CO₂ Underground Storage to Clean the Atmosphere

Martin G. Lüling Schlumberger

WIAS Colloquium 8 May 2006

Contributors

- Véronique Barlet-Gouédard, Olivier Porcherie, Gaëtan Rimmelé, (Schlumberger)
- Andreas Bielinski (Hydrogeologie, Universität Stuttgart)
- Bruno Goffé and collaborators (École Normale Supérieure)
- Laurent Jammes, Laure Resplandy (Schlumberger)
- Hartmut Schütt (Geo-Forschungs-Zentrum, Potsdam)
- Robert Socolow and collaborators (Princeton University)
- Materials from StatOil and BP-Sonatrach

chlumberger Public

Outline

- CO₂ in the Atmosphere Global Warming
- Mitigation Strategies CO₂-Storage Methods
- Risk Management
- Well Construction
- Reservoir Monitoring
- Field Examples

4/SRPC/ 7/5/2006

Schlumberger Public

Radiative Forcing

Source: IPCC

Level of Scientific Understanding

5/SRPC/ 7/5/2006

Schlumberger Public

Climate Change – Link to CO₂

2005: 381 ppm, (BAU is 2 ppm/yr)

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica.

6/SRPC/
7/5/2006

Petit, Jouzel et al... Nature, June 1999

Schlumberger

Major CO₂ Emission Locations

7/SRPC/ 7/5/2006

Largest CO₂ Emissions by Country

Year 2000 CO₂ Emissions – Top 10 Countries

CO₂ Emission Sources by Category

CCS focus is on stationary, large single sources

chlumberger Public

Large Stationary CO₂ Sources

Process	Number of Sources	CO ₂ Emission Mt/y
Power Generation	4942	10539
Cement Production	1175	932
Refineries	638	798
Iron and Steel Industry	269	646
Petrochemical Industry	470	379
Oil and Gas Processing	not available	50
Other Sources	90	33
Bioethanol-Bioenergy	303	91 Schlumberner

chlumberger Public

chlumberger Public

Outline

- CO₂ in the Atmosphere Global Warming
- Mitigation Strategies CO₂-Storage Methods
- Risk Management
- Well Construction
- Reservoir Monitoring
- Field Examples

Wedge Definition

A "Wedge" is a Strategy to Reduce Carbon Emissions that grows in fifty years from zero to 1 Gt/y of CO_2 .

Cumulatively, a wedge redirects the flow of 25 $Gt(CO_2)$ in its first 50 years. That is 2.5 trillion \$ at 100 \$/t of CO_2 .

A "solution" to the greenhouse problem should have the potential to provide at least one wedge.

Schlumberger

13/SRPC/ 7/5/2006 Schlumberger Public

Schlumberger Public

Demi-Wedge Definition

A "Demi-Wedge" is a Strategy to Reduce Carbon Emissions that grows in twentyfive years from zero to 0.5 Gt/y of CO_2 .

Cumulatively, a demi-wedge redirects the flow of 6.25 $Gt(CO_2)$ in its first 25 years. That is 625 billion \$ at 100 \$/t of CO_2 .

A "solution" to the greenhouse problem should have the potential to provide at least one wedge. Schlumbergel

The Stabilization Wedges

By 2050 the world needs to geologically store a minimum of 7 Gt of CO₂/year →7000 Sleipners

Sleipner

- Sleipner natural gas contains ~9% CO₂
 - Contract: 2.5% CO₂
 - CO₂ stored; about 1MT annually
- CO₂ injected into thick Utsira sandstone layer
 - 800-1100 m depth below sea level
 - Porosity 35-40 %
 - Permeability 2-5 Darcy
 - Homogeneous sand + shale stringers
- CO₂ injection 1996-2020
- Time-lapse seismic: 1994, 1999, 2001, 2002 (and 2005)
- Time-lapse gravimetry: 2002 (and 2005)

16/SRPC/ 7/5/2006

The Sleipner Site

17/SRPC/ 7/5/2006 Schlumberger

Schlumberger Public

Sleipner CO₂ Injection

Sleipner Injector Well Conceptual Sketch

CO₂ Capture Processes

Schlumberger Public

chlumberger Public

Post-Combustion Capture Plant, Malaysia

21/SRPC/ 7/5/2006

Pre-Combustion Capture Plant, North Dakota

Schlumberger Public

CO₂ Capture and Storage - Cost Chain

Power & Industrial processes with ${\rm CO_2}$ capture and conditioning

CO₂ export terminal and pipeline transportation or shipment

Injection for Geological storage in producing or depleted oil and gas fields & aquifers

Cost:

\$30 - \$50 / t

\$1 - \$5 /t*

\$2 - \$10/t*

= \$33 - \$65/t

Monitoring costs: \$0.1-1/t

23/SRPC/ 7/5/2006

* Cost principally distance dependant

Ocean-Storage Concepts

Geologic Storage Options for CO₂

Major CO₂ Emission Locations

26/SRPC, 7/5/2006

CO₂ Source – Sink Matching

Geographical relationship between CO_2 emission sources and sedimentary basins with geological

27/SRPC/ 7/5/2006

CO₂ Capture and Storage Activities

chlumberger Public

CO₂ Capture and Storage Activities

Schlumberger Public

CO₂ Capture / Transportation / Storage

30/SRPC/ 7/5/2006

Schlumberger Public

StatOil's Integrated Energy-Producer Model

Thermodynamic Properties of Pure CO₂

	Carbon Dioxide - CO_2	
	Triple Point	Critical Point
P (bar)	5.18	73.82
T(K)	216.55	304.19
$\rho_v~(\rm kg/m^3)$	13.80	468.16
$\rho_l~(\rm kg/m^3)$	1179.25	468.16

 $^{^{\}rm a}$ values reported by Vargaftik et al. [1996]

Conditions for Supercritical CO₂

Relative Importance of Trapping Mechanisms

34/SRPC/

7/5/2006

Storage in Coal Seams

Adsorption Coefficients for Pure Gas

Figure 3. Pure-Gas Absolute Adsorption on Wet Tiffany Coals at 327.6 K

Enhanced Coal-Bed Methane Recovery

- CO₂ adsorbs onto coal surface preferably to CH₄
- Selection criteria for ECBM
 - Permeability : 1 5 md
 - Coal geometry: thick seams
 - Minimum faulting / folding
 - Lateral continuity / vertical isolation
 - Depth up to 1500 m
 - High gas saturation
 - Ability to dewater
 - Others: coal rank, composition,
 37/SRPCOW ash content

Schlumberger

Adsorption Coefficients for Mixtures

Figure 10. Model Predictions of Absolute Adsorption of 40/60 Mole % Mixture: Methane/CO₂ Feed Mixture on a Wet Tiffany Mixed-Coal Sample at 327.6 K

Storage in Depleted Reservoirs

Enhanced Oil (Gas) Recovery

Tertiary Recovery (after Water Flooding)

- Existing geological seal
- Detailed geological description already available
- Many years experience of EOR injection
- Selection criteria for EOR
 - Gravity/viscous balance
 - Layer heterogeneities
 - Minimum Miscibility Pressure (MMP)

www.ieagreen.org.uk

cilinimperger Fublic

Miscible EOR Processes

- First Contact Miscible (slug of LPG displaced by a large value of gas with high CH4 content)
- Multiple-Contact-Miscible: CO2, WAG

Storage in Deep Saline Aquifers

chlumberger Public

Outline

- CO₂ in the Atmosphere Global Warming
- Mitigation Strategies CO₂-Storage Methods
- Risk Management
- Well Construction
- Reservoir Monitoring
- Field Examples

chlumberger Public

Safety Aspects of CO₂ Storage

Prevent catastrophic CO₂ release

Lake Nyos, Cameroon (1986): 1700 dead

after CO₂ release from volcanic lake

44/SRPC/ 7/5/2006

Leak Risks and Their Mitigation

Potential Escape Mechanisms

A. CO₂ gas pressure exceeds capillary pressure & passes through siltstone B. Free CO₂ leaks from A into upper aquifer up fault C. CO₂ escapes through 'gap' in cap rock into higher aquifer D. Injected CO₂
migrates up
dip, increases
reservoir
pressure &
permeability of
fault

E. CO₂ escapes via poorly plugged old abandoned well F. Natural flow dissolves CO₂ at CO₂ / water interface & transports it out of closure G. Dissolved CO₂ escapes to atmosphere or ocean

Remedial Measures

A. Extract & purify ground-water

B. Extract & purify ground-water

C. Remove CO₂ & reinject elsewhere **D.** Lower injection rates or pressures

E. Re-plug well with cement

F. Intercept & reinject CO₂

G. Intercept & reinject CO₂

Schlumberger CO₂-Storage Project Workflow

Certification at start

~ 1-2 year

Operation Phase

 \sim 10-50 years

Post-Injection Phase

Transfer of Liabilities

~ 100-1000 years

Performance

Before injection – Site Characterization

• Seismic

• Data well

- Properties
- Fluid dynamics
- Tool Response

Schlumberger

47/SRPC/ 7/5/2006 Schlumberger Public

Measuring for Characterization

(*) From Chalaturnyk et al.

During and After Injection - Monitoring

Performance & Risk Analysis

- Injectivity
- CO2 in place
- Leakage scenarios and rates
- Risk classification

Measurements (Monitoring)

- Geophysics
- Well Logging
- Sampling
- Surface / atmosphere

Monitoring sensor response prediction

Simulation

- Structure
- Properties
- Fluid dynamics
- Tool response

Measuring for Monitoring

Verification Monitoring

- CO2 location and tracking
- Cap rock integrity
- Well Integrity

Environment Monitoring

- Aguifers
- Surface
- Atmosphere

Schlumberger

A Continuous Process

Schlumberger Public

chlumberger Public

Outline

- CO₂ in the Atmosphere Global Warming
- Mitigation Strategies CO₂-Storage Methods
- Risk Management
- Well Construction
- Reservoir Monitoring
- Field Examples

Well Leakage

- Casing
 - Corrosion
- Cement
 - Micro-annulus
 - Cement alteration
 - Micro-cracks

Well construction - Primary cementing

A well is composed of a telescopic

series of "sections"

Conductor casing

Surface casing

Intermediate casing(s), or liner(s)

Production casing, or liner

Each section has different objectives, cementing wise

- Minimize cost while complying with local regulations ...
- Specific engineering properties: Challenging technical problems

54/SRPC/ 7/5**/10**0**design, execution or evaluation**

chlumberger Public

Zonal Isolation

Poor or non-existing cement could allow CO2 or brine with dissolved CO2 to travel along the completion and contaminate fresh water bearing formations, even reach surface

Fresh-water bearing formation

Shale

Salt water bearing formation CO_2 Injection

55/SRPC/ 7/5/2006 Schlumberger

Motivation and Approach

- CO₂ underground storage
 - The most effective way

Motivation and Approach

- CO₂ underground storage
 - The most effective way
- Long-term zonal isolation
 - Portland cement not thermodynamically stable in CO₂ environments.
 - Not adequately addressed by industry specifications

Motivation and Approach

- CO₂ underground storage
 - The most effective way
- Long-term zonal isolation
 - Portland cement not thermodynamically stable in CO₂ environments.
 - Not adequately addressed by industry specifications

- Develop standard procedure/method
 - A laboratory qualification of resistant cements
- 58/SRPC/— The long-term modeling of cement-sheath integrity

Schlumberger Public

Water pH at CO₂ Solubility

CO₂ Interaction with Portland Cement

- CO₂ in presence of water results in a acidic environment
 - Carbonic acid pH $\sim 3-4$
- Chemical reactions in presence of Calcium

Carbonation

- Dissolution with
 - Variations of molar volume
 - Changes in Porosity, Permeability
- Need for a CO2-resistant cement

Schlumberger

Experimental Apparatus

Experimental Apparatus

Supercritical CO₂ phase saturated with water

Liquid H₂O phase saturated with CO₂

Schlumberger

Schlumb

Kinetic tests with Portland Cement

2 days

1 week

6 weeks **Schlumberger**

What happens to a neat cement?

Cracks in wet CO₂ supercritical environment

Strong alteration rims

After one month at 90°C and 280 bars under wet CO₂ supercritical environment

Schlumberger

Ciliumperger Fubilc

CO₂-Resistant System

- Chemistry effect : selection of a durable material to reduce
 Portland amount
- Special system with low water
- Slurry to have a large density range (12.5 ppg and 17 ppg)

Schlumberger Public

Kinetic tests with CO₂-Resistant System

2 days

1 week

6 weeks

- A new methodology to simulate downhole conditions
 - Procedure validation
 - Reproducible and repeatable

schlumberger Publi

- A new methodology to simulate downhole conditions
 - Procedure validation
 - Reproducible and repeatable
- Portland cement
 - A very effective decay process following a diffusion law
 - An initial sealing by carbonation then a dissolution stage

schlumberger Fubil

- A new methodology to simulate downhole conditions
 - Procedure validation
 - Reproducible and repeatable
- Portland cement
 - A very effective decay process following a diffusion law
 - An initial sealing by carbonation then a dissolution stage
- CO₂ Resistant System
 - Homogeneous pattern with a limited carbonation threshold: good mechanical behaviour over a wide density range.
 - Stable in both CO₂ fluids up to 3 months.

- A new methodology to simulate downhole conditions
 - Procedure validation
 - Reproducible and repeatable
- Portland cement
 - A very effective decay process following a diffusion law
 - An initial sealing by carbonation then a dissolution stage
- CO₂ Resistant System
 - Homogeneous pattern with a limited carbonation threshold: good mechanical behaviour over a wide density range.
 - Stable in both CO₂ fluids up to 3 months.
- 70/SPAC/ccelerated aging method

chlumberger Public

Outline

- CO₂ in the Atmosphere Global Warming
- Mitigation Strategies CO₂-Storage Methods
- Risk Management
- Well Construction
- Reservoir Monitoring
- Field Examples

Schlumberger Public

Monitoring - Objectives

- Performance Control
 - Injectivity
 - $-CO_2$ in place
- Risks Evaluation and Control
 - Loss of containment
 - Contamination (aquifers, surface...)
 - Leaks on surface Accumulation

Model calibration for a long-term prediction of the fate of the CO₂ injected

- Displacement
- Trapping Mechanisms (dissolution, mineralization ...)

Questions for Designing a Monitoring System

What do I want to monitor?

What property change can I monitor?

What variation am I considering?

CO₂ displacement, leak...

P, T, CO₂ Saturation, Resistivity

- What measurement technique can be used? Seismic, EM, Nuclear...
- What should be my sensor specifications?
- Where should I place my sensor?
- For how long?
- How can I deploy it?
- How can I interrogate it?
- How can I interpret the measurement?

Accuracy / Precision

Surface, Obs. Well (Permanent, Logging...)

Operation phase, surveillance

Monitoring Tools

Monitoring CO2 Displacement CO2 Displace

	O.	Obelation Merificari Merificari						
	$Ob_{\mathcal{E}}$, Aer	16L	16ui	. EUA			
P,T, Volume, Rate	Х							
Seismic / VSP's		Х		Х				
Microseismicity	Х	Х	Х					
EM Surveys			Χ					

Which docionholty	<i>/</i>	/\	/\		
EM Surveys			Χ		
Cased-Hole Logging: CHFR,RST			Χ		
Sampling		Χ			Χ
Pressure tests			Χ		
Sonic: MSIP				Х	
Ultrasonic: USIT/IBC					Χ
Corrosion				Χ	

Surface / atmosphere

Sleipner Results - Super-Resolution

pre-interpreted reflectors, or

time interval

5/SRPC/ 7/5/2006

Sleipner Results – 4D Seismic

CO₂ Injection Start: Sept 1996 4D Seismic Survey

1994

Schlumberger

Sleipner: Homogeneous Model

No confidence in long-term prediction of CO₂ fate and storage integrity, performance & risk analysis

Interpreted flow pattern

- Vertical flow:
 - through holes, faults
 - migration through semipermeable layers
- Verify and improve seismic interpretations
- Calibration for long term flow simulations
- Is all CO₂ observed by 8/SRPSeismic?

Schlumberger

Reservoir Flow Model

- 428 400 cells
- Shale layers modeled as transmissibility multipliers
- Homogeneous rock properties

Matched Models

Model I: Semi-permeable layers.

Dispersed flow between the layers

Model II: Impermeable layers with high-permeable holes.

Flow only in chimney-like structures

Can the 4D seismic distinguish between the models?

7/5/2006

10/SRPC/

Schlumberger

Synthetic Seismic

Rock-physical transforms $V_p=V_p(S_{water},P,...)$

Schlumberger

11/SRPC/ 7/5/2006

Rock Physics & Pulldown

 $K_{CO2} = CO_2$ bulk modulus

12/SRPC/ 7/5/2006

Real and synthetic pulldown - 2001 seismic

13/SRPC/ 7/5/2006 Schlumberger

Simulated CO₂ Distribution

After 0.5 year

Sleipner CO₂ Plume – 800 m wide – 200 m high

chlumberger Public

Microseismics

Main applications:

- Injection control
 Avoid fracturing cap rock
 Control CO2 displacement
- Fault Re-activation

Microseismics – Versatile Seismic Imager (VSI)

Schlumberger Public

Microseismics

From Microseismic Event ...

18/SRPC/ 7/5/2006 Schlumberger

Microseismics

From Microseismic Event ... to X, Y, Z Location

Monitoring Fractures

The Reservoir Saturation Tool (RST)

Nuclear Measurement Theory

Measurement Modes

Inelastic Spectral Standards

C/O Theory of Measurement

RST- A Inelastic Spectra in Oil and Water Elemental Yields and Windows Ratio

Monitoring Using RST $-\Sigma$ Measurement

- Crossplot porosity Σ, with water and CO₂ saturations
- CO_2 and Water Σ values
 - $-CO_{2}$ (0.3 c.u.)
 - Water (55 c.u.) (@ 93,000 ppm)

(*) Sakurai et al. , SPWLA 46th - June 26-29th - 2005

Schlamberger Fabil

CO₂ Monitoring Using RST – Frio Experiment

- Injection started on Oct 4th 2004, stopped on Oct 14
- 1,600 t CO₂ injected
- Target: Frio formation (~5000 ft deep)
- Sandstone
- High Salinity: 93,000 ppm
- High Porosity: 32-35 p.u.
- High Permeability: 2.5 Darcy (air)
- Injector-Monitoring well spacing: 30 m

Monitoring Using RST $-\Sigma$ Measurement

CO₂ Injection: Start – Oct 4th / Stop - Oct 14th

CO₂ Saturation Changes

CO₂ Injection: Start – Oct 4th / Stop - Oct 14th

29/SRPC/ 7/5/2006

Cased-Hole Formation Resistivity Applications

Schlumberger Public

CHFR Tool String

CHFR Principle

Schlumberger

ociiidiiiberger Eubii

Electromagnetic Cross-Well Surveys

- Extension of induction logging
- Transmitter and receiver located in separate offset wells
 - Up to 1km spacing for OH
 - 300m for CH
- Construct a 2-D resistivity image

Moving Transmitters Many Receiver Stations

CO₂ Storage in Frio Field, TX, USA

- August 2004: Crosswell Resistivity Baseline survey is acquired between the CO₂
 Injector well and the monitoring well 30m away. Both wells are cased.
- October 2004: 1600m³ CO₂ are injected in the C-Sand layer.
- December 2004: A second Resistivity survey is performed after CO₂ injection is stopped.
- Processing shows change in Resistivity between the 2 surveys due to CO₂ migration
- Further interpretation with integration of the petrophysical model built from borehole logs allows to characterize saturation changes due to the CO₂ migration Schlumberger

Ciliumperger Fublic

Permanent Electrode-Resistivity Arrays

- Permanently installed
- Flexible configuration
- Saturation monitoring
- Time-lapse Surveys
- Flexible operation
- Axisymmetric Inversion
- Long-term reliability

7/5/2006

Schlumberger

Schlumberger Public

3F-Project: Background and Purpose

- Corinth Rift Laboratory, Trizonia Island
- Permanent fault line monitoring in seismic areas

Coordinator

Institut Français du Pétrole - IFP, Geology and Geochemistry Research Division

Participants

Schlumberger

Institut de Physique du Globe de Paris - IPGP
National Technical University of Athens – NTUA
University of Lièges MSM - Institut des matériaux
University of Edinborough
Laboratory Géosciences Azur – GEOAZUR
Enterprise Oil Exploration Limited
Istituto Nazionale di Geofisica - ING
GeoForschungsZentrum Potsdam - GFZ
Armines, Ecole des Mines de Paris
University of Patras-Seismological Laboratory - UPSL
Ecole des Ponts et Chaussées - CERMES
Institute Rock Structure and Mechanics of Prague
Geophysical Institute of Prague

39/SRPC/ 7/5/2006 3F - project: background and purpose

Track fluid movement in fault line in Trizonia well

- Fault @ TVD=198-214m, on limestone, shale beds

Continuous data acquisition

3F - Prototype – ERA: Electrode Distribution

3F – ERA: Geology, Electrode Locations

Schlumberger Public

Isolation Scanner – Flexural Mode

$$\alpha = \frac{20}{\Delta x(cm)} * Log_{10} \left[\frac{AmplitudeNear}{AmplitudeFar} \right] dB/cm$$
Schlumberger

Schlumberger Publi

Hydraulic Communication

Schlumberger Public

Casing Corrosion

- Image of inside or outside casing radius
- 3D Viewer

45/SRPC/ 7/5/2006 Schlumberger

Cement-Evaluation Challenges

Imaging Behind Casing

Casing Centralization Imaging

48/SRPC/ 7/5/2006 Schlumberger

Soil CO₂ Sources and Sinks

Figure 5.1. Soil CO₂ sources and sinks, showing from left-right, top-bottom, exchange with the atmosphere, production by decay of soil organic matter, photosynthetic uptake by plants, and production by root respiration, groundwater degassing, oxidation of subsoil organic matter, and deep degassing.

Soil - Accumulation Chamber

Figure 6.1. Schematic diagram of an accumulation chamber (AC) measurement system of soil CO_2 flux. The air contained in the AC is circulated through the AC and the IRGA and the rate of change of CO_2 concentration in the AC is measured by the IRGA and recorded by the PC.

chlumberger Public

Outline

- CO₂ in the Atmosphere Global Warming
- Mitigation Strategies CO₂-Storage Methods
- Risk Management
- Well Construction
- Reservoir Monitoring
- Field Examples

chlumberger Public

Field Examples

The following field examples contain web-based information, courtesy of the following companies:

- StatOil
- BP & Sonatrach
- GeoForschungsZentrum (GFZ), Potsdam

Schlumberger Public

Field Experiment—Batelle/DOE, PI

BP, American Electric Power,
 Ohio coal office

- Schlumberger partnership (via well construction and monitoring)
- CO₂ injection experiment for storage evaluation
 - Well at a power plant,Ohio River, W. Virginia
 - 10000 ft, 2D seismic survey prior to drilling

ROANE

The Power Plant

- 1.3 GW pulverized-coal unit
 - By barge/rail
- 8 Mt/y of CO₂
- NO_x removal installed
- SO_x removal planned for future

KANAWHA

WASHINGTON

Study

VIRGINIA

PUTNAM

OHIO MEIGS

GALLIA

Local Geology — Structural Cross-Section

Sleipner CO₂ Injection

Map with Snøhvit – StatOil's next Project

The Snøhvit Installation Layout

60/SRPC/ 7/5/2006 Schlumberger

The In-Salah Site (BP-Sonatrach)

In-Salah Map and CO₂ Flow

7/5/2006

In-Salah Project, Algeria

Process Facilities CO₂ Emissions by Source - without CO₂ Re-Injection Scheme

In-Salah Project Scope

- a 25 Mm³/d hydrocarbon gas development costing 2.4 G\$
 - CO₂ concentrations 5 10 % in pure methane
 - < 0.3% concentration after CO₂ removal
- a 1.1 Mt/y CO₂ storage project costing 100 M\$
 - Unwanted CO₂ compressed
 - Re-injected into Krechba aquifer below 950 m thick layer of carboniferous mudstones
- a CO₂ storage monitoring project costing 30 M\$.

Schlumberger Public

In-Salah Amine Contractor Towers

Schlumberger

In-Salah Storage Site over Krechba Reservoir

■ 17 millions tons of CO₂ over project life

Ketzin – the Project Site

67/SRPC/ 7/5/2006 Schlumberger

chlumberger Public

Planned CO₂ Injector and Monitor Wells

OW 2

The Stabilization Wedges

By 2050 the world needs to geologically store a minimum of 7 Gt of CO₂/year →7000 Sleipners

CO₂ Underground Storage to Clean the Atmosphere

Martin G. Lüling Schlumberger

WIAS Colloquium 8 May 2006

