Mathematische Probleme des künstlichen Sehens aus der Perspektive spezifischer Anwendungen

Erhard Barth

Institut für Neuro- und Bioinformatik
Universität zu Lübeck

barth@inb.uni-luebeck.de
Overview

• INB
• Visual information processing in the brain
 • *intrinsic dimension* and endstopping
 • motion selectivity
 • predictive coding
• Complex motion (*LOCOMOTOR, DFG SPP*)
• *Prediction and guidance of eye movements* (*Modkog/Itap, BMBF*)
• Applications in the car (*SMI, BMW, VW*)
 • tracking: *fusion of information*
• Organic computing (*DFG, EC*)
 • *emergent learning*
Institute for Neuro- and Bioinformatics

Neural Networks
Machine Learning
Pattern Recognition

Genetic Regulatory Networks

Binding Site Recognition

Decisison Support

Computer Vision
Attention Control

Face Recognition

Automated Diagnosis

Perception Space Analysis

Organic computing
Face recognition

Where are the faces?
Seeing with sound

Video is transformed to sound
Blind people listen to the sound and learn to „see“
Mathematical problem: how can a sequence of images (three-dimensional signal) be transformed to sound (one-dimensional signal) with a minimal loss of information and under given biological constraints.
Current issues

• Information
 – what is redundant?

• Complex motion
 – overlaid motions

• Tracking
 – tracking of humans still difficult

• Learning
 – emergent learning
 – learning of features

• How the brain works
A significant number of V1 and V2 neurons are endstopped, i.e., they do not respond to straight edges or lines, but only to corners and line ends.
Intrinsic dimension in 2D

- **i0D** constant in all directions: $f(x, y) = \text{const.}$

- **i1D** constant in 2 directions: $f(x, y) = g(\xi)$

- **i2D** no constant direction: $f(x, y) = g(\xi, \zeta)$
Intrinsic dimension in 2D

i0D

i1D

i2D
Intrinsic dimension in 3D

i0D: constant in all directions: \(f(x,y,t) = \text{const.} \)

i1D constant in 2 directions: \(f(x,y,t) = g(\xi) \)

i2D constant in one direction: \(f(x,y,t) = g(\xi,\zeta) \)

i3D no constant direction: \(f(x,y,t) = g(\xi,\zeta,\tau) \)
Intrinsic dimension

\(i_{2D} \) and \(i_{3D} \) regions are the least frequent but most significant.
Corners and junctions are the least frequent but most significant image features.

“A compact surface is determined by its curved (i2D) regions.”

Reconstruction of a square

\[
f_y^2 f_{xx} - 2f_x f_y f_{xy} + f_x^2 f_{yy}
\]
Reconstruction of natural images from i2D features
Intrinsic dimensionality in 2D

i0D: constant in all directions

i1D: constant in one direction

i2D: no constant direction
Linear and nonlinear systems
Images as surfaces

image intensity

$f(x, y)$

surface

$(x, y, f(x, y))$
Intrinsic dimension and curvature

\[R \neq 0, \quad K \neq 0 \]
The visual input as a hypersurface

luminance $f(x,y,t)$

hypersurface $(x,y,t,f(x,y,t))$

Visualization of surfaces is easier:

$(x,y,f(x,y))$
Geometry and intrinsic dimension

Hypersurface Geometry

- mean curvature $H \neq 0$
- Riemann curvature tensor $R \neq 0$
- Gaussian curvature $K \neq 0$

i1D++ i2D+ i3D
The Riemann tensor components

\[R_{3131} = \frac{f_{xx} f_{tt} - f_{xt}^2}{1 + f_x^2 + f_y^2 + f_t^2} \]

\[R_{2121} = \frac{f_{xx} f_{yy} - f_{xy}^2}{1 + f_x^2 + f_y^2 + f_t^2} \]

\[R_{3232} = \frac{f_{yy} f_{tt} - f_{yt}^2}{1 + f_x^2 + f_y^2 + f_t^2} \]

\[R_{3121} = \frac{f_{xx} f_{yt} - f_{xt} f_{xy}}{1 + f_x^2 + f_y^2 + f_t^2} \]

\[R_{3231} = \frac{f_{xy} f_{tt} - f_{xt} f_{yt}}{1 + f_x^2 + f_y^2 + f_t^2} \]

\[R_{3221} = \frac{f_{xy} f_{yt} - f_{yy} f_{xt}}{1 + f_x^2 + f_y^2 + f_t^2} \]
“Stationary” square
Square moves in different directions
R components and motion

\[f(x, y, t) = f(x - tv_x, y - tv_y) \quad \mathbf{v} = (v_x, v_y) \]

\[
\begin{align*}
\mathbf{v}_1 &= (R_{3221}, -R_{3121})/ R_{2121} \\
\mathbf{v}_2 &= (R_{3231}, -R_{3131})/ R_{3121} \\
\mathbf{v}_3 &= (R_{3232}, -R_{3231})/ R_{3221} \\
\mathbf{v}_4^2 &= (R_{3232}, -R_{3131})/ R_{2121}
\end{align*}
\]
Multiple motions

Analytical predictions based on R components

Typical MT neuron, macaque monkey

Barth & Watson, 2000

Recanzone, Wurtz, & Schwarz, 1997
Predictive coding

• Only deviations from an hypothesis are encoded

• Complexity of hypotheses increases:
 • intrinsic dimension is 0, 1, 2
 • everything is uniform
 • edges are straight
 • ...
 • the sun is above
 • ...

Nonlinear analysis of multidimensional signals:

LOcal adaptive estimation of COmplex MOTion and ORientation patterns

LOCOMOTOR

http://www.math.uni-bremen.de/zetem/DFG-Schwerpunkt/

Gefördert unter Ba-1176/7

Cicero Mota
Why motion estimation

General motivation

Study the dynamics of image sequences to obtain new solutions and tools in the field of image processing and computer vision.

Computer vision applications that rely on motion estimation

- Image compression
- Environmental physics: nonlinear dynamics in wind waves
- Denoising of medical image sequences: live x-ray, ultrasound, confocal fluorescence microscopy
- Robot navigation, intelligent vehicles
- Video surveillance
- Human-computer interaction
The classical motion model

\[f(x,y,t) \text{ image-sequence intensity} \]

\[\mathbf{v} = (v_1, v_2)^T \text{ motion vector} \]

\[v_1 \frac{\partial f}{\partial x} + v_2 \frac{\partial f}{\partial y} + \frac{\partial f}{\partial t} = 0 \]

\[\mathbf{r} = (v_1, v_2, l) \]
Why complex motions?

Basic problems with natural image sequences: multiple motions, occlusions, noisy data, features at different scales, ...
Transparent motions
Motion model for transparent motions

Optical flow for one motion

\(f(x,y,t) \) image sequence, \(\mathbf{v} = (v_1, v_2)^T \) motion vector

\[
\alpha(\mathbf{v}) f = v_1 \frac{\partial}{\partial x} f + v_2 \frac{\partial}{\partial y} f + \frac{\partial}{\partial t} f = \nabla \cdot \mathbf{V} f = 0
\]

with the derivative operator:

\[
\alpha(\mathbf{v}) = v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y} + \frac{\partial}{\partial t}
\]

Optical flow for \(N \) motions:

\[
f = g_1(x - \mathbf{v}_1 t) + \ldots + g_N(x - \mathbf{v}_N t)
\]

\[
\alpha(\mathbf{v}_1) \alpha(\mathbf{v}_2) \ldots \alpha(\mathbf{v}_N) f = 0
\]
Mixed-motion parameters

Example for two motions $u, v : f(x,t) = g_1(x-v \ t) + g_2(x-u \ t)$

$$\alpha(v)\alpha(u) f = u_1v_1f_{xx} + u_2v_2f_{yy}$$

$$+ (u_1v_2 + u_2v_1)f_{xy}$$

$$+ (u_1 + v_1)f_{xt} + (u_2 + v_2)f_{yt} + f_{tt}$$

We define the mixed-motion parameters as:

$$c_{xx} = v_1u_1 \quad c_{yy} = v_2u_2 \quad c_{xy} = u_1v_2 + u_2v_1$$

$$c_{xt} = u_1 + v_1 \quad c_{yt} = u_2 + v_2 \quad c_{tt} = 1$$
Solving for the mixed-motion parameters

With the *mixed-motion parameters* we obtain:

\[
\alpha(v)\alpha(u)f = c_{xx}f_{xx} + c_{yy}f_{yy} + c_{xy}f_{xy} + c_{xt}f_{xt} + c_{yt}f_{yt} + c_{tt}f_{tt} = V \cdot L = 0
\]

For one motion we had

\[V \cdot \nabla f = 0\]

The above constraint can be used in a number of ways to derive the mixed motion parameters in \(V\) from \(f\), e.g. by defining the generalized structure tensor \(J_N\) and solving the system

\[J_NV = 0\]

and solving the system

\[J_N = h*L^T L\]

e.g.

\[V_i \propto (M_{im}, -M_{i(m-1)}, ..., (-1)^m M_{il})\]

\(M_{ij}, i = 1, ..., m\) are the minors of \(J_N\).
Separation of the mixed-motion parameters

We interpret the motion vectors \mathbf{u} and \mathbf{v} as complex numbers

$$(\mathbf{v} = v_1 + i v_2, \mathbf{u} = u_1 + i u_2)$$

and observe that

$$\mathbf{u} \cdot \mathbf{v} = A_0 = c_{xx} - c_{yy} + ic_{xy}$$

$$\mathbf{u} + \mathbf{v} = A_1 = c_{xt} + ic_{yt}$$

A_0 and A_1 are homogeneous symmetrical functions of the coordinates \mathbf{u} and \mathbf{v} and therefore by Vieta’s rule the coefficient of the complex polynomial

$$Q(z) = (z - \mathbf{u})(z - \mathbf{v}) = z^2 - A_1 z + A_0$$

that has the complex roots \mathbf{u} and \mathbf{v}.

In case of N motions

$$Q(z) = z^N - A_{N-1}z^{N-1} + \cdots + (-1)^N A_0$$
Information technology for active perception: Itap

Institute for Neuro- and Bioinformatics (INB)
University of Lübeck

Partners:
Karl Gegenfurtner
SensoMotoric Instruments GmbH
Siemens
Seeing as an illusion: the door experiment

D. Simons, Harvard.
Seeing as an illusion: change blindness
Seeing as an illusion: change blindness
Basketball count
Visual communication today: same image but different messages

Figure by M. Dorr, INB.
Visual communication today

The message that is conveyed by an image depends very much on the scan-path, i.e., the sequence of eye movements that are used to look at an image.

Visual communication systems, however, are based on only the classical image attributes luminance and color.
Itap idea

The *scan path* and the active component of vision must become part of visual communication systems.

Therefore the *scan path* must be recorded, processed, and “displayed“.
Major challenges

Remote, user-friendly eye tracking

Understanding of eye movements.

Scan-path guidance.

Development of gaze-contingent interactive displays (GCIDs).
Interactive Display

Display

Information

Guide Eye Movement

Gaze

User
Interactive Display
Guiding of Eye Movements

• Applications:
 – Automobile
 – Training

Ö Need saliency measure

Automobile
Training

Predict where gaze will fall and modify scene at those locations

⇒ Need saliency measure
Structure Tensor (1)

Compute saliency measure using structure tensor:

\[J = \mathbf{w} \ast \begin{pmatrix} f_x^2 & f_x f_y & f_x f_t \\ f_x f_y & f_y^2 & f_y f_t \\ f_x f_t & f_y f_t & f_t^2 \end{pmatrix} \]

- spatial smoothing kernel
- partial derivatives of image-intensity function \(f(x, y, t) \)
Structure Tensor (2)

Three saliency measures derived from structure tensor:

\[H = \frac{1}{3} \text{trace}(\mathbf{J}) = \lambda_1 + \lambda_2 + \lambda_3 \quad (\geq i1D) \]

\[S = |M_{11}| + |M_{22}| + |M_{33}| = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \quad (\geq i2D) \]

\[K = |\mathbf{J}| = \lambda_1 \lambda_2 \lambda_3 \quad (i3D) \]

\(\lambda_1, \lambda_2, \lambda_3 \): Eigenvalues of the structure tensor

\(M_{11}, M_{22}, M_{33} \): Minors of the structure tensor
Saliency
Salient Location Extraction

Find maximum
Attenuate using Gaussian
Prediction results

Average relative distance of saccade target to closest salient location

Results for 6 subjects with 3 runs each.
Guidance results

Results for one movie

Results for all movies (4)
Applications

Communication systems

will be defined not only by brightness and colour, but will be augmented with a recommendation of what to see, of how to view the images. Thereby Itap will start to improve communication by considering the active role of the observer.

Augmented-vision systems

Attention is directed towards objects or features that have been detected by a computer-vision system.
Vision aids
COGAIN network EC-FP6

COGAIN is a network of excellence that aims at helping disabled people to communicate more effectively.

http://www.cogain.org/
Current automotive applications

Fatigue measurement

 Blink measurement

 PERCLOS measurements will be soon enforced by law in the US.

Head tracking for airbag control

Driver identification
Intelligent airbags

Problems:
• Deployment with kids and OoP (harm)
• Useless deployment (cost)

Solution: video-based control

OoP: Out of Position
Intelligent airbags: OoP system
Blink and fatigue measurement
Tracking of humans is still difficult

Problems:
• Initialization
• Drift
• Lost features
• Accuracy

Where is the eye corner?
Coordination of subsystems

Subsystems are limited in scope, perspective and information. They need to cooperate in a given situation to form an integrated functional whole, taking into account, and making mutually consistent, all relevant information.

Organic systems reach global certainty as a consistent meshwork of many subsystems, although individually these may have started out with large uncertainty.
Organic Computing

http://www.organic-computing.org/

Organic Computing is a call to arms for a concerted intellectual effort towards a Science of Organization. Ultimately, it is a quest for understanding the complexity of Life.

http://www.organic-computing.de/

DFG Schwerpunktprogramm 1183: "Organic Computing"
The information sensed from the human is used to structure the process of self-organization. By assuming that all the relevant properties of the world will be somehow reflected in the behavior of the human, the integrated system will be able to build up knowledge about relevant states of the world.
Summary

• Early and mid-level vision leads to a sparse and increasingly efficient encoding of the visual input
• The encoding can be explained by the concept of intrinsic dimension
• Vision is an illusion and this leads to, e.g., communication problems
• Itap will improve visual communication by helping people see what they are meant to see; it will lead to new kinds of vision aids
• Computer vision still faces many challenging problems
• Organic Computing is a new attempt to handle complexity by using biology as inspiration
Acknowledgements

• Cicero Mota, Ingo Stuke, Til Aach
• Martin Böhme, Michael Dorr
• Thomas Martinetz

• Support from BMBF, DFG, SMI