi^{*} \geq 0 \text { in } V^{*}, \quad y^{*} \leq \psi, \quad\left\langle\xi^{*}, y^{*}-\psi\right\rangle & =0 \tag{3}\\
p^{*} & =J_{u}\left(y^{*}, u^{*}\right) \tag{4}
\end{align*}
$$

Define

$$
K_{K}:=K_{K}\left(u^{*}, u^{*}-A y^{*}\right)=T_{K}\left(u^{*}\right) \cap\left(u^{*}-A y^{*}\right)^{\perp}
$$

The local minimiser u^{*} satisfies

$$
J_{y}\left(y^{*}, u^{*}\right) S^{\prime}\left(u^{*}\right)(h)+J_{u}\left(y^{*}, u^{*}\right) h \geq 0 \quad \forall h \in H
$$

(a) Prove

$$
\begin{equation*}
\left\langle p^{*}, h\right\rangle_{V, V^{*}} \geq 0 \quad \forall h \in K_{K}^{\circ} \tag{5}
\end{equation*}
$$

Hint: (1) use the density of $H \subset V^{*}$, (2) recall the VI characterisation of S^{\prime}.
(b) Define λ^{*} by

$$
\begin{equation*}
A^{*} p^{*}+\lambda^{*}=-J_{y}\left(y^{*} u^{*}\right) \tag{6}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\left\langle\lambda^{*}, v\right\rangle \leq 0 \quad \forall v \in K_{K} \tag{7}
\end{equation*}
$$

(c) The system formed by (2), (3), (4), (5), (6), (7) is called a strong stationarity system. How does it compare to the weak C-stationarity system and the \mathcal{E}-almost C-stationarity system?

