Obstacle Problems and Optimal Control

Exercise sheet 5

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

Let $K \subset V$ be closed and convex in a Hilbert space V and take $u \in K$.

1. Prove that if $\mu \in V^*$ and $u \in K$ satisfy

$$\langle \mu, v - u \rangle \le 0 \quad \forall v \in K$$

then $\mu \in T_K(u)^\circ$.

2. Given $\lambda \in V^*$, prove that

$$\{w \in K - u : \langle \lambda, w \rangle = 0\}^{\circ} = (R_K(u) \cap \lambda^{\perp})^{\circ}$$

3. Let now K be a closed convex cone and define

$$\lim(u) = \{tu : t \in \mathbb{R}\}$$

to be the linear space generated by u.

Show that $R_K(u) = K + \ln(u)$.

4. Let $V = H_0^1(\Omega)$ and define

$$W := \{g \in V^* : 0 \le g \le F\}$$

where $F \in V^*$ satisfies $F \ge k_0$ for some constant $k_0 > 0$.

Below, by $L^{\infty}_{+}(\Omega)$ we mean the set of non-negative elements of $L^{\infty}(\Omega)$ (and similarly for $L^{\infty}_{-}(\Omega)$).

- (a) Show that $L^{\infty}_{+}(\Omega) \subset R_{W}(0)$.
- (b) Show that $L^{\infty}_{-}(\Omega) \subset R_W(F)$.
- (c) Now consider a point f such that $0 < c_0 \le f \le c_1 < F$ where c_0 and c_1 are constants. What kind of elements belong to $R_W(f)$?
- **5**. Let $F: X \to Y$ be a map between Banach spaces.
 - (a) If F is directionally differentiable and Lipschitz, prove that it is Hadamard differentiable.
 - (b) If F is Hadamard differentiable, prove that $F'(x) \colon X \to Y$ is continuous.
 - (c) If F is Hadamard differentiable, prove that the limit

$$\lim_{t \to 0^+} \frac{F(x+th) - F(x)}{t} = F'(x)(h)$$

is uniform in h whenever $h \in C$ belongs to a compact set C.

6. Define the indicator function of a set C as

$$I_C(x) = \begin{cases} 0 & : x \in C \\ \infty & : x \notin C. \end{cases}$$

Let $A \subset X$ be a non-empty, closed and convex subset of a Banach space and define the function $f: X \to \{0, \infty\}$ by $f(x) = I_A(x)$. If $x \in A$, show that f is directionally differentiable at x and characterise its derivative.