Obstacle Problems and Optimal Control

Exercise sheet 3

Dr. Amal Alphonse (amal.alphonse@wias-berlin.de)

1. Prove that the map $M(u):=u^{+}=\max (u, 0)$ satisfies $M: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ and show that it is Lipschitz continuous ${ }^{1}$
2. Let $H:=H_{0}^{1}(\Omega)$ with the usual inner product

$$
(u, v)_{H}:=\int_{\Omega} \nabla u \cdot \nabla v
$$

and define the space

$$
V:=\left\{v \in H: \frac{\partial}{\partial x_{i}} \Delta v \in L^{2}(\Omega), i=1, \ldots, n\right\}, \quad\|v\|_{V}^{2}:=\|v\|_{H}^{2}+\sum_{i=1}^{n}\left\|\frac{\partial}{\partial x_{i}} \Delta v\right\|_{L^{2}(\Omega)}^{2}
$$

This forms the Gelfand triple

$$
V \subset H \subset V^{*}
$$

(note that the pivot space H is not $L^{2}(\Omega)$). Consider the bi-Laplace equation for a given $f \in H$:

$$
\begin{array}{cl}
\Delta^{2} u+u=f & \text { in } \Omega \tag{1}\\
u=\frac{\partial \Delta u}{\partial \nu}=0 & \text { on } \partial \Omega
\end{array}
$$

(a) By (formally) multiplying by Δv for a test function v, derive a suitable weak formulation and argue well posedness.
(b) Prove that $w:=\Delta u$ satisfies

$$
\sum_{i=1}^{n} \int_{\Omega} \frac{\partial w}{\partial x_{i}} \frac{\partial z}{\partial x_{i}}=\int_{\Omega}(u-f) z \quad \forall z \in H^{1}(\Omega)
$$

(c) What PDE does this weak form for w correspond to? Make sure to include the boundary condition.
(d) Deduce that u indeed solves (1) in a weak sense.
3. Recall the solution map $S: V^{*} \times V \rightarrow V$ defined by

$$
S(f, \psi)=u
$$

where u solves

$$
u \in H_{0}^{1}(\Omega), u \leq \psi:\langle A u-f, u-v\rangle \leq 0 \quad \forall v \in H_{0}^{1}(\Omega), v \leq \psi
$$

with the usual assumptions on A. Suppose also that A is T-monotone.
(a) Let $f \in V^{*}$ satisfy $f \geq 0$. Define the sequence

$$
\begin{aligned}
& u_{0}=0 \\
& u_{n}=S\left(f, u_{n-1}\right) .
\end{aligned}
$$

Prove that $\left\{u_{n}\right\}$ is an increasing sequence, i.e., that $u_{n} \geq u_{n-1}$ for all n.

[^0](b) Can you give an interpretation to
$$
S(f, \infty)
$$
(for $f \in V^{*}$)? How does this compare to $S(f, \psi)$ (for $\left.\psi \in V\right)$?
(c) Let $f \in V^{*}$ and define u_{0} via
$$
A u_{0}=f
$$

Define the sequence

$$
u_{n}=S\left(f, u_{n-1}\right)
$$

Prove that $\left\{u_{n}\right\}$ is a decreasing sequence.
4. Let $V \subset H \subset V^{*}$ be a Gelfand triple where $V=H_{0}^{1}(\Omega)$ and $H=L^{2}(\Omega)$.
(a) Suppose $f, g \in V^{*}$ and

$$
g \leq f \leq g \text { in } V^{*}
$$

Using the definition of the dual space inequality, prove that $f=g$.
(b) Suppose we have $u, v, f \in V^{*}$ such that

$$
u \leq f \leq v \quad \text { in } V^{*}
$$

If $u, v \in H$, prove that $f \in H$ too.
5. Prove the following, which will be used in the next lecture.
(a) If $u \in V:=H_{0}^{1}(\Omega)$ solves

$$
u \leq \psi: \int_{\Omega} \nabla u \cdot \nabla(u-v) \leq \int_{\Omega} f(u-v) \quad \forall v \in V, v \leq \psi
$$

then for $\varphi \in C_{c}^{\infty}(\Omega)$ with $\varphi \geq 0, u$ also solves

$$
u \leq \psi: \int_{\Omega} \nabla u \cdot \nabla(\varphi(u-v)) \leq \int_{\Omega} f \varphi(u-v) \quad \forall v \in V, v \leq \psi
$$

Hint: consider the two cases $\varphi \not \equiv 0$ and $\varphi \equiv 0$.
(b) Taking further $\varphi \leq 1$, the function $\tilde{u}:=\varphi u$ satisfies

$$
\tilde{u} \leq \varphi \psi: \int_{\Omega} \nabla \tilde{u} \cdot \nabla(\tilde{u}-v) \leq \int_{\Omega} \tilde{f}(\tilde{u}-v) \quad \forall v \in V, v \leq \varphi \psi
$$

with source term

$$
\tilde{f}=\varphi f-u \Delta \varphi-2 \nabla u \nabla \varphi
$$

[^0]: ${ }^{1}$ An operator $T: X \rightarrow Y$ between Banach spaces is Lipschitz continuous if there exists a constant $C>0$ such that

 $$
 \left\|T\left(x_{1}\right)-T\left(x_{2}\right)\right\|_{Y} \leq C\left\|x_{1}-x_{2}\right\|_{X} .
 $$

