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Motivation

. Using numerical methods (such as finite element and finite volume
methods) to solve partial differential equations.

. The simulation domain Ω must be subdivided into many simple cells –
mesh generation.

. This talk focuses on tetrahedral mesh generation for Ω ∈ R3.

A tetrahedral mesh and the numerical solution of a heat equation.
,
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Motivation

A wrong solution caused by a bad-quality and non-Delaunay mesh.
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Motivation

What is a "good" quality mesh?
. Problem-dependent: isotropic, anisotropic, etc.

. Method-dependent: finite element, finite volume, etc.
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Motivation

What is a "good" quality mesh?
. Problem-dependent: isotropic, anisotropic, etc.

. Method-dependent: finite element, finite volume, etc.

How to efficiently generate it?
. Guarantee the quality theoretically.

. Complete it in polynomial time.
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Outline

1 Introduction

2 Delaunay Refinement

3 Adaptive Refinement and Coarsening

4 Application Examples

5 Conclusion
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Finite Volume Method

FVM is a discretization method well suited for numerical simulation of PDEs.
Semiconductor devices Fuel cells

Weierstrass Institute for Applied Analysis and Stochastics
J. Fuhrmann, K. Gärtner, Th. Koprucki, R. Eymard, G. Enchery

Voronoi Finite Volumes:
Theory and Applications

Voronoi Finite Volumes

The use of Voronoi boxes to define finite vol-
umes can be traced back to MacNeal (1953).
Triangular grids with the necessary properties
can be created using the triangle grid genera-
tor.
The creation such tetrahedral grids with the
boundary conformin Delaunay property is the
aim of the TetGen project.
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We start with triangular respectively tetrahedral grids obeying the boundary conforming
Delaunay property.
Joining the circumcenters of the simplices sharing the node !xK yields the Voronoi
box K . These boxes serve as representative elementary volumes (REV).

hKL = |!xK − !xL|
mKL = |∂K ∩ ∂L|,
reg(D) = inf

n
dist(xK ,∂K∩∂L)

diam(K) , K ∈ T , |∂K ∩ ∂L| $= ∅
o

,

size(D) = sup{diam(K), K ∈ T } ∪ {τ}

Box Integration
Approximation

The Flux functions g(un
K , un

L) describe both
the convective and diffusive parts of the the
exchange between two neigboring boxes.

Nonlinear parabolic PDE(
ut −∇ ·!j = 0
!j = ∇φ(u)− !q(!x)f(u)

% ∇ · !q = 0, φ strictly monotone,
f continuous

% e.g. nonlinear heat transfer, porous media
flow

Control Volume Intergration

0 =
tnR

tn−1

R

K

“
ut −∇ ·!j

”
dxdτ

=
R

K

Newton-Leibniz
z }| {“

u(!x, tn)− u(!x, tn−1)
”

+
tnR

tn−1

Gauss
z }| {Z

∂K

!j(u(!x, t)) · !ndγ dτ

Approximation step:

0 = |K|
un

K−un−1
K

tn−tn−1 +

P
∂K∩∂L#=∅

mKLg(un
K , un

L, qKL, hKL)

where
qKL = 1

mKL

R
∂K∩∂L !q(x) ·!nKLds.

Convergence

The proof is based on topological degree ar-
guments, for establishing existence of discrete
solutions and the Kolmorgorov theorem in or-
der to establish convergence of a sequence of
piecewise constant functions to a solution in
H1 .
R. Eymard, J. Fuhrmann, and K. Gärtner. A finite volume

scheme for nonlinear parabolic equations derived from one-

dimensional local Dirichlet problems. Numerische Mathematik,

102(3):463 - 495, 2006.

Conditions
Let a, b, q ∈ R, h ∈ (0, +∞)

% The function g is continuous wrt. (a, b), and it is (not strictly) increasing
wrt. a and (not strictly) decreasing wrt. b.

% ∃c ∈ [a⊥b, a+b] such that

g(a, b, q, h) = −φ(b)−φ(a)
h + qf(c),

% g(a, b, q, h) = −g(b, a,−q, h)

% (a− b)g(a, b, q, h) ≥ (ζ(a)−ζ(b))2

h − q
R b

a f(s)ds,
where ζ ∈ C(R) is a Lipschitz continuous function such that, for a.e.
s ∈ R, ζ′(s) =

p
φ′(s).

Results

% L∞ stability, local maximum principle

% Existence of discrete solution

% L1 contraction, uniquness of the discrete solution

% Discrete L2(0, T ; H1(Ω)) estimate depending on regD and not
on sizeD

% Space and time translate estimate not depending on D
% Convergence to weak solution for size(D) → 0 while reg(D) ≥ ρ

Exact Flux Functions

In the linear case, this approach leads to the
well known exponential fitting scheme (Il’in/
Scharfetter-Gummel/Allen-Southwell)

Define flux from 1D Dirichlet BVP along xKxL8
><

>:

[−φ(v)′ + qf(v)]′ = 0 on (0, h),

v(0) = a,

v(h) = b.
Set G = g(a, b, q, h) = −φ(v)′ + qf(v)
Satisfies the necessary conditions for convergence.

Exact flux satisfies integral equation.

1. Assume a < b. Otherwise, g(a, b, q, h) = −g(b, a,−q, h).
2. Set G$

a,b = min
s∈[a,b]

(qf(s)).

3. If ∀ε > 0
bR

a

φ′(s)ds

qf(s)−(G"
a,b−ε)

< h then set g(a, b, q, h) = G$
a,b .

4. Otherwise, determine G = g(a, b, q, h) by solving
bR

a

φ′(s)ds
qf(s)−G = h

Further features

An implementation of the method, generalized
to systems of equation is the main problem
class of the pdelib2 toolbox.

Resolution of interfaces
Interfaces between different materials are placed
by at the boundaries of the simplexes by the
mesh generator.
Material data are averaged along boundaries, not
across boundaries.

Generalization to coupled systems.
A similar approach can be taken for more general
systems of reaction-diffusion-convection prob-
lems. In order to approximate fluxes between
boxes, well known 1D difference formula can be
used.

Programming interface.
Discrete nonlinear system is described by
- Discretization grid
- Storage and reaction terms
- Flux functions
- Initial and boundary conditions.

Applications 3D Semiconductor devices Fuel Cells Thermohaline convection
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Eymard R., Gallouët T., and Herbin R., The Finite Volume Method. In Ciarlet P.G. and Lions J.L.,
editors, Handbook of Numerical Analysis, Vol. VII, pages, 715–1022. North-Holland, 2000.
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Voronoi Finite Volumes
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. L∞ stability, local maximum principle

. Existence of discrete solution

. L1 contraction, uniquness of the discrete solution

. Discrete L2(0, T ; H1(Ω)) estimate depending on
regD and not on sizeD

. Space and time translate estimate not depending
on D

. Convergence to weak solution for size(D)→ 0
while reg(D) ≥ ρ

Fuhrmann J., and Langmach H., Stability and existence of solutions of time-implicit finite volume
schemes for viscous nonlinear conservation laws. App. Num. Math., 37:201–230, 2001.

Eymard R., Fuhrmann J., and Gärtner K., A finite volume scheme for nonlinear parabolic equations
derived from 1D local Dirichlet problem. Numerische Mathematic, 102(3):463–495, 2006.
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The Voronoi Diagram

Given a set of points S ⊂ Rd. For each p ∈ S, the Voronoi cell of p, V (p), is:
V (p) = {x ∈ Rd | ∀q ∈ S |x− p| ≤ |x− q|}.

Georgy F. Voronoy (1868-1908)

Voronoi G., Nouvelles applications des parametrès continus à la théorie de formas quadratiques.
J. Reine Angew. Math. (1907) 133:97–178, and (1908) 134:198–287.
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Delaunay Triangulation

Given a point set S ∈ Rd. Any simplex is Delaunay if it has a circumscribed
ball B, such that int(B) ∩ S = ∅. The Delaunay triangulation of S, D(S), is
formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)

Delaunay B.N., Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i
Estestvennykh Nauk. (1934) 7:793–800.
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Delaunay Triangulation

Some properties of Delaunay triangulation. (Explained in 2D, generalized to
higher dimensions.)

. A simplex is locally Delaunay if it
has an empty circumcircle.

. edge flip - local transformation
between Delaunay and
non-Delaunay simplices.

. Incremental construction and
updating.

. Generalize to 3 and higher
dimensions.
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. Generalize to 3 and higher
dimensions.

,
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Boundary Conforming Delaunay Mesh

. Given any domain Ω ∈ Rd. The Delaunay mesh T is a partition of Ω by
a set of Delaunay simplices and the boundary ∂Ω is represented by a
union of simplices of T .

. The dual Voronoi diagram of a Delaunay mesh may not conform to the
input boundary.

. T is a boundary conforming Delaunay mesh of Ω if the diametric sphere
of every boundary simplex of T is empty.
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The Task

For a given 3D domain Ω, find a tetrahedral mesh T , such that

1 T is a boundary conforming Delaunay mesh (conformity).

2 Tetrahedra of T are well-shaped (quality guarantee).

3 The number of tetrahedra of T is small (size guarantee).
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The Task

For a given 3D domain Ω, find a tetrahedral mesh T , such that

1 T is a boundary conforming Delaunay mesh (conformity).

2 Tetrahedra of T are well-shaped (quality guarantee).

3 The number of tetrahedra of T is small (size guarantee).

State-of-the-art:

. Most of the mesh generation methods can satisfy both 2 and 3, but do
not respect the conformity.

. Methods that theoretically guarantee the 1 have strong limitations.

. The big gap: lack of implementation.
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For a given 3D domain Ω, find a tetrahedral mesh T , such that

1 T is a boundary conforming Delaunay mesh (conformity).

2 Tetrahedra of T are well-shaped (quality guarantee).

3 The number of tetrahedra of T is small (size guarantee).

State-of-the-art:

. Most of the mesh generation methods can satisfy both 2 and 3, but do
not respect the conformity.

. Methods that theoretically guarantee the 1 have strong limitations.

. The big gap: lack of implementation.

The Goals:

. Further the theoretical work for this problem.

. Implement robust and efficient program for various applications.
,
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1 Introduction

2 Delaunay Refinement

3 Adaptive Refinement and Coarsening

4 Application Examples

5 Conclusion
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Delaunay Refinement

Delaunay refinement – mesh refinement based on Delaunay triangulations.
The output is a boundary conforming Delaunay mesh.

8 Jonathan Richard Shewchuk

Figure 5: Meshes generated by the Bern–Eppstein–Gilbert quadtree-based algorithm (top), Chew’s first
Delaunay refinement algorithm (center), and Ruppert’s Delaunay refinement algorithm (bottom). For this

polygon, Chew’s second Delaunay refinement algorithm produces nearly the same mesh as Ruppert’s.

(The first mesh was produced by the program tripoint, courtesy Scott Mitchell.)
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Figure 5: Meshes generated by the Bern–Eppstein–Gilbert quadtree-based algorithm (top), Chew’s first
Delaunay refinement algorithm (center), and Ruppert’s Delaunay refinement algorithm (bottom). For this

polygon, Chew’s second Delaunay refinement algorithm produces nearly the same mesh as Ruppert’s.

(The first mesh was produced by the program tripoint, courtesy Scott Mitchell.)

30◦ ≤ θout, uniform size [Chew] 20.7◦ ≤ θout, graded size [Ruppert]
Implemented in Triangle [Shewchuk]

Chew P.L., Guaranteed-quality triangular meshes. Technical Report TR-89-983, Department of
Computer Science, Cornell University, 1989.
Ruppert J., A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J.
Algorithms, 18(3):548–585, 1995.
Shewchuk J.R., Delaunay refinement mesh generation. PhD thesis, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1997.
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Piecewise Linear Complex

A piecewise linear complex (PLC) [Miller et al.’1996] is a set of polytopes X
with the following properties:

1. The set X is closed under taking boundaries, i.e., for each P ∈ X the
boundary of P is a union of polytopes in X.

2. X is closed under intersection.

3. If dim(P ∩Q) = dim(P ) then P ⊆ Q, and dim(P ) < dim(Q).

a facet of X

A PLC non-PLCs

,
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Piecewise Linear Complex

,
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Local Feature Size

Given a PLC X, the local feature size [Ruppert’1995] at a point p ∈ X, lfs(p),
is the radius of the smallest ball centered at p that intersects 2 non-incident
boundaries of X.

. Bounded minimum, i.e., for any p ∈ X, lfs(p) ≥ lfsmin > 0.

. Lipschitz function, i.e, for p, q ∈ X, lfs(p)− lfs(q) ≤ |p− q|.

,
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The Basic Idea

. Add the circumcenter of each badly-shaped element. Update the
Delaunay triangulation with the new point.

. Prove termination: show that new edges at v never get too short, i.e.,
|v − w| ≥ lfsmin.

. Prove well-graded: show that lfs(v) is bounded, i.e., for D > 0,
lfs(v) ≤ D |v − w|.

v

t

v
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A Quality Measure for Tetrahedron

The radius-edge ratio of a tetrahedron t is the ratio between the radius R of
its circumsphere and the length l of the shortest edge, i.e., Q(t) = R/L.

R

L

,
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A Quality Measure for Tetrahedron

The radius-edge ratio of a tetrahedron t is the ratio between the radius R of
its circumsphere and the length l of the shortest edge, i.e., Q(t) = R/L.

Regular Needle Spindle Wedge Cap Sliver
0.612 4.1 26.27 6.74 3.57 0.707
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The Algorithm (Shewchuk’1997)

Algorithm DelaunayRefine(X: PLC, ρ0: radius-edge ratio bound)
Initialize a set P of vertices of X;
Initialize a Delaunay tetrahedralization, D(P);
repeat:

Find a new point v by the point generating rules;
Add v to P, update D(P);

until {no new point can be inserted}.
return current D(P);
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Point Generating Rules

R1. If a subsegment is encroached, split it at its midpoint.
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Point Generating Rules

R2. If a subface f is encroached, try to insert its circumcenter c.
If c encroaches upon any subsegment, then reject c.
Instead, use R1 to split all encroached subsegments.
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Point Generating Rules

R3. If a tet t is bad (Q(t) > ρ0), try to insert its circumcenter c.
If t encroaches upon any subsegment or subface, then reject c.
Instead, use R1 and R2 to split all encroached subsegments and
subfaces.
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Analysis [Shewchuk’1997]

Given a PLC X, define two types of input angles of X.

segment-segment angle facet-facet (dihedral) angle
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Analysis [Shewchuk’1997]

Given a PLC X, define two types of input angles of X.

segment-segment angle facet-facet (dihedral) angle

The input angle condition:

(1) No segment-segment is less than 60◦.

(2) No facet-facet angle is less than 90◦.
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Analysis [Shewchuk’1997]

Given a PLC X, define two types of input angles of X.

segment-segment angle facet-facet (dihedral) angle

The input angle condition:

(1) No segment-segment is less than 60◦.

(2) No facet-facet angle is less than 90◦.

Bounded edge length. For any newly inserted vertex v, lfs(v) ≤ D |v − w|,
where D = (3+

√
2)ρ0

ρ0−2 .

,
3D Boundary Conforming Delaunay Mesh Generation Juni 25, 2007 24 (49)



Analysis [Shewchuk’1997]

Termination. Assume that X satisfies the input angle condition. Then the
algorithm terminates with a radius-edge ratio ρ0, where ρ0 > 2.

Q(t) ≥ 2.0 Q(t) ≥
√

2 Q(t) ≥ 1.1
7, 862 nodes, 1.5 sec. 14, 653 nodes, 2.5 sec. 54, 560 nodes, 8.7 sec.
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Analysis [Shewchuk’1997]

Conformity. The output is a boundary conforming Delaunay mesh.

,
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The problem of small angles

The input angle condition:

(1) No segment-segment is less than 60◦.

(2) No facet-facet angle is less than 90◦.
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The problem of small angles
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Improvement

The relaxed input angle condition:

(1) No segment-segment angle is less than 60◦.

(2) No facet-facet angle is less than arccos 1
2
√

2
≈ 69.3◦.

|p− v| < |p− x| |p− v| ≥ 1
2
√

2 cos θ
|p− x|

Termination. Assume that X satisfies the relaxed input angle condition. Then
the algorithm terminates with a radius-edge ratio ρ0, where ρ0 ≥ 2.
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Improvement

The input segment condition: For any two segments S1 and S2 of X, if they
are not collinear, then |S1| = |S2|.
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Improvement

The input segment condition: For any two segments S1 and S2 of X, if they
are not collinear, then |S1| = |S2|.

Improved Mesh Quality. Assume that X satisfies the relaxed input angle
condition and the input segment condition. Then the algorithm terminates
with a radius-edge ratio ρ0, where ρ0 >

√
2.
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Improvement

The relaxed input angle condition:

(1) No segment-segment angle is less than 60◦.

(2) No facet-facet angle is less than arccos 1
2
√

2
≈ 69.3◦.

minimum segment-segment angle > 38◦ > 21◦
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Improvement

The modified point generation rule.

R1∗ If a segment S is encroached. Let v be its midpoint. Insert v only If:

(1) S is not sharp, or
(2) S is sharp and the cause of splitting s is an existing mesh vertex.
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Improvement

The modified point generation rule.

R1∗ If a segment S is encroached. Let v be its midpoint. Insert v only If:

(1) S is not sharp, or
(2) S is sharp and the cause of splitting s is an existing mesh vertex.

Termination. Assume that X has no facet-facet angle is less than 69.3◦, X
satisfies the input segment condition, and R1∗ is used. Then the algorithm
terminates with a radius-edge ratio ρ0, where ρ0 >

√
2.

,
3D Boundary Conforming Delaunay Mesh Generation Juni 25, 2007 30 (49)



Improvement

Termination. Assume that X has no facet-facet angle is less than 69.3◦, X
satisfies the input segment condition, and R1∗ is used. Then the algorithm
terminates with a radius-edge ratio ρ0, where ρ0 >

√
2.

Surface mesh Boundary conforming Voronoi diagram

,
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The problem of slivers

. Slivers ("round" and very "flat" tetrahedra) are not removed.

. Bound the largest (or smallest) dihedral angle, θdihed (open question).

. In practice, Delaunay refinement works very well by considering θdihed

as an additional quality measure.

Q(t) > 2 (θmax = 179.75◦) Q(t) >
√

2 (θmax = 179.6◦)
,
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Delaunay Refinement with Small Input Angles

Cheng & Poon’03, Cheng & Day’04,05, Pav & Walkington’04, ...

. Create protect regions to separate small input angles.

. Use Delaunay refinement to mesh the interior.

Murphy et al. (2000), Cohen-Steiner
et al. (2002), Cheng & Poon (2003)

• Divide into “free” area, and “collar” or “buffer.”

• Make adjacent faces disjoint.
• Cut faces “adaptively.”

   corn1  

    corn2   

CNA talk, 2004.09.14 – p.18/30
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Delaunay Refinement with Small Input Angles

. Good mesh quality inside the mesh domain.

. Remaining bad quality tets are close to small input angles.

. No bound on time and space usage – not practical!

. No support of user-defined mesh sizing functions – not adaptive!

Quality tet mesh generated by QualMesh (T. Day).
,
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The Idea

. For each point p, assume there are two virtual balls, one protect
ball (shown in red), and one sparse ball (shown in green).

. Generate candidates by the Delaunay refinement rules.

. Insert points if they are outside the neighboring protect balls.

,
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How to Decide the Radii?

. Use a sizing function, H : Ω → R+.

. Introduce two parameters: α1 and α2.

. The radii of the sparse and protect balls are α1H(p) and α2H(p),
respectively.

p

H(p)
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How to Decide the Radii?

. Use a sizing function, H : Ω → R+.

. Introduce two parameters: α1 and α2.

. The radii of the sparse and protect balls are α1H(p) and α2H(p),
respectively.

α
2H(p)

α 1
H

(p
)
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Outline of the algorithm

Algorithm: Adaptive Delaunay refinement.
Input: T , ρ0, H, α1, α2;
Repeat:

generate a new point v by the point generating rules[1];
If |v − p| > α2H(p),∀p ∈ T then

insert v and update T ;
endif

Until no new point can be inserted;

1. R3 is modified: if Q(t) > ρ0 or |v − p| > α1H(p), p ∈ T .

,
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Analysis

. The algorithm terminates as long as α2 > 0 (No limitation on θinput.)

. (Mesh quality) Most of the output tetrahedra have Q(t) >
√

2.
The circumcenter of any bad quality tetrahedron is within distance√

2α2H(p), where p is a point at sharp features.

α2 = 0.5 α2 = 0.2 α2 = 0.1 α2 = 0.1
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Test of mesh conformity - B = 2.0, α1 =
√

2, α2 = 0.05

Sv Lv Sv Lv Sv Lv

< 0.5 0 0 0 0 0 0
0.5 − 1/

√
2 58 0 0 0 0 0

1/
√

2 − 1 3221 1 283 0 0 0
1 −

√
2 15062 113 10778 14 1927 49√

2 − 2 4246 3867 1187 1044 94186 12594
2 − 2

√
2 0 18606 0 11190 12276 95746

> 2
√

2 0 0 0 0 0 0

SV = S(v)/H(v), Lv = L(v)/H(v), where S(v) and L(v) denote the lengths of the
shortest edge and longest edge among all edges connecting at v.
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Coarsening

. For each point p, if there exist a point q which is inside the sparse
ball of p, e.g., |p− q| < α1H(p), then remove it.

,
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Outline of the algorithm

Algorithm: Adaptive Delaunay coarsening and refinement.
Input: T , ρ0, H, α1, α2;
for each v ∈ T , do

if |v − p| < α1H(v), p ∈ T , then remove v;
endfor
repeat:

generate a new point v by the point generating rules[1];
if |v − p| > α2H(p), p ∈ T then

insert v and update T ;
endif

until no new point can be inserted;

1. R3 is modified: if Q(t) > ρ0 or |v − p| > α1H(p), p ∈ T .
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Implementation – TetGen

TetGen – A Delaunay Tetrahedral Mesh Generator.

. H can be automatically estimated based on the input geometric data;
alternatively, H can be supplied by the user.

. Parameters ρ0, α1, and α2 can be adjusted at the run time.

. Remove slivers by (1) using a dihedral angle bound (adjustable), and
(2) mesh optimization and smoothing.

. Capable of dealing with arbitrary 3D PLCs.

. Robust algorithms and implementation.

. Memory efficient.

Freely available for academic and research use
(http://tetgen.berlios.de) .

,
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EEG/MEG-source localization

A PLC model of human brain which consists of four surface meshes: skin
(red), outer and inner skull (yellow and blue), and cortex (green). (Institut für
Biomagnetismus und Biosignalanalyse, Uni. Münster).

Input: 20, 301 points and 40, 638 triangles. Output: 85, 312 points, 528, 727
tetrahedra. CPU time: 18 sec.

,
3D Boundary Conforming Delaunay Mesh Generation Juni 25, 2007 44 (49)



Surface Hardening Simulation

Adaptive boundary conforming Delaunay mesh refinement and coarsening
applied in the program WIAS Sharp.

Simulation of transient heat conduction (at different times).
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Conclusion

. Boundary conforming Delaunay meshes are well-suited for solving
non-linear convection-diffusion problem by finite volume method.

. In 3D, many theoretical questions for creating such mesh are still open.
Big gap remains between theory and practice.

. The Delaunay refinement algorithm has been extended:

1 mesh quality and mesh size remain provable;
2 no limitation on the input angle;
3 adaptive refinement and coarsening.

. The TetGen program which implements fast, robust, quality-guaranteed
algorithms has been used in applications.
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Future Work

. Sliver removal.

. Boundary conforming Delaunay for θinput < 69.3◦.

. Anisotropic boundary conforming Delaunay mesh generation.

An anisotropic mesh (left) and the numerical solution (right).
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