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Overview

> Introduction

> Principle of linearized stability

> Growth and spectral bound, exponential dichotomy for linearized
dynamical systems

> Center manifold theorem

> Linearization of semilinear hyperbolic systems

> The variation of constants formula
> Sun star calculus

> Stability and dichotomy for linearized hyperbolic systems
> Proof of principle of linearized stability and center manifold theorem
for semilinear hyperbolic systems

> Applications

Linearized Stability and Invariant Manifold Theorem for Semilinear Hyperbolic Systems 12.2.2007 2 (42) TwliTals



Dynamical System

Given a dynamical system

> Statex € X

> ODE:

> X — R

> f:R" — R"™ ist C¥ smooth
> PDE:

> X Banach-space
> f a densely defined operator
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Determining the stability of stationary states

Let zo be a stationary state.
1. Linearize in zq:
d

Zh=Df(xo)h.

2. Determine the stability of the linearized problem:
> Locate the spectrum of D f(xg).

3. Prove that the nonlinear problem is stable near xg.

Theorem (Principle of linearized stability)

Suppose there exists s < 0, so that for all A € (D f(x0))
Rel <5 < 0.

Then xq is exponentially stable.
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Approximation of the nonlinear dynamics via the linearized dynamics

> For the proof we need that the linearization D f(x¢) is a good
approximation for f near xg.

> PDE: The operator f contains nonlinear Nemytskij operators. Their
differentiability properties depend on the topology of the
Banach-space X.
> Usually it is not enough to consider only one Banach space X. Often
we need a triple or even scale of Banach spaces.
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Stability of the linearized problem

> As is well known in finite dimensions the stability of the linear system
%h = D f(xg)h is determined by the eigenvalues (spectrum) of the
matrix D f(xg).

> In infinite dimensions, where X is a Banach-space, the issue is more
complex.

> The appropriate abstract setting is provided by the theory of Cj
semigroups (eAt)t>O of bounded linear operators on the
Banach-space X.
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Growth and spectral bound

Definition

Let A= Df(xq) be a generator of a Cy semigroup e“*. The spectral
bound s(A) ist defined as

s(A) :=sup{Rez | z€0(A)}.
The growth bound w(A) is per definitionem
w(A) :=inf {w € R | Iy pr(w)>0 : HeAtH < Me* fort > 0}.
> w(A) = s(A) for ODEs, DDEs, semilinear parabolic PDEs.

> In general: w(A) > s(A), equality must not hold.
> Warning: There exists a counterexample of a 2d wave equation with

w(A) > s(A).

:
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Determining the growth bound w(A)

Proposition

Fort >0

_ log r(eA?)

- - ,

where r(e1') := sup {|z| | z € o(e")} denotes the spectral radius of the
semigroup et

w(A)

Method for determining the growth bound w:
> Calculate o(A) by solving spectral problem.
> Important open question for hyperbolic PDEs: Can the unknown
spectrum o (e?) of the semigroup be calculated from the spectrum
o(A) of the generator A (the equations of the PDE) ?

Theorem

For hyperbolic systems in 1d the answer is positive: w(A) = s(A).
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Existence of center manifolds

Assumptions:
> s(A) <0
> E.:=0(A)NiR #0
> Spectral gap: There exists § > 0 such that

{zeC|—-d <MRez <0} C p(A).

Let . : X© — X© denote spectral projection corresponding to the
critical eigenvalues E,, where X denotes complexification of X.
Further let

X.: =X NIm(r.) = X N @ UKer (Ald — A)7 |
A€E: j=1

Xs =X NnKer(m,).
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Spectrum of the traveling wave operator (LDSL)
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Spectral gap and exponential dichotomy

> For ordinary differential equations, delay equations and semilinear
parabolic PDEs it is known, that the spectral gap condition generates
an exponential dichotomy on the spectral decompositions.
> Let T,(t) := eﬁéc and T,(t) :== eﬁgs
> e > 0: [|Ts(t)| < ce™® fort >0
> Ve > 03d > 0: || T.(—t)] < de

> Exponential dichotomy is necessary for the proof of center manifold
theorem.
> If there is no exponential dichotomy, it is known due to a result of
Mane, that the critical eigenspace X, does not persist under small
nonlinear perturbations.
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Center manifold theorem

Theorem

There exists a neighbourhood U of zero in X and a smooth graph
v: X.NU — X with the following properties:

> the manifold M := {xo + z. + y(z.) | xzc € UN X, } is locally
invariant and exponentially attractive with respect to the nonlinear
semiflow,

> any solution v : R — zg + U lies on M,

> the trajectories on M are governed by the equation

d
axc = Df(xo)xc + mer(ze + v(xe)),

where the remainder r is of order 2.
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Core problems for existence of invariant manifolds in infinite dimensional

dynamical systems

> Does a spectral gap generate an exponential dichotomy ?

> Does the evolution equation form a smooth semiflow on X 7 Is the
solution map linearizable with respect to the norm of X 7

> If yes, for which Banach-spaces are both properties fulfilled ?

These issues have been resolved for large classes of semilinear parabolic
PDEs and DDEs, but not for hyperbolic PDEs.
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A general class of semilinear hyperbolic systems

(U = m@g (4 + ). o),

M\ vtz v(t,x)
(SH) v(t,l) = Du(t,l),
u(t,0) = Ev(t,0).

> 2z el0,l,t>0
> ueR™, veR™ n=ny+ne, D, E matrices

> K (x) = diag (kj(2))<;<,0 kj € C'([0,1],R),
kj<0 1 <5 < ny, kj>0 n+1<7<n.

> H :]0,I[ x R™ — R" smooth in (u,v), measurable in =

:
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Variation of constants formula

Let T'(t) be the reflection / shift semigroup generated by

u(t, z) u(t, )
<<x)> K)g <<m>
u(t,0) = Bu(t,0), (t.]) = Du
20.9) = e, (0,8} v,

The nonlinearity H :]0,1[ x R™ — R"™ generates a Nemytskij operator:
For w:]0,I{[ = R™, v :]0,{[ — R™

9 (u,v) (x) := H(z,u(x),v(x)).

Formally the variation of constants formula for (SH) reads

(DN Zpy (Y0 4 tT(t—s)ﬁ(u(s),v(S))dS-"
<v(t)> <U0> /o
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Which choice of space X ?

“ (ZSD =T0) (Z(?) * /OtT@— $)9(u(s), v(s)) ds.”

It is tempting to take the Hilbert space L2(]0,1[,R") for X:

> T(t) is strongly continuous on L2.
> The Nemytskij operator § ist not well defined on L2.
> Need to truncate the nonlinearity H so that the Nemytskij operator
becomes well defined and globally Lipschitz on L2.

> But still it is not Fréchet differentiable due to the (rather surprising)
fact that § : L? — L? is differentiable at some
(u,v) € L2(]0,1[,R™) if and only if for almost all z € ]0, ([ the
function z — H(z, z) is affine.
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A good choice for X

Take

X = {(u,v) e 0([0,1, B™) | u(0) = Ev(0), w(l) = Du(l)}.

> T(t) is strongly continuous on X.

> But $ maps X out to a larger space: If (u,v) € X then H(u,v) ¢ X
for almost any choice of H and (u,v).

> Need to enlarge the space X !
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Enlarging X, the sun star space
Idea: Construct a larger space in terms of a combination of properties
of the space X and the semigroup T'.
> Let T#(t) : X* — X™ be the adjoint semigroup

> Then t — T*(t)z* is not necessarily continuous (even not Bochner
measurable, but weak star continuous). Let

XO = {m* e X* | 131%1\@*(:5)3:* -z’ = 0}

be the subspace on which T™ is strongly continuous.
> Define j : X — XO%, (jz,2®) := (2, 2) (XO* := (X®))

> j is injective since X is weak star dense in X*, hence

xJx0*,
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Enlarging X, the sun star space

Put
TO(t) := T*(t) xo-

By definition T®(¢) : X© — X© is a strongly continuous semigroup.
Again consider the adjoint semigroup T®*(¢) = (T®(t))" : X©* — X,
Vz® € XO (T (t)jz, 2%) = (jz, T®(t)x®)

= (T®(t)z®, z)
= (29, T(t)x)
J(T(t)z),2%).

o~ o~~~

> Hence j(T'(t)x) = T®*(t)jx or

joT(t)=T%(t)oj.

:
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Enlarging X, the sun star space

Tt): X —— T*(t): X*

l

TO(t) : XO* «—— TO(t) : X©

T(t)
e

X X
d i|
X@* T®*(t) X@*
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The sun star space for hyperbolic systems with reflection boundary

conditions

Theorem
X©* s isomorphic to L*>°([0,1], R™).

For <Z> eEX: T (Z) =T(¢) (Z‘) :

The main advantages of using the space X together with its sun dual
X©* are based on the following two Lemmas:

Lemma

If H(x, z) is measurable with respect to x and smooth with respect to z
then the Nemytskij operator § (u,v) (z) := H(x,u(x),v(x)) is a smooth
map from X into X©*.
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Variation of constants formula

Moreover we get back from X©* into the small space X:
Lemma

Let f:]0,T] — X®* be norm continuous. Then the weak-star integral

t
t— / TO*(t — s5)f(s)ds
0
is norm continuous and takes values in X.

Definition (Variation of constants formula)

(u,v) € C([0,T], X) is called a mild (or weak) solution to (SH) if

4O _ 1) () + [ 70t - 9)n(uls),v(s)) ds.
(o) =70 () +

o
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Some straightforward consequences

Theorem (Unique local existence)

For any (ug,vo) € X there exists a 6 > 0, depending only on
|| (w0, v0)||x, $ and T'(t), such that (SH) has a unique mild solution
(u,v) € C([0,6], X) with u(0) = ug, v(0) = vy.

Theorem

Let z € C([0,T], X) be a weak solution of (SH). Then there exists a
neighborhood U of z(0) in X such that for all yy € U there is a weak
solution y € C(]0,T],X) of (SH) satisfying y(0) = yo.
There exists a constant ¢ > 0 such that for all yg € U

[[2(¢) —y(@)llx < cl|z(0) — ol x-
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The smooth semiflow

Suppose there exists a weak solution z € C([0,T], X) of (SH). Then
according to the last Theorem there exists an open neighborhood U of
z(0) in X so that we can define a solution map

S U X, S'yo) = y() (t€[0,T]).
Theorem (Smooth semiflow property)

For each t € [0, T] the map S* : U — X is C* smooth. The map
(t,u) — S'u is continuous from [0,T] x U into X. The total derivative

DSt <Z~“E2> = DS! <Z"> satisfies the equation

(Zg;) =T0) <Z> + /Ot TO*(t — 5)DS(u(s), v(s)) (’;ESD ds.
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Linearization of (SH)

Let (ug,vp) be a stationary state. Then the last theorem states that the
linearized flow DS*(ug,vp) is given by the mild solutions to the linearized

system
9 u(t, x) K2 u(t, )
ot (U(t,x)> K(2)5z <v(t,a:))
(LH) Oy H (2, 10(x), 00()) (;‘g i;) ,
v(t,l) = Du(t,l), wu(t,0) = Ewv(t,0).
Proposition

The linearized flow DS*(ug,vo) is a Cy semigroup et on X with
infinitesimal generator

A (Z) — K@) (Z‘Eﬁ?) | By (2 10(®), (@) (zgg) .
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(a, B) exponential dichotomy

Definition
Let o« < 3. A has a («, 3) exponential dichotomy, if there exists a
projection 7 : X© — X© such that

> ﬂ'eAt — eAtﬂ'

> For T1(t) := eﬁ‘fn ) and Th(t) = 6??{)5&(71')

> w(Ti(t) <«
> T5(t) extends to a group with w(T>(—t)) < —f.
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(a, B) exponential dichotomy

T (75 V6503 >0V t>0

(o+d)t
T,(t) Ty <ce
1 C(B—S)t

T,®] =<

Ker ()

:
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Characterization of exponential dichotomy

Theorem
The following are equivalent:
> A has a (a, 3) exponential dichotomy.
> Vs {AeC|e < |\ < b} C pled).
> Jte>0: {AeC|e < |) < ePlo) C plett).

> Exponential dichotomy means that there is a circular spectral gap for
the semigroup et

> Does a spectral gap condition on A imply the presence of a circular
spectral gap for e/t ?
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Spectral mapping theorems for linearized hyperbolic systems

> o(e*)\ {0} = e\ {0} in L*([0,1],C")
> In X€ = {(u,v) € C([0,1],C") | u(0) = Ev(0), v(l) = Du(l)} for
all « < B and t > 0 we have
{zeC|la<Rez < f} Cp(4h)

@{z €C|e™ < |z < eﬁt} c p(e).

Ifa<fBand {\eC|a<Re\< [} Cp(A), then A has a («, 3)
exponential dichotomy.
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Spectral mapping theorem o (e4t) = eo(A)t

O 000 O0 O

(o]

r(eAY= eOJ(A)I

s(A)
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Proof of spectral mapping theorem

> High frequency estimates of spectrum and resolvent parallel to the
imaginary axis:
> For high frequencies spectrum and resolvent are approximated by the
diagonal system.
> For A on stripes in the resolvent set parallel to the imaginary axis we
have for |Jm A| sufficiently large

RO\ A) = RO, A0) + 1 Ri(3) + 0 (;2) .
> Ag denotes the diagonal system, obtained by cancelling all
nondiagonal entries in the linearized differential equation. Since
equations decouple there is a closed formula for R(\, Ap).
> Error term Ry (\) as well as higher order terms can be calculated
recursively (terms quite complicated).
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Estimates for spectrum

Theorem

There exists an exponential polynomial hy and an entire (characteristic)
function h with the following properties:
> o(A) ={r e C|h(}) =0},
> U(A()) = {)\ eC ’ ho(/\) = 0},
> For all r > 0 there exist ¢,d > 0 such that for all A € C with
|PRe A| < r und |JmA| > d we have:

) = ho(Y) = ()| < ers

> There is a closed formula for hy (quite complicated).

:
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Resolvent estimates

Theorem
Let U C p(A) be such that

Re | < oo, inf [ho(N)| > 0.
sup [ReA| < oo, inf [ho(A)

Then there exists d > 0 such that for A\ € U with |Jm\| > d
> R(X,A) = R\, Ao) + 1R1(N, A) + 5E(N A),
> R(\, Ag), Ri(\, A) and E(\, A) are bounded on U,
> There are closed formulas for Ri(\, A) and R(\, Ay).

> In particular the resolvent R(\, A) is bounded on U.

:
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Spectral mapping theorem in L?

> By applying an important theorem due to Gearhart/Herbst/Priiss
[Trans. AMS 1984] the resolvent estimates imply the following
spectral mapping property for linearized hyperbolic systems in the
Hilbert space L?

o(e*)\ {0} = ec@1\ {0}

> Problem: theorem of Gearhart/Herbst/PriB requires Hilbert-space.
> The semiflow is not strongly linearizable in L2

> We need a spectral mapping theorem or characterization of
exponential dichotomy in terms of the spectrum of A in the smaller
nonreflexive Banach-space X©.
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Spectral mapping property in non Hilbert-space X°©

> For Banach-space the situation is more difficult. Counterexamples

show that Gearhart/Herbst/Priiss spectral mapping theorem fails, in
general.

> Idea: Use C Laplace-inversionformula. For p > w(A)

1 C'1 pp+ioco
ey = — / e R(z, A)r dz
21 Jpsico
1 i ,Dt/R il/tR( 4 A) 1 ‘V‘ d
= — lim e e iv,A)x |1 — — | dv.
271 R—oo R p ’ R

> Works also in non Hilbert-space X |

:
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Characterization of (o, ) dichotomy in X©

Theorem (1994 Lunel, Kaashoek in J. Diff. Eq.)

A has a («, 3) exponential dichotomy if and only if

1) p(A)D{NeC|a<Rel <[},

w)For alld > 0: sup |R(A, A)|| < oo,
at+I<ReA<[—06

wi)For all p € |o, B[ there exists a constant K, > 0 such that for
allz e X% z* e (XC)*
$r(,p,m,2%) € L¥(R) and [§r(-, p, 2, 27)|| oo < K [l [|l2*],
where r(-, p,x,z") : R — C is defined as
r(v,p,z,2") == " R(p + iv, A)x.

:
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Characterization of (o, ) dichotomy in X©

> Necessity of conditions follows directly from the Hille-Yosida theorem
and the C Laplace inversion formula applied to Ay~ and Ajker -

> Sufficiency: Proved in two papers by Kaashoek, Lunel, Latushkin [J.
Diff. Eq. 1992, Oper. Theor. Adv. Appl. 2001].

> The resolvent estimates are in sufficiently closed form so that the
Fourier transforms can be estimated.

> Warning: Convergence of improper Fourier integrals only in Cesaro

mean C'1, no absolute convergence.

> Tools:

b 2%?1 ]Reiwt%v—lf(w) dw = f(t-ﬁ-)';f(t—)v

> Wiener Algebra property of absolutely convergent Fourier series.

Theorem

Principle of linearized stability and center manifold theorem hold true for
hyperbolic systems.

Linearized Stability and Invariant Manifold Theorem for Semilinear Hyperbolic Systems ~ 12.2.2007 37 (42) TwliTals



Applications

The results are applicable to large classes of practical problems:
> Stability and bifurcation analysis in Laser dynamics

> Model Reduction: Mode approximations [Bandelow, Wenzel,
Wiinsche 1993]

> Turing-Models with correlated random walk [Kac, Goldstein, Hadeler,
Hillen, Horsthemke, ...]

Boltzmann-systems
Tubular reactor processes
Systems of vibrating strings

Differential equations with delay

v VvV VvV VvV V
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The traveling wave model

1
U—@tEi = (70, —if(n)) E* —ikET —
g
Pt = 5(BE* - PF) +iwP*

om = I —R(n)—vRe(E,g(n)E —g(E — P))¢2

(NS

(% - P)

ET(t,0) = roE~(t,0) + a(t), E~(t,1) = rET(t1).

t € R time, z € [0,] longitudinal coordinate

E* = E*(t,2) € C complex envelope of optical field, P¥ = P%(t,z) € C polarization,
n = n(t,z) € R carrier density

spontaneous recombination R(n) = An + Bn? + Cn3

propagation coefficient B(n) = o —ig + %g(n) +dn(n)

field gain g(n) = G’ log % effective index dependence dx(n) = —v/n/n, current

vV vVvv VvV

injection I = I(t, z), optical injection a(t) at left facet of laser, reflection coeffecients r¢
and r;
D all coefficients depend on lateral coordinate z
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A two parameter numerical bifurcation analysis of the raveling wave

model (LDSL, M. Radziunas)

T T T T T
= torus bif.
07k —fold oflc. |
4 cusp
=2 \ < 1:1 resonancg
0.6 v fold-torus [}
% torus-torus
3 .05} g
:
g -04F 0 -
=%
e
2 -03F -
2
2
£ -02f
=3 S I
= \
-0.1F \
N\,
L 1 L 1 1 N‘

28 29 3 31 32 33 34 35 36 37
wavelength detuning %, , nm
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Current Work: The 2d diffraction extended traveling wave model

1 1
—ET = —i—0,,F" + (70, —if(n)) E* —irET —
Vg 2K

oPt = 7(E* - PF) +iwP*
om = dpOpen+1— R(n) —vRe(E,g(n)E —g(E — P))¢2

(NS

(5%~ P)

ET(t,0,7) = ro(x)E~(t,0,7) + a(t,x), E~(t,1,z)=nr(z)E*(t ], z).

D> All coefficients now depend on longitudinal (z) and lateral (x) coordinate.
D> In optical equation for E a diffraction operator has been addd (red).

D> In carrier equation for n a lateral diffusion operator has been added (blue).
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Stable pulsating high power diode

FoRvard Tield povier &

t=10753 ps Power=1.7243828 W

Power (1.0 ~ 30.0 mW per volume)
0.50

Laser geometry and parameters provided by FBH.
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