Aging for 1D transient RWRE in the sub-ballistic regime

Olivier Zindy (WIAS, Berlin)

with Nathanaël Enriquez and Christophe Sabot
The model

- **Environment**: $\omega = (\omega_x, \ x \in \mathbb{Z})$ i.i.d. random variables in $(0, 1)$.

 $P \equiv \text{law of } \omega$. $E \equiv \text{expectation under } P$.

The model

- **Environment**: $\omega = (\omega_x, \ x \in \mathbb{Z})$ i.i.d. random variables in $(0, 1)$.
 $P \equiv$ law of ω. $E \equiv$ expectation under P.

- ω fixed, **RWRE**: $X = (X_n, \ n \geq 0)$:

 $P_\omega (X_{n+1} = x + 1 \mid X_n = x) = \omega_x, \quad P_\omega (X_{n+1} = x - 1 \mid X_n = x) = 1 - \omega_x.$

$P_\omega \equiv$ law of X in the environment ω : **quenched law**.
The model

- **Environment**: $\omega = (\omega_x, \ x \in \mathbb{Z})$ i.i.d. random variables in $(0, 1)$. $P \equiv \text{law of } \omega$. $E \equiv \text{expectation under } P$.

- ω fixed, **RWRE**: $X = (X_n, \ n \geq 0)$:

 $$
P_\omega (X_{n+1} = x + 1 \mid X_n = x) = \omega_x,
 \quad
 P_\omega (X_{n+1} = x - 1 \mid X_n = x) = 1 - \omega_x.
$$

 $P_\omega \equiv \text{law of } X \text{ in the environment } \omega : \text{quenched law}$.

- $\mathbb{P} \equiv \text{joint law of } (\omega, \ (X_n)) : \text{annealed law}$. $\mathbb{E} \equiv \text{expectation under } \mathbb{P}$.
Transition probabilities

\[
\begin{align*}
1 - \omega_0 & \quad \omega_0 \\
-1 & \quad 0 & \quad 1 \\
\end{align*}
\]

\[
\begin{align*}
1 - \omega_x & \quad \omega_x \\
x - 1 & \quad x & \quad x + 1 \\
\end{align*}
\]
Transience-recurrence criterion

Notations:

\[\rho_x := \frac{1 - \omega_x}{\omega_x}, \quad x \in \mathbb{Z}. \]
Transience-recurrence criterion

Notations :

\[\rho_x := \frac{1 - \omega_x}{\omega_x}, \quad x \in \mathbb{Z}. \]

Theorem (Solomon, 1975)

If \(E[\log \rho_0] \) is defined, \((X_n, n \geq 0) \) is recurrent iff \(E[\log \rho_0] = 0 \).
Law of large numbers

Theorem (Solomon, 1975)

There exists $v \in [-1, 1]$, which depends only on the environment, such that, \mathbb{P}-a.s.,

$$\frac{X_n}{n} \longrightarrow v, \quad n \rightarrow \infty,$$
Law of large numbers

Theorem (Solomon, 1975)

There exists $v \in [-1, 1]$, which depends only on the environment, such that, \mathbb{P}-a.s.,

$$\frac{X_n}{n} \rightarrow v, \quad n \rightarrow \infty,$$

where v satisfies

$$v := \begin{cases}
\frac{1-E[\rho_0]}{1+E[\rho_0]} > 0 & \text{if } E[\rho_0] < 1, \\
0 & \text{if } (E[\rho_0^{-1}])^{-1} \leq 1 \leq E[\rho_0], \\
\frac{E[\rho_0^{-1}]-1}{E[\rho_0^{-1}]+1} < 0 & \text{if } 1 < (E[\rho_0^{-1}])^{-1}.
\end{cases}$$
The recurrent case: Sinai’s walk

Theorem (Sinai, 1982)

If $E[\log \rho_0] = 0$ (*and technical conditions*), then

$$\frac{\sigma^2}{(\log n)^2} \ X_n \xrightarrow{\text{law}} b_\infty ,$$

where $\sigma^2 := \text{Var}[\log \rho_0] > 0$.

Potential

Potential : $V = (V(x), x \in \mathbb{Z})$:
Potential

Potential: $V = (V(x), x \in \mathbb{Z})$:

$$V(x) := \begin{cases}
\sum_{i=1}^{x} \log \left(\frac{1 - \omega_i}{\omega_i} \right) & \text{if } x \geq 1, \\
0 & \text{if } x = 0, \\
- \sum_{i=x+1}^{0} \log \left(\frac{1 - \omega_i}{\omega_i} \right) & \text{if } x \leq -1.
\end{cases}$$
Potential

Potential: \(V = (V(x), \ x \in \mathbb{Z}) : \)

\[
V(x) := \begin{cases}
\sum_{i=1}^{x} \log \rho_i & \text{if } x \geq 1, \\
0 & \text{if } x = 0, \\
-\sum_{i=x+1}^{0} \log \rho_i & \text{if } x \leq -1.
\end{cases}
\]
Example of potential
Valleys and localization

- **Valleys**: (a, b, c) such that $a < b < c$ and:

 \[
 \min_{a \leq x \leq c} V(x) = V(b),
 \]

 \[
 \max_{a \leq x \leq b} V(x) = V(a),
 \]

 \[
 \max_{b \leq x \leq c} V(x) = V(c).
 \]
Valleys and localization

- **Valleys**: \((a, b, c)\) such that \(a < b < c\) and:

\[
\begin{align*}
\min_{a \leq x \leq c} V(x) &= V(b), \\
\max_{a \leq x \leq b} V(x) &= V(a), \\
\max_{b \leq x \leq c} V(x) &= V(c).
\end{align*}
\]

- **Height**: \(H = H_{(a,b,c)} := \min(V(c) - V(b), V(a) - V(b))\).
Valleys and localization

- **Valleys**: (a, b, c) such that $a < b < c$ and:

 \[
 \min_{a \leq x \leq c} V(x) = V(b), \\
 \max_{a \leq x \leq b} V(x) = V(a), \\
 \max_{b \leq x \leq c} V(x) = V(c).
 \]

- **Height**: $H = H_{(a,b,c)} := \min(V(c) - V(b), V(a) - V(b))$.

- **Golosov (1984)**: Exit time $\simeq e^H$.
Valley and localization in the recurrent case
The sub-ballistic regime

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E[\rho_0^\kappa] = 1$ (and technical conditions).
The sub-ballistic regime

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E[\rho_0^\kappa] = 1$ (and technical conditions).

Theorem (Kesten-Kozlov-Spitzer, 1975)

Under (a), we have:

\[
\frac{\tau(n)}{n^{1/\kappa}} \xrightarrow{\text{law}} c_\kappa S^{ca}_\kappa, \quad n \to \infty,
\]

\[
\frac{X_n}{n^\kappa} \xrightarrow{\text{law}} c'_\kappa \left(\frac{1}{S^{ca}_\kappa}\right)^\kappa, \quad n \to \infty,
\]

where S^{ca}_κ is a completely asymmetric stable law of index κ.
The sub-ballistic regime

Proof : Branching process in random environment with immigration.

No potential!
Main result: aging phenomenon

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E[\rho_0^\kappa] = 1$ (and technical conditions).
Main result: aging phenomenon

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E[\rho_0^\kappa] = 1$ (and technical conditions).

Theorem (Enriquez-Sabot-Z., 2007)

Under assumption (a), we have, for all $h > 1$ and all $\eta > 0$,

$$
\lim_{t \to \infty} \mathbb{P}(|X_{th} - X_t| \leq \eta \log t) = \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa-1}(1 - y)^{-\kappa} \, dy.
$$
Main result : aging phenomenon

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E \left[\rho_0^\kappa \right] = 1$ (and technical conditions).

Theorem (Enriquez-Sabot-Z., 2007)

Under assumption (a), we have, for all $h > 1$ and all $\eta > 0$,

$$
\lim_{t \to \infty} \mathbb{P}(|X_{th} - X_t| \leq \eta \log t) = \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa-1} (1 - y)^{-\kappa} \, dy.
$$

Remark

Universality of the Bouchaud’s trap model.
A renewal theorem of Dynkin
A renewal theorem of Dynkin

- $(Y_i)_{i \geq 1}$ i.i.d. and heavy tailed: $\mathbb{P}(Y_i \geq u) \sim u^{-\alpha}$, with $\alpha \in (0, 1)$.
A renewal theorem of Dynkin

- $(Y_i)_{i \geq 1}$ i.i.d. and heavy tailed: $\mathbb{P}(Y_i \geq u) \sim u^{-\alpha}$, with $\alpha \in (0, 1)$.

- Renewal process: $S_n := \sum_{i=1}^{n} Y_i$, for $n \geq 0$.
A renewal theorem of Dynkin

- \((Y_i)_{i \geq 1}\) i.i.d. and **heavy tailed** : \(\mathbb{P}(Y_i \geq u) \sim u^{-\alpha}\), with \(\alpha \in (0, 1)\).

- **Renewal process** : \(S_n := \sum_{i=1}^{n} Y_i\), for \(n \geq 0\).

- **Last renewal epoch** before time \(t\) defined by

 \[
 N_t := \sup\{n \geq 0 : S_n \leq t\}, \quad t \geq 0.
 \]
A renewal theorem of Dynkin

- $(Y_i)_{i \geq 1}$ i.i.d. and heavy tailed: $\mathbb{P}(Y_i \geq u) \sim u^{-\alpha}$, with $\alpha \in (0, 1)$.

- Renewal process: $S_n := \sum_{i=1}^{n} Y_i$, for $n \geq 0$.

- Last renewal epoch before time t defined by

 $$N_t := \sup\{n \geq 0 : S_n \leq t\}, \quad t \geq 0.$$

- Spent waiting time and residual waiting time:

 $$A_t := t - S_{N_t}, \quad t \geq 0,$$

 $$R_t := S_{N_t+1} - t, \quad t \geq 0.$$
A renewal theorem of Dynkin

Theorem (Dynkin)

For all $0 \leq x_1 < x_2 \leq 1$, we have

$$
\lim_{t \to \infty} \mathbb{P} \left(x_1 \leq \frac{A_t}{t} \leq x_2 \right) = \frac{\sin(\alpha \pi)}{\pi} \int_{x_1}^{x_2} \frac{x^{-\alpha}}{(1 - x)^{\alpha - 1}} \, dx.
$$

For all $0 \leq x_1 < x_2$, we have

$$
\lim_{t \to \infty} \mathbb{P} \left(x_1 \leq \frac{R_t}{t} \leq x_2 \right) = \frac{\sin(\alpha \pi)}{\pi} \int_{x_1}^{x_2} \frac{\, dx}{x^\alpha (1 + x)}.
$$
The sub-ballistic regime : analysis of the potential
Assumptions

(a) There exists $0 < \kappa < 1$ such that $E \left[\rho_0^{\kappa} \right] = 1$ (and technical conditions).
Potential

\[V(x) := \begin{cases}
\sum_{i=1}^{x} \log \rho_i & \text{if } x \geq 1, \\
0 & \text{if } x = 0, \\
-\sum_{i=x+1}^{0} \log \rho_i & \text{if } x \leq -1.
\end{cases} \]
Potential

\[V(x) := \begin{cases}
\sum_{i=1}^{x} \log \rho_i & \text{if } x \geq 1, \\
0 & \text{if } x = 0, \\
-\sum_{i=x+1}^{0} \log \rho_i & \text{if } x \leq -1.
\end{cases} \]

Remark : Assumption (a) implies \(E[\log \rho_0] < 0 \).
Potential and valleys

\[V(x) \]

\[n_t := t^k \]
Potential and valleys

- Excursions of the potential above its past minimum

\[
e_0 := 0, \\
e_i := \inf\{n > e_{i-1} : V(n) \leq V(e_{i-1})\}, \quad i \geq 1.
\]
Potential and valleys

• Excursions of the potential above its past minimum

\[e_0 := 0, \]
\[e_i := \inf\{n > e_{i-1} : V(n) \leq V(e_{i-1})\}, \quad i \geq 1. \]

• \((V(x) - V(e_{i-1}), e_{i-1} \leq x \leq e_i)_{i \geq 1}\) are i.i.d.
Potential and valleys

• Excursions of the potential above its past minimum

\[e_0 := 0, \]
\[e_i := \inf\{n > e_{i-1} : V(n) \leq V(e_{i-1})\}, \quad i \geq 1. \]

• \((V(x) - V(e_{i-1}), e_{i-1} \leq x \leq e_i)_{i \geq 1}\) are i.i.d.

• Under (a), we have \(E[e_1] < \infty\).
Potential and valleys

- Excursions of the potential above its past minimum

\[
e_0 := 0,
\]
\[
e_i := \inf\{n > e_{i-1} : V(n) \leq V(e_{i-1})\}, \quad i \geq 1.
\]

- \((V(x) - V(e_{i-1}), e_{i-1} \leq x \leq e_i)_{i \geq 1}\) are i.i.d.

- Under (a), we have \(E[e_1] < \infty\).

- Iglehart’s result: \(P\{H > h\} \sim C_1e^{-\kappa h}, \quad h \to \infty\).
Potential and valleys

- Excursions of the potential above its past minimum

\[e_0 := 0, \]
\[e_i := \inf\{n > e_{i-1} : V(n) \leq V(e_{i-1})\}, \quad i \geq 1. \]

- \((V(x) - V(e_{i-1}), e_{i-1} \leq x \leq e_i)_{i \geq 1}\) are i.i.d.

- Under (a), we have \(E[e_1] < \infty\).

- Iglehart’s result: \(P\{H > h\} \sim C_1 e^{-\kappa h}, \ h \to \infty\).

- Deep valleys: boxes constructed around excursions higher than \(h_t := \log t - \log \log t\).
Potential and valleys

\[V(x) \]

\[N = N(t) \]
Valleys’ properties

- “Directed” property.
Valleys’ properties

- “Directed” property.
- The time spent between deep valleys is **negligible**:

\[\tau(d_N) \simeq \tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N). \]
Valleys’ properties

- “Directed” property.
- The time spent between deep valleys is negligible:
 \[\tau(d_N) \approx \tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N). \]
- The valleys are well separated: “i.i.d.” property.
Occupation time

- **Height**: $H_k := V(c_k) - V(b_k)$, for $k \geq 1$.
Occupation time

- **Height**: \(H_k := V(c_k) - V(b_k) \), for \(k \geq 1 \).

- **Exact computation**: \(\forall \lambda > 0 \),

\[
E_\omega \left[e^{-\lambda \tau(b_k,d_k)} \right] \approx \frac{1}{1 + \lambda e^{H_k} \overline{M}_k \overline{M}_k},
\]

where

\[
\overline{M}_k := \sum_{i=a_k}^{c_k} e^{-(V(i)-V(b_k))},
\]

\[
\overline{M}_k := \sum_{i=b_k}^{d_k} e^{V(i)-V(c_k)}.
\]
A renewal theorem

The sub-ballistic regime

Model and result

Occupation time

\[V(x) \]

\[H_k \]

\[M_k \] := \sum_{i=b_k}^{d_k} \text{e}^{V(i) - V(c_k)}

\[\overline{M}_k \] := \sum_{i=a_k}^{c_k} \text{e}^{-(V(i) - V(b_k))}

Fig.: \(M_k \) et \(\overline{M}_k \).
Properties

- Occupation time: asymptotically (quenched result)

\[
\tau(b_k, d_k) \xrightarrow{\text{law}} (M_k \overline{M}_k e^{H_k}) \exp\{1\}.
\]
Properties

- **Occupation time**: asymptotically (quenched result)

\[
\tau(b_k, d_k) \overset{\text{law}}{\approx} (\underline{M}_k \overline{M}_k e^{H_k}) \exp\{1\}.
\]

- **Asymptotic independence** between \(e^{H_k}, \underline{M}_k\) and \(\overline{M}_k\): coupling arguments.
Properties

- Occupation time: asymptotically (quenched result)

\[\tau(b_k, d_k) \overset{\text{law}}{=} (\underline{M}_k \overline{M}_k e^{H_k}) \exp\{1\}. \]

- Asymptotic independence between \(e^{H_k}, \underline{M}_k \) and \(\overline{M}_k \): coupling arguments.

- Iglehart’s result + \(\underline{M}_k \) and \(\overline{M}_k \) “nice” r.v. \(\Rightarrow \tau(b_k, d_k) \) is heavy tailed under the annealed law.
Proof

- $\tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N)$ sum of “i.i.d.” heavy-tailed random variables.
Proof

- $\tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N)$ sum of “i.i.d.” heavy-tailed random variables.
- Occupation time: $T_i := \tau(b_i, d_i)$.
Proof

- \(\tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N) \) sum of “i.i.d.” heavy-tailed random variables.

- Occupation time : \(T_i := \tau(b_i, d_i) \).

- Time between deep valleys negligible + “directed” property :

 \[
 \{ a_j \leq X_t \leq d_j \} = \left\{ \sum_{i=1}^{j-1} T_i \leq t < \sum_{i=1}^{j} T_i \right\}
 \]
Proof

• Last visited deep valley: $\ell_t := \sup\{ j \geq 0 : \tau(b_j) \leq t \}$.
Proof

- Last visited deep valley: \(\ell_t := \sup\{j \geq 0 : \tau(b_j) \leq t\} \).
- As for renewal processes:

\[
\{a_{\ell_t} \leq X_t, X_{th} \leq d_{\ell_t}\} = \left\{ \sum_{i=1}^{\ell_t-1} T_i \leq t < th < \sum_{i=1}^{\ell_t} T_i \right\}
\]
Proof

• Last visited deep valley: $\ell_t := \sup\{j \geq 0 : \tau(b_j) \leq t\}$.

• As for renewal processes:

$$\{a_{\ell_t} \leq X_t, X_{th} \leq d_{\ell_t}\} = \left\{\sum_{i=1}^{\ell_t-1} T_i \leq t < th < \sum_{i=1}^{\ell_t} T_i \right\}$$

• New version of Dynkin’s theorem!
Proof

- Residual waiting time:

\[
\left\{ \sum_{i=1}^{\ell_t-1} T_i \leq t < th < \sum_{i=1}^{\ell_t} T_i \right\} = \left\{ \frac{R_t}{t} \geq h - 1 \right\}
\]
Proof

• Residual waiting time:

\[\left\{ \sum_{i=1}^{\ell_t-1} T_i \leq t < th < \sum_{i=1}^{\ell_t} T_i \right\} = \left\{ \frac{R_t}{t} \geq h - 1 \right\} \]

• Then, we have, when \(t \to \infty \),

\[\mathbb{P}(a_{\ell_t} \leq X_t, X_{th} \leq d_{\ell_t}) \to \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa-1}(1 - y)^{-\kappa} \, dy. \]
Proof

• Residual waiting time:

\[
\left\{ \sum_{i=1}^{\ell_t-1} T_i \leq t < \sum_{i=1}^{\ell_t} T_i \right\} = \left\{ \frac{R_t}{t} \geq h - 1 \right\}
\]

• Then, we have, when \(t \to \infty \),

\[
P(a_{\ell_t} \leq X_t, X_{th} \leq d_{\ell_t}) \to \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa-1}(1 - y)^{-\kappa} \, dy.
\]

• Control around the bottom of the last visited deep valley: arguments of invariant measure for a Markov chain on a finite state space + geometrical properties of the valleys.