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Conformational Changes of Biomolecules

Motivation for Structural Data Analysis

Under physical constraints of constant volume and temperature we observe:

Figure: Changes between different conformations of a biological active
molecule.

Observe that small variations around stable geometric mean configurations of a
molecule, called conformations, correspond to connected set of the state space.

Motive: The large scale geometry of a molecular system determines its
biological function.
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Conformational Changes of Biomolecules

Different Time Scales in the Dynamics

Observation: Changes of geometric large scale configurations of a molecule
have life times much longer than the time scale of the internal interactions
between the atoms and the random perturbations of the molecule from the
solvent.

Figure: Backbone of alanine-dipeptid with dihedral-angels (¢, W).

The rotational degrees of freedom (¥, W) allow to observe the rare macroscopic
folding events of a biomolecule as a change of the geometric configuration of
the backbone.
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Conformational Changes of Biomolecules

Detection of Rare Events in High Dimensional Time Series

time series of 12-alanine dihedral angles
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Figure: Selected dihedral angels of 12-alanine obtained from MD-simulations.

Curse of dimensionality: Due to the inherent sparsity of high-dimensional data
statistical analysis is typically unreliable and prohibitively time consuming.
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Semi-parametric framework
[ 1]

Stochastic Dimension Reduction

General Picture of Dimension Reduction for Biomolecules

Observation: In conformational dynamics the detection of rare folding events
coincides with structural data analysis.
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Figure: Aim: find a linear combination of dihedrals s.t. the rare folding events
can be observed in a low dimensional subspace.
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Semi-parametric framework
o] ]

Stochastic Dimension Reduction

Unsupervised Feature Extraction Using Projections

Data Xi,..., X, € R i.id., d large. For simplicity let E[X;] = 0 for all i.
Basic Observation: High dimensional data tends to be normal.

Problem: a random projection X' w is almost approximately normal for most
of the arbitrary directions w € By, where By is the d-dimensional unit ball.

Approach: Gaussian component of the data is entropy-maximizing and hence
uninformative (noise). Project the data on the non-Gaussian components.
Requirements:

i) No apriori knowledge about the data density is used.

i) No dependency on the magnitude of second moments of Gaussian and
non-Gaussian components as found e.g. in PCA.

iii) No unrealistic assumptions on the whole data density as found e.g. in
ICA.
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Semi-parametric framework
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The Stationary Model

The Semi-Parametric Model

Let X1,..., Xy € RY be i.i.d. random observable, distributed according to the
structured and stationary density

p(x) = Pu=0x(x)q(Tx) (1)
This links pure Gaussian Analysis (PCA) and pure NonGaussian Analysis (ICA).

g:R™ - R, m< dis a smooth nonlinear function.
T :R? — R" is a linear operator with Z = Ker(T)".
7 is the linear subspace of the non-Gaussian components.

goal: Estimate a projector without estimating the model parameter g and
covariance matrix X.

interpretation: (1) lead to the stationary data model X = Z + ¢ where ¢
represents independent Gaussian noise components and Z the signal.
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Semi-parametric framework
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The Stationary Model

Estimation Procedure

Lemma
Assume that p(x) is the structured density according to (1) with = 0. If
¥(x) € CY(RY,R) has the property
E[xw(x)] =0 (2)
then one can show that
Bw) = E[Vo(x)] € 1 (3)
Moreover, if (2) is not fulfilled, then there exists a vector 3 € T s.t.

18- 8l < 17 [ (x = wx)ot) ol = )

i.e. dist(B(1),Z) is uniformly bounded.
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Semi-parametric framework
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The Stationary Model

Algorithmic Realization of the Lemma

idea: Compute 9(x) from the data using the linear approach:
Ph,e( Z crhu(x) (5)

Let N be the sample size. If we find coefficients {¢/}_; such that

N

N L
[thc X):| ~ — Z n'@bhc Xn = ,:tlzzclxn w, Xn) 0
=1

n=1 n=1

it follows that 5 € Z with

N N L
8= E[Vin(x)| ~ Z Vine(Xo) = 5 3 aVh, (%)
n=1 I=1

n=1

By the right choice "test functions” h,(x) € C*(R? x R R) are informative
with respect to non-Gaussianity.
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Semi-parametric framework
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The Stationary Model

Algorithmic Realization of the Lemma cont'd

Remaining tasks:
a) Sampling of the data space using an appropriate function h,(x).
b) Find "good” coefficients {c/}5; with low computational effort.
c) Construct an ONB for the estimated target space 7.
d) Determine the reduced dimension m.
Note that the use of the semi-parametric framework combined with the Lemma
IS not unique:
(A) iterative approach: utilize {B}k)}le for recovering a sequence of target
spaces Z().

(B) non-iterative approach: direct estimation of the projector 1 onto the
target space 7.
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Semi-parametric framework
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The Stationary Model

Directional Sampling (both approaches)

Consider the functions of the form
ho(x) := h(wa)e_MlX”z/2

with a smooth function h and a vector w € By, where B, denotes the unit
ball in R?. Define also

Yo = NI Xiho(Xi) =~ e = E[Xh,(X)]
Nw = NS, Vh(X) =~ n, = E[Vh,(X)].
Then for the estimation accuracy it holds
Theorem
Let h., be bounded and continuously differentiable. Then there is C = C(h)
S.t.

E sup HW —'yw|2 + |ﬁw — nw|2 < CN7 g% =: &
wEBy
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Iterative Approach
0

Convex Projection

Iterative " Convex Projection” Approach

Idea: For a given set {wi1,...,wr} construct ¢ as convex combinations of the
wp () () =22 cehu, ()

Convex optimization: given an arbitrary probe vector £ € By, solve the
non-smooth, convex problem

2
{¢} = arg min Hf — g CeMsy ,

llelli<1

subject to Z CtYw, = 0.
¢
Then define an estimator B of €T a
¢

and utilize {/ﬁ\J}JJ:1 for recovering the m-dimensional non-Gaussian target
space 7.
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Iterative Approach
oce

Convex Projection

Accuracy of the " Convex Projection” -Approach

"ldeal” vs. empirical projection:

{¢/} = argmin HE — > CeNuwy st >, Ve, =0,
leflx<1
(@) = agmin|¢ =¥, ci|| st 15, @Al <
llelli<1
and define:
B =) cdn, B=) @i, (6)
4 4

The the "convex projection”-approach is associated with the accuracy result:

Theorem R
Let h,(x) € C*' have bounded variance in both arguments and let 3 be
defined as in (6). Then there is a set A of probability at least 1 — ¢, that

(1 =13, < Vdon(1+ [E72),

where oy = O(N~'d).
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Iterative Approach
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Dimension Reduction Step

Translation to Reduced Rank Regression Problem

Let the vectors 517 e BL be given s.t.

(= MBI < e
where I1 is a projector on a m-dimensional target space.
Reduced Rank Regression problem: for given m, recover I1.
More challenging: recover m and Z.

First guess to RRR: use PCA

7 =arg mm 11— BJH (first m eigenvectors of ﬁjﬁT>
dim(Z Z ; !

However it turns out numerically that this works poorly if most of the BJ 's are

non-informative.
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Iterative Approach
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Dimension Reduction Step

Reduced Rank Regression using Rounding Ellipsoids
Next guess: use the rounding ellipsoid of the symmetrized convex set

def <,8]_, 317327 _B27 .. >

E(B) = &1(B) is a-rounding ellipsoid for § if
&1/a(B) C 8 CE(B), a<l,

where &.(B) dif{ € R x"Bx < r?},.

Theorem (F. John, 1985; Nesterov, 2004)

For any convex § C RY, there exists a rounding ellipsoid with o = d~*/? .

Advantage: To recover Z compute the principal axis of £(B) with complexity
O(d?Jlog J) and select some of them according to a criterion of multimodality.
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Iterative Approach
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Dimension Reduction Step

Accuracy of the " Rounding Ellipsoid” Solution

Theorem
1. For any unit vector v L T,

viB v < 8%
2. If there is w € R? with w; >0 and >_;jwj =1 such that
Am (Z wjﬂ,ﬂf) > 26°,
j
and M projects on the m principal eigenvectors of B~1, then

I — "3 < C(8*)O(dVd).

E. Diederichs@FU Berlin FU and others

Project A10@Matheon



Iterative Approach
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Dimension Reduction Step

Iteration allows for Structural Adaptation

Use the estimated ellipsoid Ex_1 as a prior information to improve the quality
of estimation.

This leads to sequential procedure: alternate two steps
i) estimate the model vector [3; using a given structure

ii) estimate the structure, i.e. the rounding ellipsoid &

Method: sample some of the probe vectors §; and some vectors wg ; due to
identified semi-axis of Ex_1.

This ensures that a certain fraction of &;, 7,; and 7 is informative and
hence, the corresponding solutions (; are informative as well.
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Non-iterative Approach
[ ]

Complexity

Computability in High Dimensions

The iterative approach leads to one quadratic, constrained optimization
problem (QCP) for each 3 € 7.
However about fast interior-point-methods (IPM) to high accuracy we know:

1) Assembling and solving a L x L Newton system of linear equations takes
(’)(L3) operations unless the matrix of the system is highly sparse with
favourable patterns.

2) SNGCA leads to optimization problems with dense Newton systems.

In the context of the " convex projection”-approach O(JLN? + (16L)%)
operations are needed for the k™ iteration of SNGCA.
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Non-iterative Approach
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Reformulation as SDP

Semidefinite Programming”-Approach

Some notations: let
i) G € R?™" be a matrix of averaged gradients of test functions h,, with

columns 7,
ii) U € R’ a matrix of averaged functions xh,, with columns ~,

and let G € R?*L and U € R?*" from the data counterparts respectively s.t

|G=Gla<e and |[U—U|:<e
Then solve the non-convex, non-smooth contrained problem
0=<N =1, Tx[N] = m, rankN = m; } )

ceR: el <1, |Gl <6

mmmax{”(l —M)Uc|)3

FU and others
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Non-iterative Approach

0@00

Reformulation as SDP
Recipe of Semidefinite Relaxation

idea: drop constraints to get convexity and than solve.

i) Use the identity:

(1 — MUc|3 = Tr [U(/ —mux]. (8)

ii) Linearization: consider the positive semidefinite matrix X = cc” with
rankX =1 as "new variable”.

iii) Set |X|1 = YOr._, [Xy| and transform [|Gcl|2 < 6 into Tr[GX G] < 62,

iv) Drop the non-convex constraints rankX = 1 and rankll = m.

Then we arrive at the relaxed semidefinite constrained problem:

min max {Tr [D(/ - P)DX] ’ 0= P =1 TiP] =m, } (9)

X =0, |X]: <1, Tr[GXG] < 62
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Non-iterative Approach

[e]e] o]
Reformulation as SDP

Bounds for Relaxation Error

Theorem
Suppose that the projector * is p* times a convex combination of rank-one
matrices Ucc™ UT where ¢ satisfies the constraints Gc =0 and ||c|: < 1, i.e.

" <> pklUecl UT. (10)
k=1

Then an optimal solution P of the relaxed problem satisfies

Te [ (1= PN < 4" @ (A (£) + 1), (11)
Further, if n is the projector onto the subspace spanned by m principal
eigenvectors of P, then

8u (A 1(X) +1)?

min

— a4 @A L) + 12

7 =73 < . (12)
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Non-iterative Approach

[efe]e] ]
Reformulation as SDP

How to Include the Constraints
Observe that G7G = AT and X are symmetric and positive. Hence:
THGTGX)=0 = X=QzQ" (13)

where Z € 879 and Q € St*(t=9) js 5 subma/'Erionf columns of [
corresponding to the vanishing eigenvalues of G' G.

Let V = GQ. Than we get a regularized and hence unconstrained convex
reformulation of the relaxed problem:

min [nggfyTr[VT(l —N;)VZ] + Tr[W(QZQT — Y)) (14)

nw

where Z€ Zand Z:={Ze€S,_4|Z*>0,Tr(Z) <1}.

The latter problem can be solved using a gradient-type method with complexity
O(dlog d) and O(¢™) iterations (Nesterov 2007).
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Artificial Examples

Numerical Exarr
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Non-gaussian Components of Test Densities

independent Gaussian mixture isotropic sub-Gaussian isotropic uniform

Figure: (A) 2d independent Gaussian mixtures, (B) 2d isotropic
super-Gaussian, (C) 2d isotropic uniform and (D) dependent 1d
Laplacian with additive 1d uniform with N = 1000 respectively.
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Numerical Exarr
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Artificial Examples

One Step Improvement of the Iterative Approach

1-th iteration 2-th iteration
1 1
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Figure: Sub-Gaussian density with 2 components in R?®
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Numerical Exarr
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Artificial Examples

Error Criterion

The closeness of the subspaces Z and its estimate 7 can be measured by the
error function

&(Z.7) éZ*ZII (1 =Ml (15)

where [ denotes the orthogonal projection onto 7, {vi}_; is an orthonormal
basis of Z and /| denotes the identity matrix.
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Numerical Exarr
[e]e]e] o]

Artificial Examples

Comparison dimension

GaussianMixtures Laplace LaplacianMix
1 1 . . . 1 . RS
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Figure: Comparison of PP, iterative and non-iterative SNGCA by
estimation error for increasing dimensionality .
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Numerical Exarr
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Artificial Examples

Comparison noise

GaussianMixtures Laplace LaplacianMix

0 0.8 - - . 08 . .

— SNGCA(SDP) [—SNGCA(SDP) — SNGCA(SDP)

- --SNGCA(QCP) - --SNGCA(QCP) - --SNGCA(QCP)
06| ——pp(tanh) 0.6/ ——pp(tanh) 06| ——pp(tanh)

» 04  0.4f » 04
02) 0.2} 02)
| e
P e ——— 0 L
05 1 15 05 1 15 2 05
log, , noise scaling range log, , noise scaling range log,, noise scaling range
Uniform Cauchy

0 08, .

— SNGCA(SDP) ——SNGCA(SDP)

-~ SNGCA(QCP) NGCA(QCP)
0.6/ ——pp(tanh) 06 P(tanh)

» 0.4 ] wod
02) 02)
0
1f

05 1 15 2 05 1 15
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Figure: Comparison of PP, iterative and non-iterative SNGCA for
increasing numerical condition for ¥ .
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Numerical Exarr
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Real World Examples

Application to Protein Study

The molecule was simulated using CHARMM with an implicit water
environment at 300K . We analyzed a 1lis long simulation with 2fs time steps
observing the 33 backbone torsion angles.

Figure: most probable conformations of 12-alanine, a-helix and 3-sheet
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Numerical Exarr
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Real World Examples

SNGCA-result of 12-alanine
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Numerical Exarr
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Real World Examples

Summary

1) Structural data analysis based on the non-Gaussian vs. Gaussian
distinction is effective and computational not too expansive.
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Numerical Exarr

[e]e] o)

Real World Examples

Summary

1) Structural data analysis based on the non-Gaussian vs. Gaussian
distinction is effective and computational not too expansive.

2) Semidefinite relaxation leads to a statistically more sensitive and
structural analysis with not too large complexity O(JN? + d log d).
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Numerical Exarr
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Real World Examples

Summary

1) Structural data analysis based on the non-Gaussian vs. Gaussian
distinction is effective and computational not too expansive.

2) Semidefinite relaxation leads to a statistically more sensitive and
structural analysis with not too large complexity O(JN? + d log d).

3) The stochastic reduction of dimensionality works also with stochastic
dynamical systems like large biomolecules.
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Numerical Exarr
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Real World Examples

Final Slide

Thank you for your attention!
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